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Chapter 1

Dirac operators and Spin structures

1.1 The Dirac operator of Rn

First we consider n even. We shall construct matrices

E1, E2, . . . , En, n = 2r

each Ej being 2r×2r matrix of complex numbers. In fact each entry will be in {0, 1,−1, i,−i}.
Properties of Ej

1. E∗
j = −Ej ,

2. each Ej is block anti-diagonal

Ej =
[

0 ∗
∗ 0

]
and each block has size 2r−1 × 2r−1,

3. E2
j = I2r ,

4. EjEk + EkEj = 0 for j 6= k,

5.

irE1E2 . . . En =
[
I2r−1 0

0 −I2r−1

]
We will proceed by induction on n even. For n = 2 we take

E1 =
[

0 −1
1 0

]
, E2 =

[
0 i
i 0

]
Suppose we have E1, E2, . . . , En of size 2r×2r. Then we put first n matrices of size 2r+1×2r+1

as [
0 E1

E1 0

]
,

[
0 E2

E2 0

]
, . . . ,

[
0 En

En 0

]
and two additional matrices

[
0 −I2r

I2r 0

]
,


0 0 iI2r−1 0
0 0 0 iI2r−1

iI2r−1 0 0 0
0 iI2r−1 0 0

 .
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Example 1.1. For n = 4 we have

E1 =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 , E2 =


0 0 0 i
0 0 i 0
0 i 0 0
i 0 0 0

 ,

E3 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 , E4 =


0 0 i 0
0 0 0 −i
i 0 0 0
0 −i 0 0


For n odd, n = 2r + 1, we define matrices E1, E2, . . . , Er satisfying

1. E∗
j = −Ej ,

2. E2
j = I2r ,

3. EjEk + EkEj = 0 for j 6= k,

4. ir+1E1E2 . . . En = I2r .

First if n = 1 we set
E1 = [−i].

Then for n = 2r+ 1 we use 2r matrices E1, E2, . . . , En−1 as for the even case and as the last
one we put [

−iI2r−1 0
0 iI2r−1

]
.

From E1, E2, . . . , En we obtain:

1. The Dirac operator of Rn (described above)

2. The Bott generator vector bundle on Sn (n even)

3. The spin representation of Spinc(n)

1.1.1 Dirac operator

Now we can define Dirac operator of Rn. For each n we set

D :=
n∑

j=1

Ej
∂

∂xj
.

Example 1.2. For n = 1 we have Dirac operator of R

D = −i ∂
∂x
.

For n = 2

D =
[

0 −1
1 0

]
∂

∂x1
+

[
0 i
i 0

]
∂

∂x2

.
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For n = 2r and n = 2r + 1 D is an unbounded operator on the Hilbert space

L2(Rn)⊕ L2(Rn)⊕ . . .⊕ L2(Rn)︸ ︷︷ ︸
2r

.

D is a first order elliptic differential operator on

C∞
c (Rn)⊕ C∞

c (Rn)⊕ . . .⊕ C∞
c (Rn)︸ ︷︷ ︸

2r

With this domain D is symmetric (that is D is formally self-adjoint) and D is essentially
self-adjoint (that is D has unique self-adjoint extension). For n even

D =
[

0 D−
D+ 0

]
where D− is the formal adjoint of D+.

We will descirbe these notions in a general context. Let H be Hilbert space. An un-
bounded operator on H is a pair (D, T ) such that

1. D ⊂ H is a vector subspace of H,

2. D is dense in H,

3. T : D → H is a C-linear map,

4. (D, T ) is closeable, i.e. the closure of graph(T ) in H⊕H is the graph of a C-linear map

P (graph(T )) → H

P (u, v) = u.

An unbounded operator (D, T ) is symmetric if and only if

〈Tu, v〉 = 〈u, Tv〉 ∀ u, v ∈ D.

For an unbounded operator (D, T ) on H let

D(T ∗) :=
{
u ∈ H

∣∣ v 7→ 〈u, Tv〉 extends from D to H extends

to be a bounded linear functional on H}

For u ∈ D(T ∗) and v ∈ H there exists

T ∗ : D(T ∗) → H

such that
〈u, Tv〉 = 〈T ∗u, v〉.

Now (D, T ) is self-adjoint if and only if

(D, T ) = (D(T ∗), T ∗).

Remark 1.3. Symmetric operator needs not to be self-adjoint, but a self-adjoint operator is
symmetric.
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Example 1.4. Take C∞
c (R) ⊂ L2(R) and

D =
{
u ∈ L2(R)

∣∣ − idu
dx ∈ L

2(R) in the distribution sense
}

= {u ∈ L2(R)
∣∣ xû ∈ L2(R)},

where û is the Fourier transform of u and

x : R → R, x(t) = t, ∀ t ∈ R.

Then (C∞
c (R),−i d

dx) has unique self-adjoint extension (D,−i d
dx).

Let D be Dirac operator of Rn, n = 2r or 2r + 1.

Ω1(Rn) = {C∞ 1-forms on Rn}

= {f1dx1 + f2dx2 + . . .+ fndxn

∣∣ fj : Rn → C, j = 1, 2, . . . , n}

Ω1(Rn) acts on
C∞

c (Rn)⊕ C∞
c (Rn)⊕ . . .⊕ C∞

c (Rn)︸ ︷︷ ︸
2r

in the following way. Let

ω = f1dx1 + f2dx2 + . . .+ fndxn,

s = (s1, s2, . . . , s2r), sl : Rn → C, l = 1, 2, . . . , 2r.

Then

ωs =
n∑

j=1

fjEjs.

There is following Leibniz rule for D

D(fs) = (df)s+ f(Ds),

f : Rn → C, f ∈ C∞(Rn), df =
n∑

j=1

∂f

∂xj
dxj .

If M is C∞-manifold, compact or non-compact, with or without boundary, dimM = M ,
then the Dirac operator of M is an elliptic operator which is locally like the Dirac operator
of Rn.

1.1.2 Bott generator vector bundle

Let W be finite dimensional C-vector space,

T ∈ HomC(W,W ), T 2 = −I.

Then eigenvalues of T are ±i and there is decomposition

W = Wi ⊕W−i,

Wi = {v ∈W
∣∣ Tv = iv}

W−i = {v ∈W
∣∣ Tv = −iv}
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Assume that n is even, Sn ⊂ Rn+1

Sn = {(a1, a2, . . . , an+1) ∈ Rn
∣∣ a2

1 + a2
2 + . . .+ a2

n+1 = 1}.

We have a map
Sn →M(2r,C)

(a1, a2, . . . , an+1) 7→ a1E1 + a2E2 + . . .+ an+1En+1 =: F.

From the properties of Ej we obtain

F 2 = (a1E1 + a2E2 + . . .+ an+1En+1)2

= (−a2
1 − a2

2 − . . .− a2
n+1)I

= −I

so the eigenvalues of F are ±i.
The Bott generator vector bundle β on Sn is given by

β(a1,a2,...,an+1) := i-eigenspace of F

= {v ∈ C2r ∣∣ F (v) = iv}

For n even and Sn ⊂ Rn+1 there is an isomorphism

K0(Sn) = Z ⊕ Z

1 β

where 1 = Sn × C.

1.2 Spin representation and Spinc

Let G be a topological group, Hausdorff and paracompact, X topological space Hausdorff
and paracompact. A principal G-bundle on X is a pair (P, π) where

1. P is a Hausdorff and paracompact topological space with given continuous (right) action
of G

P ×G→ P

(p, g) 7→ pg

2. π : P → X is a continuous map, mapping P onto X

such that given any x ∈ X, there exists an open subset U of X with x ∈ U and a homeomor-
phism

ϕ : U ×G→ π−1(U)

with
πϕ(u, g) = u ∀ (u, g) ∈ U ×G

ϕ(u, g1g2) = ϕ(u, g1)g2 ∀ (u, g1, g2) ∈ U ×G×G

Such ϕ : U ×G→ π−1(U) is referred to as a local trivialization.
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Two principal G-bundles (P, π) and (Q, θ) are isomorphic if there exists a G-equivariant
homeomorphism f : P → Q with commutativity in the diagram

P
f

- Q

X
�

θπ -

Let G,H be two topological groups and let (P, π), (G, θ) be a principal G-bundle and H-
bundle on X. A homomorphism of principal bundles from (P, π) to (Q, θ) is a pair (η, ρ) such
that

1. ρ is a homomorphism of topological groups ρ : G→ H

2. P → Q is a continuous map with commutativity in the diagrams

P
η

- Q

X
�

θπ -

P ×G
η × ρ

- Q×H

P
? η

- Q
?

πp = θ(ηp) η(pg) = (ηp)(ρg)

A homomorphism of principal bundles on X will be denoted η : P → Q and ρ : G → H will
be referred to as homomorphism of topological groups underlying η.

Lemma 1.5. Let η : P → Q be a homomorphism of principal bundles on X with underlying
homomorphism of topological groups ρ : G → H. Then for any x ∈ X there exists an open
subset U of X with x ∈ U and local trivializations

ϕ : U ×G→ π−1(U)

ψ : U ×H → θ−1(U)

such that the diagram

U ×G
ϕ
- π−1(U)

U ×H

IdU ×η
? ψ

- θ−1(U)

η
?

commutes.

Example 1.6. Let E be R-vector bundle on X, dimR(Ep) = n for all p ∈ X. Denote

∆(E) := {(p, v1, v2, . . . , vn)
∣∣ p ∈ X, v1, v2, . . . , vn form a vector space basis for Ep}

∆(E) is topologized by
∆(E) ⊂ E ⊕ E ⊕ . . .⊕ E︸ ︷︷ ︸

n

.

Define an action
∆(E)×GL(n,R) → ∆(E)
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((p, v1, v2, . . . , vn), [aij ]) 7→ (p, w1, w2, . . . , wn),

wj =
n∑

i=1

aijvi, [aij ] ∈ GL(n,R)

and a map
θ : ∆(E) → X,

θ(p, v1, v2, . . . , vn) = p.

Then (∆(E), θ) is a principal GL(n,R)-bundle on X.
For n > 3

π1(SO(n)) = Z/2Z
and Spin(n) is the unique non-trivial 2-fold cover of SO(n). It is a compact connected Lie
group.

Spin(n)

SO(n)
?

⊂GL(n,R)

There is an exact sequence

1 → Z/2Z → Spin(n) → SO(n) → 1

The group Z/2Z embeds in the Spin(n) and S1 as the {1,−1}. We define

Spinc(n) := S1 ×Z/2Z Spin(n).

Then there is an exact sequence

1 → S1 → Spinc(n) → SO(n) → 1

Spinc(n) is a compact connected Lie group

Spin(n)

Spinc(n)
?

SO(n)
?

⊂GL(n,R)

Example 1.7. For n = 1
Spin(1) = Z/2Z, SO(1) = 1

Spinc(1) = S1

ρ : S1 → pt .

For n = 2
Spin(2) = S1 = SO(2)

Spin(2) → SO(2)

ζ 7→ ζ2

and
Spinc(2) = S1 ×Z/2Z Spin(2)

ρ(λ, ζ) = ζ2.
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Remark 1.8. Since SO(n) ⊂ GL(n,R) we can view the standard map Spinc(n) → SO(n) as
Spinc(n) → GL(n,R).

Definition 1.9. A Spinc datum for an R-vector bundle E → X is a homomorphism of
principal bundles

η : P → ∆(E),

where P is a principal Spinc(n)-bundle on X (n = dimR(Ep)) and the homomorphism of
topological groups underlying η is the standard map

ρ : Spinc(n) → GL(n,R).

Two Spinc data η : P → ∆(E), η′ : P ′ → ∆(E) are isomorphic if there exists an isomor-
phism f : P → P ′ of principal Spinc(n)-bundles on X with commutativity in the diagram

P
f

- P ′

∆(E)
� η

′η - η = η′ ◦ f.

Two Spinc data η : P → ∆(E), η′ : P ′ → ∆(E) are homotopic if there exists a principal
Spinc(n)-bundle Q on X and a continuous map

Φ: Q× [0, 1] → ∆(E)

such that

1. For t ∈ [0, 1] each
Φt = Φ(−, t) : Q→ ∆(E)

is a Spinc data.

2.
Φ0 : Q→ ∆(E) is isomorphic to η : P → ∆(E)

Φ1 : Q→ ∆(E) is isomorphic to η′ : P → ∆(E)

Definition 1.10. A Spinc(n)-structure for E is an equivalence class of Spinc(n) data, where
the equivalence relation is homotopy.

A Spinc structure for an R-bundle E determines an orientation of E. Let w1(E), w2(E), . . . be
the Stiefel-Whitney classes of E, wj(E) Hj(X; Z/2Z)-Cech cohomology. Then E is orientable
if and only if w1(E) = 0.

A spin manifold is a C∞ manifold M , dimM = n, for which the structure group of the
tangent bundle TM has been lifted from GL(n,R) to Spin(n). Such lifting is possible if and
only if

w1(M) = 0, w1(M) ∈ H1(M ; Z/2Z)
and
w2(M) = 0, w2(M) ∈ H2(M ; Z/2Z).

A Spinc manifold is a C∞ manifold M , dimM = n, for which the structure group of
the tangent bundle TM has been lifted from GL(n,R) to Spinc(n). Such lifting is possible if
and only if

w1(M) = 0, w1(M) ∈ H1(M ; Z/2Z)
and
w2(M) is in the image of H2(M ; Z) → H2(M ; Z/2Z).
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Various well known structures on a manifold M make M into Spinc manifold

(complex analitic)

(symplectic) =====⇒ (almost complex)

�www

(contact) ===⇒ (stably almost complex)

�www

Spin ==============⇒ Spinc

�www

(oriented)

�wwww
A Spinc manifold can be thought of as an oriented manifold with a slight extra bit of struc-
ture. Most of the oriented manifolds which occur in practice are Spinc manifolds. Spinc

structures behave very much like orientations. For example, an orientation on two of three R
vector bundles in a short exact sequence determine an orientation on the third vector bundle.
Analogous assertions are true for Spinc structures.

Lemma 1.11 (Two out of three lemma). Let

0 → E′ → E → E′′ → 0

be an exact sequence of R vector bundles on X. If Spinc structures are given for any two of
E′, E,E′′ then a Spinc structure is determined for the third.

Corollary 1.12. If M is a Spinc manifold with boundary ∂M , then ∂M is in canonocal way
a Spinc manifold.

Proof. There is an exact sequence

0 → T∂M → TM |∂M → ∂M × R → 0

Remark 1.13. If E is orientable (w1(E) = 0), then the set of all possible orientations of E
is in 1-1 correspondence with H0(X; Z/2Z). If E is Spinc-able (w1(E) = 0 and w2(E) ∈
im(H2(X; Z) → H2(X; Z/2Z))), then the set of all possible Spinc-structures for E is then in
1-1 correspondence with H0(X; Z/2Z)×H2(X; Z).

1.2.1 Clifford algebras and spinor systems

Let V be a finite dimensional R-vector space, 〈−,−〉 a positive defninite, symmetric, bilinear
R-valued inner product on V . We can form a tensor algebra

T V := R⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ . . .

with multiplication given by composing the tensors, and then define Clifford algebra

Cliff(V ) := T V/(v ⊗ v + 〈v, v〉 · 1)

10



where (v ⊗ v + 〈v, v〉 · 1) denotes the two-sided ideal in T V generated by all elements of the
form

v ⊗ v + 〈v, v〉 · 1, v ∈ V, 1 ∈ R.

As a vector space over R Cliff(V ) is canonically isomorphic to the exterior algebra

Λ∗V = R⊕ V ⊕ Λ2V ⊕ . . .ΛnV, n = dimR V.

Let e1, e2, . . . , en be an orthonormal basis of V . The monomials

eε11 e
ε2
2 . . . eεn

n , εj ∈ {0, 1}

form a vector space basis of Cliff(V ). The canonical isomorphism of R-vector spaces

Cliff(V ) → Λ∗V

is given by
eε11 e

ε2
2 . . . eεn

n 7→ eε11 ∧ eε22 ∧ . . . ∧ eεn
n .

This isomorphism does not depend on the choice of orthonormal basis of V .

dimR(Cliff(V )) = 2n, n = dimR V.

In Cliff(V ) we have following identities

e2j = −1, j = 1, 2, . . . , n,

eiej + ejei = 0, i 6= j.

We can introduce Z/2Z-grading on Cliff(V ) in the following way

Cliff(V ) = (Cliff(V ))0 ⊕ (Cliff(V ))1,

where (Cliff(V ))0 is an R-vector space spanned by eε11 e
ε2
2 . . . eεn

n with ε1 + ε2 + . . .+ εn even,
and (Cliff(V ))1 is an R-vector space spanned by eε11 e

ε2
2 . . . eεn

n with ε1 + ε2 + . . .+ εn odd. This
Z/2Z-grading does not depend on the choice of orthonormal basis of V .

Take Rn with the usual inner product

Sn−1 ⊂ Rn ⊂ Cliff(Rn).

The elements of Sn−1 are invertible in Cliff(Rn). Let Pin(n) be the subgroup of the invertible
elements of Cliff(Rn) generated by Sn−1. Then

Spin(n) = Pin(n) ∩ (Cliff(Rn))0

ρ : Spin(n) → SO(n)

(ρg)(x) = gxg−1, g ∈ Sn−1, x ∈ Rn.

For n > 3 this is the unique non-trivial 2-fold covering space of SO(n).
Consider complexification

CliffC(V ) := C⊗R Cliff(V ).

Then CliffC(V ) is a C∗-algebra with
v∗ = −v

11



for
v ∈ V ⊂ Cliff(V ) ⊂ CliffC(V ).

Let
CliffC(Rn) := CR Cliff(Rn),

Spinc(n) = S1 ×Z/2Z Spin(n) ⊂ CliffC(Rn).

Then Spinc(n) is a subgroup of the group of unitary elements of the C∗-algebra CliffC(Rn).
Let us now choose an orthogonal basis e1, e2, . . . , en for even-dimensional R-vector space

V , n = 2n = dimR(V ). Recall 2r×2r matrices E1, E2, . . . , En defined in the beginning of the
chapter and then define a mapping

CliffC(V ) →M(2r,C)

ej 7→ Ej , j = 1, 2, . . . , n.

This gives an isomorphism of C∗-algebras CliffC(V ) and M(2r,C). For an odd dimension
n = 2r + 1 recall 2r × 2r matrices E1, E2, . . . , En and define two mappings

ϕ+ : CliffC(V ) →M(2r,C)

ϕ+(ej) = Ej , j = 1, 2, . . . , n,

ϕ− : CliffC(V ) →M(2r,C)

ϕ−(ej) = −Ej , j = 1, 2, . . . , n.

Then
ϕ+ ⊕ ϕ− : CliffC(V ) →M(2r,C)⊕M(2r,C)

is an isomorphism of C∗-algebras.

Remark 1.14. This isomorphisms are non-canonical since they depend on the choice of an
orthonormal basis for V .

Let E be an R-vector bundle on X. Assume given an inner product 〈−,−〉 for E. Then
define CliffC(E) as a bundle of C∗-algebras over X whose fiber at p ∈ X is CliffC(Ep).

Definition 1.15. An Hermitian module over CliffC(E) is a complex vector bundle F on
X with a C-valued inner product (−,−) and a module structure

CliffC(E)⊗ F → F

such that

1. (−,−) makes Fp into a finite dimensional Hilbert space,

2. for each p ∈ X, the module map

CliffC(Ep) → L(Fp)

is a unital homomorphism of C∗-algebras.

Remark 1.16. Of course all structures here are assumed to be continuous. If X is a C∞

manifold then we could take everything to be C∞.
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If E is oriented define a section ω of CliffC(E) as follows. Given p ∈ X, choose a positively
oriented orthonormal basis e1, e2, . . . , en of Ep. For n even, n = 2r, set

ω(p) = ire1e2 . . . e2r.

For n = 2r + 1 odd
ω(p) = ir+1e1e2 . . . e2r+1.

Then ω(p) does not depend on the choice of positively oriented orthonormal basis. In
CliffC(Ep) we have

(ω(p))2 = 1.

If n is odd, then ω(p) is in the center of CliffC(Ep). Note that to define ω, E must be oriented.
Reversing the orientation will change ω to −ω.

Definition 1.17. Let E be an R-vector bundle on X. A Spinor system for E is a triple
(ε, 〈−,−〉, F ) such that

1. ε is an orientation of E,

2. 〈−,−〉 is an inner product for E,

3. F is an Hermitian module over CliffC(E) with each Fp an irreducible module over
CliffC(Ep),

4. if n = dimR(Ep) is odd, then ω(p) acts identically on Fp.

Remark 1.18. The irreducibillity of Fp in (3) is equivalent to dimC(Fp) = 2r, where n = 2r or
n = 2r+1. In (4) note that ω(p)2 = 1 so for n odd ω(p) is in the center of CliffC(Ep). Hence
irreducibility of Fp implies that ω(p) acts either by I or −I on Fp. Thus (4) normalizes the
matter by requiring that ω(p) acts as I. When n = dimR(Ep) is even no such normalization
is made.

If (ε, 〈−,−〉, F ) is a Spinor system for E, then F is referred to as the Spinor bundle.
Suppose that n = dimR(Ep) is even. Let F+

p (F+
p ) be the +1 (−1) eigenspace of ω(p).

We have a direct sum decomposition

F = F+ ⊕ F−,

where F+, F− are 1
2 − Spin bundles. F+ (F−) is a vector bundle of positive (negative)

spinors.
Assume we have right and left actions of the group G on topological spaces X,Y

X ×G→ X

G× Y → Y

Then
X ×G Y := X × Y/ ∼, (xg, y) ∼ (x, gy).

Example 1.19. Let E be an R-vector bundle on X. Then

∆(E)×GL(n,R) ' E

((p, v1, v2, . . . , vn), (a1, a2, . . . , an)) 7→ a1v1 + a2v2 + . . .+ anvn.
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Let E be an R-vector bundle on X. A Spinc datum

η : P → ∆(E)

determines a Spinor system (ε, 〈−,−〉, F ) for E. For p ∈ X, given orientation ε, and inner
product 〈−,−〉, an R-basis v1, v2, . . . , vn of Ep is positively oriented and orthonormal if and
only if

(v1, v2, . . . , vn) ∈ im(η).

The Spinor bundle for n = 2r or n = 2r + 1

F = P ×Spinc(n) C2r
.

We have to describe how Spinc(n) acts on C2r
. For n odd Spinc(n) has an irreducible

representation known as its spin representation

Spinc(n) → GL(2r,C), n = 2r + 1.

For n even Spinc(n) has two irreducible representations known as its 1
2 −Spin representations

Spinc(n) → GL(2r−1,C),

Spinc(n) → GL(2r−1,C), n = 2r.

The direct sum
Spinc(n) → GL(2r−1,C)⊕GL(2r−1,C) ⊂ GL(2r,C),

of these representations is the spin representation of Spinc(n).
Consider Rn with its usual inner product and usual orthonormal basis e1, e2, . . . , en

ϕ : CliffC(Rn) →M(2r,C)

ϕ(ej) = Ej , j = 1, 2, . . . , n.

There is a canonical inclusion
Spinc(n) ⊂ CliffC(Rn)

and ϕ restricted to Spinc(n) maps Spinc(n) to 2r × 2r unitary matrices

Spinc(n) → U(2r) ⊂ GL(n,C).

This is Spin representation of Spinc(n) and Spinc(n) acts on GL(2r,C) acts on C2r
via

this representation.
Let M be C∞ manifold, possibly ∂M non-empty, TM the tangent bundle of M . Then(

Spinc datum for TM
η : P → ∆(TM)

)
↓(

Spinor system for TM
(ε, 〈−,−〉, F )

)
↓(

Dirac operator
D : C∞

c (M,F ) → C∞
c (M,F )

)
where F is the Spinor bundle on M and C∞

c (M,F ) are its C∞ sections with compact support.
The Dirac operator

D : C∞
c (M,F ) → C∞

c (M,F )

is such that
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1. D is C-linear
D(s1 + s2) = Ds1 +Ds2,

D(λs) = λDs, s1, s2, s ∈ C∞
c (M,F ), λ ∈ C.

2. If f : M → C is a C∞ function, then

D(fs) = (df)s+ f(Ds).

3. If s1, s2 ∈ C∞
c (M,F ) then∫

M
(Ds1(x), s2(x))dx =

∫
M

(s1(x), Ds2(x))dx

4. If dimM is even, then D is off-diagonal

F = F+ ⊕ F−

D =
[

0 D−

D+ 0

]
D : C∞

c (M,F ) → C∞
c (M,F ) is an elliptic first-order differential operator. It can be viewed

as an unbounded operator on the Hilbert space L2(M,F ) with the scalar product

(s1, s2) :=
∫

M
(s1(x), s2(x))dx.

Moreover it is a symmetric operator.
One proves existence of D by constructing it locally and patching together with a C∞

partition of unity. The uniqueness ofD is obtained by the fact that ifD0, D1 satisfy conditions
(1)-(4) above, then

D0 −D1 : F → F

is a vector bundle map, hence D0, D1 differ by lower order terms.

Example 1.20. Let n be even, Sn ⊂ Rn+1, D-Dirac operator of Sn, F -Spinor bundle of Sn,
F = F+ ⊕ F−.

D : C∞
c (Sn, F ) → C∞

c (Sn, F )

D =
[

0 D−

D+ 0

]
D+ : C∞

c (Sn, F+) → C∞
c (Sn, F−)

Then
Index(D+) := dimC(kerD+)− dimC(cokerD+).

Theorem 1.21.
Index(D+) = 0.

We can tensor D+ with the Bott generator vector bundle β from section (1.1.2)

D+
β : C∞

c (Sn, F+ ⊗ β) → C∞
c (Sn, F− ⊗ β).

Then we have

Theorem 1.22.
Index(D+

β ) = 1.
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