JEDNOSTKA NAUKOWA KATEGORII A+

Projective modules and Gröbner bases for skew PBW extensions

Tom 521 / 2017

Oswaldo Lezama, Claudia Gallego Dissertationes Mathematicae 521 (2017), 1-50 MSC: Primary 16Z05; Secondary 16D40, 15A21. DOI: 10.4064/dm747-4-2016 Opublikowany online: 23 January 2017

Streszczenie

Many rings and algebras arising in quantum mechanics, algebraic analysis, and non-commutative algebraic geometry can be interpreted as skew PBW (Poincaré–Birkhoff–Witt) extensions. In the present paper we study two aspects of these non-commutative rings: their finitely generated projective modules from a matrix-constructive approach, and the construction of the Gröbner theory for their left ideals and modules. These two topics have interesting applications in functional linear systems and in non-commutative geometry.

Autorzy

  • Oswaldo LezamaSeminario de Álgebra Constructiva – SAC$^2$
    Departamento de Matemáticas
    Universidad Nacional de Colombia
    Bogotá, Colombia
    e-mail
  • Claudia GallegoSeminario de Álgebra Constructiva – SAC$^2$
    Departamento de Matemáticas
    Universidad Nacional de Colombia
    Bogotá, Colombia
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek