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Chapter 1

Dirac operators and Spin structures

1.1 The Dirac operator of R"
First we consider n even. We shall construct matrices
El,EQ,...,En, n=2r

each F; being 2" x 2" matrix of complex numbers. In fact each entry will be in {0,1, —1,4, —i}.
Properties of Ej
1. Ef = —Ej,

2. each Ej is block anti-diagonal
0 =
B[]
and each block has size 2771 x 271,
3. Bf = Iy,
4. EJEk + EkEJ =0 for j # k,

i"E1Ey... B, = [ Ty 0 ]

0 _[27‘71

We will proceed by induction on n even. For n = 2 we take

0 —1 0 i
El_[1 0 } EQ_[z’ 0}

Suppose we have E1, Es, . .., E, of size 2" x2". Then we put first n matrices of size 2"+ x 271
as i
0 E; 0 Es 0 E,
Er 0|7 [ E O |7 77 E, O
and two additional matrices
0 0 ilor—1 0
0 —Is 0 0 0 ilor—1
Ior 0 ’ ilgr—1 0 0 0
0 ilor—1 0 0




Example 1.1. For n = 4 we have

0 0 0 —1 00 0 i
0 0 1 0 00 i 0

Bi=1yo 10 0| 2|0 i 00|
1 0 0 0 | i 00 0
[0 0 -1 0 ] 0 0 i 0
00 0 -1 0 0 0 —i

EBs=110 0 o | ®=|i 0 0 o
(001 0 0 | 0 i 0 0

For n odd, n = 2r + 1, we define matrices F1, Fo, ..., E, satisfying
1. £} = —Ej,

2. B = I,

3. EjE, + EyE; =0 for j # k,

4. "B\ Ey .. B, = Iy

First if n = 1 we set

E, = [—i].
Then for n = 2r + 1 we use 2r matrices E1, Es, ..., E,_1 as for the even case and as the last
one we put
_7;[27*71 O
O 7:[27‘—1

From FEq, Es, ..., E, we obtain:
1. The Dirac operator of R™ (described above)
2. The Bott generator vector bundle on S™ (n even)

3. The spin representation of Spin®(n)

1.1.1 Dirac operator

Now we can define Dirac operator of R". For each n we set

- 0
D = B, —.
Z Jaxj
J=1

Ezample 1.2. For n = 1 we have Dirac operator of R

.0
D——Z%.

b0 112 Joi]o

Forn=2



For n =2r and n = 2r 4+ 1 D is an unbounded operator on the Hilbert space

L*R") @ L*(R") @ ... ® L*(R").

27‘

D is a first order elliptic differential operator on

CX(R™) & CXR™) @ ... & C(R")

2T

With this domain D is symmetric (that is D is formally self-adjoint) and D is essentially
self-adjoint (that is D has unique self-adjoint extension). For n even

0 D_
D_[D+ 0 ]

where D_ is the formal adjoint of D.
We will descirbe these notions in a general context. Let H be Hilbert space. An un-
bounded operator on H is a pair (D, T) such that

1. D C 'H is a vector subspace of H,

2. D is dense in H,

3. T: D — H is a C-linear map,

4. (D,T) is closeable, i.e. the closure of graph(T") in H & H is the graph of a C-linear map

P(graph(T)) — H
P(u,v) = u.
An unbounded operator (D, T) is symmetric if and only if
(Tu, vy = (u, Tv) Yu,veD.
For an unbounded operator (D,T') on H let
D(T*):={ueH ‘ v — (u, Tv) extends from D to H extends

to be a bounded linear functional on H}

For u € D(T*) and v € 'H there exists
T*: D(T*) - H

such that
(u, Tv) = (T, v).

Now (D, T) is self-adjoint if and only if
(D,T) = (D(T7),T).

Remark 1.3. Symmetric operator needs not to be self-adjoint, but a self-adjoint operator is
symmetric.



Ezample 1.4. Take C°(R) C L*(R) and
={uel?*R)| - zd“ € L*(R) in the distribution sense}
= {u e L*R) | vt € L*(R)},
where 4 is the Fourier transform of v and
r:R—-R, z(t)=t, VteR

Then (C°(R), —i%) has unique self-adjoint extension (D, —i%).

Let D be Dirac operator of R", n = 2r or 2r + 1.
QYR"™) = {C* 1-forms on R"}

= {fidz1 + foda + ...+ fpdayn | fj: R" = C, j=1,2,...,n}

QY(R™) acts on
CPR") @ CXR™) @ ... CF[R")

o

in the following way. Let
w = fldiL'l + fgde + ...+ fndxn,

52(81,82,...,527"), Sl:Rn—>C, l:1,2,...,2r.
Then

n
ws = Z fiE;s.
j=1

There is following Leibniz rule for D

D(fs) = (df)s + f(Ds),
f:R"—=C, feC®R"), df = Zax]dx]
If M is C'°°-manifold, compact or non-compact, with or without boundary, dim M = M,
then the Dirac operator of M is an elliptic operator which is locally like the Dirac operator

of R"™.

1.1.2 Bott generator vector bundle

Let W be finite dimensional C-vector space,
T € Home (W, W), T? = —1I.
Then eigenvalues of T' are +i and there is decomposition

W =W;®W_;,
Wi={veW|Tv=iv}
W_i={veW|Tv=—iv}
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Assume that n is even, S™ ¢ R*+!
Sn:{(a17a27"’7an+1) ERn ‘ a%—i_a%—i_"'—i_a%ﬁ»l :1}

We have a map
S" — M(2",C)

(al,ag, ... ,an+1) — a1 Bl +agEy+ ...+ an—l—lEn—I—l =: F.

From the properties of E; we obtain
F? = (a1F1+asFs+ ...+ ant1Fn11)?

=(-ai—a3—...— a5 y)I

=1

so the eigenvalues of F' are +i.
The Bott generator vector bundle 5 on S™ is given by

Blar,as,....ans,) ‘= i-eigenspace of F’

={veC?

F(v) =iv}
For n even and S™ C R"*! there is an isomorphism

K'(SYV= Z & Z

1 B
where 1 = S™ x C.

1.2 Spin representation and Spin°

Let G be a topological group, Hausdorff and paracompact, X topological space Hausdorff
and paracompact. A principal G-bundle on X is a pair (P, 7) where

1. P is a Hausdorff and paracompact topological space with given continuous (right) action
of G
PxG—P

(p.9) — pg
2. m: P — X is a continuous map, mapping P onto X

such that given any x € X, there exists an open subset U of X with x € U and a homeomor-
phism
0: U x G — 71 YU)

with
To(u, g) = u V(u,9) €eUXG
o(u, g192) = (u,91)92 Y (u,91,92) €U x G x G

Such p: U x G — 7~ 1(U) is referred to as a local trivialization.



Two principal G-bundles (P, 7) and (@, #) are isomorphic if there exists a G-equivariant
homeomorphism f: P — ) with commutativity in the diagram

/
Q
A
X
Let G, H be two topological groups and let (P, 7), (G,60) be a principal G-bundle and H-

bundle on X. A homomorphism of principal bundles from (P, ) to (Q,0) is a pair (7, p) such
that

P

1. pis a homomorphism of topological groups p: G — H

2. P — @ is a continuous map with commutativity in the diagrams

il 0 Pxc R oxn

oA

X P Q

P

7p = 60(np) n(pg) = (np)(pg)

A homomorphism of principal bundles on X will be denoted n: P — @ and p: G — H will
be referred to as homomorphism of topological groups underlying 7.

Lemma 1.5. Let n: P — @ be a homomorphism of principal bundles on X with underlying
homomorphism of topological groups p: G — H. Then for any x € X there exists an open
subset U of X with x € U and local trivializations

©:UxG— 7 YU)

Y:Ux H— 0 (U)
such that the diagram

Ux G 7 Y (U)
Idy Xn{ lﬂ
UxH - o)

commautes.

Ezample 1.6. Let E be R-vector bundle on X, dimg(E,) = n for all p € X. Denote
A(E) = {(p,v1,v2,...,0p) ‘ p € X, v1,v2,...,v, form a vector space basis for E,}

A(FE) is topologized by
A(EYCE®E®...®E.

n

Define an action
A(E) x GL(n,R) — A(E)



((p7 V1,02, .. 7vn)7 [alj]) = (p7 w1, w2, . .. 7wn)7
wj; = Zaijvi, [aij] S GL(H,R)

i=1

and a map
0: A(E) — X,
e(pa V1,02, ... 7vn) =P
Then (A(E),0) is a principal GL(n,R)-bundle on X.
Forn >3

m1(SO(n)) = Z/2Z
and Spin(n) is the unique non-trivial 2-fold cover of SO(n). It is a compact connected Lie
group.

Spin(n)

SO(n) CGL(n,R)

There is an exact sequence

1 — Z/2Z — Spin(n) — SO(n) — 1
The group Z/27Z embeds in the Spin(n) and S! as the {1,—1}. We define

Spin¢(n) := S* X 7,/2z Spin(n).
Then there is an exact sequence
1 — S' — Spin‘(n) — SO(n) — 1

Spin€(n) is a compact connected Lie group

Spin(n)

|

Spin‘(n)

|

SO(n) cGL(n,R)
Example 1.7. For n =1
Spin(l) =Z/2Z, SO(1) =1

Spin¢(1) = S!

p: ST — pt.
Forn =2
Spin(2) = S = S0(2)
Spin(2) — SO(2)
(¢
and

Spin¢(2) = S! X 7,/2z, Spin(2)
p(N Q) = ¢



Remark 1.8. Since SO(n) C GL(n,R) we can view the standard map Spin®(n) — SO(n) as
Spin‘(n) — GL(n,R).

Definition 1.9. A Spin® datum for an R-vector bundle E — X is a homomorphism of

principal bundles
n: P — A(E),

where P is a principal Spin(n)-bundle on X (n = dimg(E,)) and the homomorphism of
topological groups underlying n is the standard map

p: Spin‘(n) — GL(n,R).

Two Spin® data n: P — A(E), n': P — A(FE) are isomorphic if there exists an isomor-
phism f: P — P’ of principal Spin®(n)-bundles on X with commutativity in the diagram

Pl
x % n=mn'of.
A(E)

P f
E
Two Spin® data n: P — A(E), n': P’ — A(FE) are homotopic if there exists a principal
Spin¢(n)-bundle @ on X and a continuous map

O:Q x[0,1] = A(E)
such that

1. For t € [0, 1] each
Oy = P(—,t): Q — A(E)

is a Spin® data.

®p: Q — A(F) is isomorphic to n: P — A(E)
®1: Q — A(FE) is isomorphic to ': P — A(E)

Definition 1.10. A Spin®(n)-structure for E is an equivalence class of Spin®(n) data, where
the equivalence relation is homotopy.

A Spin® structure for an R-bundle E determines an orientation of E. Let wy(E), wa(E), ... be
the Stiefel-Whitney classes of E, w;(E)H’(X;Z/2Z)-Cech cohomology. Then E is orientable
if and only if wy(F) = 0.

A spin manifold is a C*° manifold M, dim M = n, for which the structure group of the
tangent bundle T'M has been lifted from GL(n,R) to Spin(n). Such lifting is possible if and
only if

wi (M) =0, w(M)eH(M;Z/27)
and
wo(M) =0, wy(M) e H*(M;7Z/27).

A Spin® manifold is a C*° manifold M, dim M = n, for which the structure group of
the tangent bundle T'M has been lifted from GL(n,R) to Spin®(n). Such lifting is possible if
and only if

w1 (M) =0, wi (M) € HY(M;Z/27)
and
wo (M) is in the image of H?(M;Z) — H?(M;Z/27).



Various well known structures on a manifold M make M into Spin® manifold

(complex analitic)

(symplectic) === (almost complex)

(contact) == (stably almost complex)

C

Spin Spin

(oriented)

A Spin® manifold can be thought of as an oriented manifold with a slight extra bit of struc-
ture. Most of the oriented manifolds which occur in practice are Spin® manifolds. Spin®
structures behave very much like orientations. For example, an orientation on two of three R
vector bundles in a short exact sequence determine an orientation on the third vector bundle.
Analogous assertions are true for Spin® structures.

Lemma 1.11 (Two out of three lemma). Let
0—-—F —-E—E"—0

be an exact sequence of R vector bundles on X. If Spin® structures are given for any two of
E',E,E" then a Spin® structure is determined for the third.

Corollary 1.12. If M is a Spin® manifold with boundary OM, then OM 1is in canonocal way
a Spin® manifold.

Proof. There is an exact sequence
0—TOM — TM|sps — OM xR — 0
O

Remark 1.13. If E is orientable (wq(E) = 0), then the set of all possible orientations of E
is in 1-1 correspondence with H°(X;Z/2Z). If E is Spin-able (w1(E) = 0 and wq(FE) €
im(H?(X;Z) — H%(X;Z/27))), then the set of all possible Spin-structures for F is then in
1-1 correspondence with HO(X;Z/2Z) x H*(X;Z).

1.2.1 Clifford algebras and spinor systems

Let V be a finite dimensional R-vector space, (—, —) a positive defninite, symmetric, bilinear
R-valued inner product on V. We can form a tensor algebra

TV =RaVa(VaV)a(VeaVeV)se...
with multiplication given by composing the tensors, and then define Clifford algebra

Cliff(V) :=TV/(v®@ v+ (v,v) - 1)
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where (v ® v+ (v,v) - 1) denotes the two-sided ideal in 7V generated by all elements of the
form
vu+ (v,u)-1, veV, 1eR.

As a vector space over R Cliff(V') is canonically isomorphic to the exterior algebra
ANV =RaVeAV&...A"V, n=dmgV.
Let e1,eq,...,e, be an orthonormal basis of V. The monomials

ef'es’ ...exr, €5 €40,1}

form a vector space basis of Cliff (V). The canonical isomorphism of R-vector spaces
Cliff (V) — A"V

is given by

€1 €2 €n €1 €2 €n
€1 €y .. e e ANey Nl ANe.

This isomorphism does not depend on the choice of orthonormal basis of V.
dimpg (ClLiff(V)) = 2", n=dimp V.

In Cliff (V) we have following identities

-

€j

1, j=1,2,....n,
eiej +eje; =0, @ # j.

We can introduce Z/2Z-grading on Cliff (V') in the following way

Cliff (V') = (ClLiff (V))o @ (CLff(V))1,

where (Cliff(V'))o is an R-vector space spanned by e{'e5*...eS" with €1 + €2 + ... + €, even,

and (ClLiff(V')); is an R-vector space spanned by ef'e5? ...e5» with €1 +e+...+ €, odd. This
7./2Z-grading does not depend on the choice of orthonormal basis of V.
Take R™ with the usual inner product

s™~t c R™ C Cliff(R").

The elements of S"~! are invertible in Cliff(R™). Let Pin(n) be the subgroup of the invertible
elements of Cliff(R") generated by S™~!. Then

Spin(n) = Pin(n) N (CLff(R™))o
p: Spin(n) — SO(n)
(pg)(z) = gxg™", g€ 8", zeR™

For n > 3 this is the unique non-trivial 2-fold covering space of SO(n).
Consider complexification

Cliffc(V) := C ®g Cliff (V).

Then Cliffc(V) is a C*-algebra with



for
v eV C Cliff (V) C Cliffc (V).

Let
Cliff¢c(R") := Cg CLiff(R"),

Spin®(n) = S! Xz/97 Spin(n) C Cliffc(R").

Then Spin®(n) is a subgroup of the group of unitary elements of the C*-algebra Cliffc(R"™).

Let us now choose an orthogonal basis eq,es,...,e, for even-dimensional R-vector space
V, n =2n = dimg(V). Recall 2" x 2" matrices E1, E», ..., FE, defined in the beginning of the
chapter and then define a mapping

Cliffc(V) — M(2",C)

ej—E;, j=1,2,...,n

This gives an isomorphism of C*-algebras Cliffc(V) and M (2",C). For an odd dimension
n = 2r + 1 recall 2" x 2" matrices E1, Es, ..., E, and define two mappings

py: Cliffc(V) — M(2",C)
()D-i-(e]):Ej j:1727"'7n1

w_: Cliffc(V) — M(2",C)
v_(ej)=—E;, j=1,2,...,n.

Then
oy @ p_: Cliffc(V) - M(2",C) d M(2",C)

is an isomorphism of C*-algebras.

Remark 1.14. This isomorphisms are non-canonical since they depend on the choice of an
orthonormal basis for V.

Let E be an R-vector bundle on X. Assume given an inner product (—, —) for E. Then
define Cliff¢(E) as a bundle of C*-algebras over X whose fiber at p € X is Cliffc(E)).

Definition 1.15. An Hermitian module over Cliff¢c(FE) is a complex vector bundle F on
X with a C-valued inner product (—, —) and a module structure

Cliffc(E) @ F — F
such that
1. (—,—) makes F), into a finite dimensional Hilbert space,

2. for each p € X, the module map
Cliffc(Ep) — L(Fp)
is a unital homomorphism of C*-algebras.

Remark 1.16. Of course all structures here are assumed to be continuous. If X is a C*°
manifold then we could take everything to be C*°.

12



If E is oriented define a section w of Cliff¢(E) as follows. Given p € X, choose a positively
oriented orthonormal basis eg, ea, ..., e, of E,. For n even, n = 2r, set

w(p) =1i"erea...e9.

For n = 2r 4+ 1 odd

w(p) =i leres. .. eapyq1.

Then w(p) does not depend on the choice of positively oriented orthonormal basis. In
Cliffc(E)) we have

(w(p)® = 1.

If n is odd, then w(p) is in the center of Cliffc(E,). Note that to define w, E must be oriented.
Reversing the orientation will change w to —w.

Definition 1.17. Let E be an R-vector bundle on X. A Spinor system for E is a triple
(e,(—,—), F) such that

1. € is an orientation of F,
2. (—,—) is an inner product for E,

3. F is an Hermitian module over Cliffc(E) with each F, an irreducible module over
Cliffc(E)),

4. if n = dimg(E,) is odd, then w(p) acts identically on F),.

Remark 1.18. The irreducibillity of F}, in (3) is equivalent to dimc (F},) = 2", where n = 2r or
n = 2r+1. In (4) note that w(p)? = 1 so for n odd w(p) is in the center of Cliffc(E,). Hence
irreducibility of F}, implies that w(p) acts either by I or —I on Fj,. Thus (4) normalizes the
matter by requiring that w(p) acts as . When n = dimg(£),) is even no such normalization
is made.

If (¢,(—,—), F) is a Spinor system for E, then F is referred to as the Spinor bundle.
Suppose that n = dimg(E,) is even. Let Ff (F;7) be the 41 (—1) eigenspace of w(p).
We have a direct sum decomposition

F=FtgF,

where F*, F~ are § — Spin bundles. F* (F~) is a vector bundle of positive (negative)
spinors.
Assume we have right and left actions of the group G on topological spaces X,Y

XxG—=X

GxY —=Y

Then
X xqgY =X xY/~, (zg,y) ~ (z,9y).

Ezample 1.19. Let E be an R-vector bundle on X. Then
A(E)Xqrmpr) = E

((pyv1,v2, ..., 0p), (a1,a2,...,a,)) — a1v1 + a2vs + ... + apvy.

13



Let E be an R-vector bundle on X. A Spin® datum

n: P — A(FE)
determines a Spinor system (¢, (—, —), F') for E. For p € X, given orientation €, and inner
product (—, —), an R-basis v, vs, ..., v, of E, is positively oriented and orthonormal if and
only if
(v1,v2,...,0,) € im(n).

The Spinor bundle for n = 2r or n =2r + 1
F=P X Spin®(n) C?

T

We have to describe how Spin®(n) acts on C2". For n odd Spin®(n) has an irreducible
representation known as its spin representation

Spin‘(n) — GL(2",C), n=2r+1.
For n even Spin€(n) has two irreducible representations known as its % — Spin representations
Spin‘(n) — GL(2"1,C),
Spin®(n) — GL(2"7%,C), n = 2r.
The direct sum
Spin‘(n) — GL(2""!,C) @ GL(2"~!,C) ¢ GL(2",C),
of these representations is the spin representation of Spin®(n).
Consider R™ with its usual inner product and usual orthonormal basis eq, e, ..., e,

¢: Cliffc(R") — M(2",C)
vlej) =E;, j=1,2,...,n.
There is a canonical inclusion
Spin®(n) C Cliffc(R™)
and ¢ restricted to Spin®(n) maps Spin®(n) to 2" x 2" unitary matrices
Spin“(n) — U(2") € GL(n, C).

This is Spin representation of Spin(n) and Spin®(n) acts on GL(2",C) acts on C?" via
this representation.
Let M be C*° manifold, possibly OM non-empty, T'M the tangent bundle of M. Then

Spin¢ datum for T M
n: P— A(TM)
!
( Spinor system for T'M >
(67 <_7 _>7 F)
l

Dirac operator
D: CX(M,F)— CX(M,F)

where F' is the Spinor bundle on M and C2°(M, F') are its C* sections with compact support.

The Dirac operator
D:C*(M,F)— CX*(M,F)

is such that

14



1. D is C-linear
D(s1 + s2) = Ds1 + Dsa,

D(\s) = ADs, si1,s2,s € C°(M,F), AeC.
2. If f: M — C is a C*° function, then
D(fs) = (df)s + f(Ds).

3. If s1,80 € C°(M, F) then

/(Dsl(az),SQ(x))dx:/ (s1(z), Dsa(x))dz
M

M

4. If dim M is even, then D is off-diagonal

F=FTeF~
0 D
D‘{m 0 ]

D: C*(M,F) — C>*(M,F) is an elliptic first-order differential operator. It can be viewed
as an unbounded operator on the Hilbert space L?(M, F') with the scalar product

(s1,82) := /M(sl(x), so(x))dz.

Moreover it is a symmetric operator.

One proves existence of D by constructing it locally and patching together with a C*°
partition of unity. The uniqueness of D is obtained by the fact that if Dg, D satisfy conditions
(1)-(4) above, then

DO — D12 F—F
is a vector bundle map, hence Dy, D, differ by lower order terms.

Example 1.20. Let n be even, S* ¢ R"*!, D-Dirac operator of S", F-Spinor bundle of S™,
F=Ft@oF-.
D:CX(S"F)— CX(S", F)
0 D~
o[ %]
D¥: C(S™, F) — (8™, F)

Then
Index(DV) := dimc (ker DV) — dimc (coker D).

Theorem 1.21.
Index(D™) = 0.

We can tensor DT with the Bott generator vector bundle 3 from section (1.1.2))
D;: CX(S", F* ®B) — CX(S", F~ ® ).
Then we have

Theorem 1.22.

Index(Djy) = 1.
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