
Introduction [to be written]  
 
1. How do categories appear in modern mathematics? 
 
The question “How do categories appear in modern mathematics?” has many answers; this 
section is devoted to only one of them, far away from the original answer visible in the joint 
work of S. Eilenberg and S. Mac Lane, and our presentation is very brief of course… 
 

First, thinking of mathematics as the study of abstract mathematical structures, such as 
groups, rings, topological spaces, etc., we ask: what is a mathematical structure in general? 
And, having Bourbaki structures in mind, we might answer: 
 

• We begin with two finite collections of sets: constant sets E1, … , Em and variable sets  
X1, … , Xn.  
• We build a scale, which is a sequence of sets obtained from the sets above by taking finite 
products and power sets, and by iterating these operations.  
• A type is a uniformly defined subset T(X1,…,Xn) of a set in such a scale, and a structure of 
that type on the sets X1, … , Xn is an element s in T(X1,…,Xn); one then also says that 
(X1,…,Xn,s) is a structure of the type T. Making the term “uniformly” precise would be a long 
story, which we omit; let us only mention that considering various structures of a given type 
T, we will fix the sets E1, … , Em, but not the sets X1, … , Xn – which explains why we write 
T(X1,…,Xn) and not T(E1,…,Em,X1,…,Xn). 
 

For the readers not familiar with Bourbaki structures it might be helpful to consider the 
following simple examples, where, as for most basic mathematical structures, we have m = 0 
and n = 1:   
 
Example 1.1. (a) A topology on a set X is an element of the set 
 
          T = T(X) = {τ ∈ PP(X) | τ is closed under arbitrary unions and finite intersections}, 
 
where P(X) denotes the power set of X; 
 
(b) a binary operation on a set X is an element of the set 
 
          T = T(X) = {m ∈ P(X×X×X) | m determines a map X×X → X}. � 
 
It turns out that every mathematical structure ever considered in mathematics can indeed be 
presented an (X1,…,Xn,s) above, and moreover, using the fact that arbitrary bijections  
f1 : X1 → X '1, … , fn : Xn → X 'n induce a bijection T(f1,…,fn) : T(X1,…,Xn) → T(X '1,…, X 'n), it is 
easy to define a general notion of an isomorphism for structures of the same type: 
 
Definition 1.2. Let (X1,…,Xn,s) and (X '1,…, X 'n,s') be mathematical structures of the same type 
T; an isomorphism 
 
          (f1,…,fn) : (X1,…,Xn,s) → (X '1,…, X 'n,s'), 
 
is a family of bijections f1 : X1 → X '1, … , fn : Xn → X 'n with T(f1,…,fn)(s) = s'. �  
 
However, we are not able to define structure preserving maps (=homomorphisms) in general. 
The best we can do, is: 
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Definition 1.3. Let T be a type. For structures (X1,…,Xn,s) and (X '1,…, X 'n,s') of the same type 
T, a map 
 
          (f1,…,fn) : (X1,…,Xn,s) → (X '1,…, X 'n,s'), 
 
is a family of maps f1 : X1 → X '1, … , fn : Xn → X 'n. A class M of such maps is said to be a 
class of morphisms, if it satisfies the following conditions: 
 

(a) If (f1,…,fn) : (X1,…,Xn,s) → (X '1,…, X 'n,s') and (f '1,…,f 'n) : (X '1,…, X 'n,s') → (X ''1,…, X '''n,s'') 
are in M, then so is (f '1f1,…,f 'nfn) : (X1,…,Xn,s) → (X ''1,…, X '''n,s''); 
 

(b) the class of invertible morphisms in M coincides with the class of isomorphisms in the 
sense of Definition 1.2. � 
 
Accordingly, our study of the structures of a given type T will depend on the chosen class M 
of morphisms – suggesting that it is a study of a new structure whose “elements” are 
structures of the type T and the elements of M. And such a new structure is first of all a 
category of course, but is it merely a category? Would not replacing our T and M with an 
abstract category trivialize our study? In other words, is abstract category theory powerful 
enough to express deep properties of classical mathematical structures and simple enough to 
clarify those properties and to help proving them? Answering these questions seriously, and 
especially saying well-motivated “yes” to the last one, is not what we can do in a few page 
section of these notes. But the following definition, of one of the oldest categorical 
definitions, due to S. Mac Lane, should give some initial indication of the remarkable power 
of the categorical approach: 
 
Definition 1.4. The product of two objects A and B in a category C is an object A×B in C 
together with two morphisms π1 : A×B → A and π2 : A×B → B, such that for every object C 
and morphisms f : C → A and g : C → B, there exists a unique morphism h : C → A×B 
making the diagram  
 
                              C 
                       
                   f            h         g                                                                                                  (1.1) 
 
            A              A×B             B 
                    π1                π2 
 
commute, i.e. satisfying π1h = f and π2h = g. � 
 
This so simple definition is equivalent to the familiar ones in essentially all important 
categories of interest in algebra and geometry/topology, and the same is true for its dual, 
which is: 
 
Definition 1.5. The coproduct of two objects A and B in a category C is an object A+B in C 
together with two morphisms ι1 : A → A+B and ι2 : B → A+B, such that for every object C and 
morphisms f : A → C and g : B → C, there exists a unique morphism h : A+B → C making the 
diagram  
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                     ι1                ι2 
            A              A+B             B 
                       
                  f             h        g                                                                                                   (1.2) 
 
                              C              
 
commute, i.e. satisfying hι1 = f and hι2 = g. � 
 
Furthermore, these categorical definitions give a new insight into our understanding of very 
first mathematical concepts, such as multiplication and addition of natural numbers, 
intersection, product, and union of sets, and conjunction and disjunction in mathematical 
logic. In particular they make addition dual to multiplication and make disjoint union more 
natural than the ordinary one. In simple words, everyone knows that, say,  
 
          a + b = b + a and ab = ba (for natural a and b), 
 
but only category theory tells us that these equalities are special cases of a single result!   
 
2. Isomorphism and equivalence of categories 
 
The purpose of this section is to list and prove basic properties of isomorphisms and 
equivalences of categories. We assume that the readers are familiar with: 
 

• Isomorphisms in general categories: they compose, they have uniquely determined inverses 
that are isomorphisms themselves, and they determine the isomorphism relation ≈ on the set 
of objects of the given category; and that relation is an equivalence relation. 
• Isomorphisms of categories: the following condition on a functor F : A → B are equivalent: 
(a) F is an isomorphism; (b) F is bijective on objects and on morphisms; (c) F is bijective on 
objects and fully faithful (recall that “fully faithful” means “bijective of hom sets”). 
• Isomorphism of functors: a natural transformation τ : F → G of functors A → B is an 
isomorphism if and only if the morphism τA : F(A) → G(A) is an isomorphism for each object 
A in A. The isomorphism relation is a congruence on the category of all categories, i.e. if  
(F,F ') and (G,G') are composable pairs of functors, then F ≈ F ' & G ≈ G' ⇒ FF ' ≈ GG'. 
 
Theorem 2.1. Let F : A → B be a functor, G0 a map from the set A0 of objects in A to the set 
B0 of objects in B, and τ = (τA : F(A) → G0(A))A∈A0 a family of isomorphisms. Then there 
exists a unique functor G : A → B, for which G0 is the object function and τ : F → G is an 
(iso)morphism. 
 

Proof. On the one hand τ : F → G is an isomorphism if and only if for each morphism 
α : A → A' in A, we have G(α) = τA'F(α)τA

−1, and on the other hand it is easy to check that 
sending α : A → A' to τA'F(α)τA

−1 determines a functor A → B whose object function is G0. � 
 
Remark 2.2. (a) Since G0 above is completely determined by the family τ = (τA)A∈A0, the 
assumptions of Theorem 2.1 should be understood as “given F : A → B and, for each object A 
in A, an isomorphism τA from F(A) to somewhere”. 
  

(b) Theorem 2.1 has an interesting application: Starting from an arbitrary isomorphism  
θ : X → Y in a category A, we apply this theorem to B = A, F = 1A, and 
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                      θ : X → Y, if A = X; 
          τA =     θ−1 : Y → X, if A = Y;                                                                                       (2.1) 
                      1A : A → A, if X ≠ A ≠ Y; 
 
it is easy to see that the resulting functor G : A → A is an isomorphism (for, use Theorem 
2.3(c) below, and the fact that a functor is an isomorphism if and only it is bijective on objects 
and fully faithful). This in fact explains how to interchange isomorphic objects in any 
categorical construction. � 
 
Given a functor F : A → B and objects A and A' in A, let us write 
 
          FA,A' : homA(A,A') → homB(F(A),F(A'))                                                                      (2.2) 
 
for the induced map between the hom sets homA(A,A') and homB(F(A),F(A')). As in fact 
already observed in the proof of Theorem 2.1, given an isomorphism τ : F → G, the diagram 
 
                                                              homB(F(A),F(A'))  
 
                                   FA,A' 
 
          homA(A,A')                             f |→ τA'fτA

−1   g |→ τA'
−1gτA                                             (2.3) 

 
                                   GA,A' 
 
                                                              homB(G(A),G(A')) 
 
commutes. Since its vertical arrows are bijections, we obtain: 
 
Theorem 2.3. If F and G are isomorphic functors, then: 
 

(a) F is faithful (=all FA,A'’s above are injective) if and only if so is G; 
 

(b) F is full (=all FA,A'’s above are surjective) if and only if so is G; 
 

(c) F is fully faithful (=all FA,A'’s above are bijective) if and only if so is G. � 
 
Definition 2.4. An equivalence of categories A and B is a system consisting of functors 
 
                       F 
          A                      B and isomorphisms α : 1A → GF and β : 1B → FG; 
                       G 
 
we will also say that (F,G,α,β) : A → B is a category equivalence, and (briefly) that  
F : A → B is a category equivalence. � 
 
Observation 2.5. (a) If F : A → B is a category isomorphism, then it is a category 
equivalence; 
 

(b) If (F,G,α,β) : A → B is a category equivalence, then so is (G,F,β,α,) : B → A;  
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(c) If (F,G,α,β) : A → B and (H,I,γ,δ) : B → C are category equivalences, then so is 
(HF,GI,(GγF)α,(HβI)δ) : A → C, where GγF : GF → GIHF and HβI : HI → HFGI denote 
natural transformations defined by (GγF)A = G(γF(A)) and (HβI)C = H(βI(C)) respectively.  
 

(d) As follows from the previous assertions, the category equivalence determines an 
equivalence relation on the collection of all categories; we will simple write A ~ B when there 
exists a category equivalence A → B. 
 

(e) If F : A → B is a category equivalence and F ' ≈ F, then F ' : A → B also is a category 
equivalence. � 
 
The next definition will later help us describe the relationship between isomorphisms and 
equivalences of categories precisely. 
 
Definition 2.6. A category S is said to be a skeleton, if for objects A and B in S, we have: 
 
          A ≈ B ⇒ A = B; 
 
for an arbitrary category C, we say that S is a (the) skeleton of C and write S = Sk(C) if S is a 
full subcategory in C, and the inclusion functor S → C is a category equivalence. � 
 
This definition immediately suggests to ask, if every category has a skeleton, and if the 
skeleton of a category is uniquely (up to an isomorphism?) determined. These questions are 
answered below. 
 
Lemma 2.7. If F : A → B is a category equivalence, then F is fully faithful and essentially 
(=up to isomorphism) bijective on objects, i.e.: 
 

(a) for objects A and A' in A, F(A) ≈ F(A') ⇒ A ≈ A' (essential injectivity); 
 

(b) for each object B in B, there exists an object A in A with F(A) ≈ B (essential surjectivity). 
 

Proof. Let (F,G,α,β) : A → B a category equivalence involving F. As follows from Theorem 
2.3(c) applied to 1A ≈ GF, the functor GF is fully faithful. Therefore the composite 
 
                              FA,A'                             GF(A),F(A') 

          homA(A,A')   →   homB(F(A),F(A'))     →     homA(GF(A),GF(A')) 
 
is a bijection for all objects A and A' in A, from which we conclude: 
 

• F is faithful; 
• since F is always faithful in such a situation, G is also faithful by 2.5(b); 
• since G is faithful, GF(A),F(A') is always injective; 
• since FA,A' and GF(A),F(A') are injective and their composite is bijective, FA,A' is bijective too. 
 

That is, F is fully faithful. Essential bijectivity on objects is obvious:   
F(A) ≈ F(A') ⇒ A ≈ GF(A) ≈ GF(A') ≈ A' and F(A) ≈ B for A = G(B). � 
 
Remark 2.8. (a) In fact the crucial properties here are fully faithful-ness and essential 
surjectivity, since it is easy to show that a fully faithful functor is always essentially injective 
on objects. Indeed, if F : A → B is fully faithful, and β : F(A) → F(A') is an isomorphism in 
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B, then we can choose α : A → A' with F(α) = β and α' : A' → A with F(α') = β−1 – and these 
chosen morphisms will be inverse to each other since so are their images under F.  
 

(b) Proving essential injectivity of the functor F in (a) we in fact also proved another 
important property of a fully faithful functor, which is reflection of isomorphisms. It says: if 
F(α) is an isomorphism, then so is α. � 
 
From Observation 2.5(a), Lemma 2.7, and Remark 2.8 we obtain: 
 
Lemma 2.9. The following conditions on a functor F between skeletons are equivalent: 
 

(a) F is a category equivalence; 
 

(b) F is fully faithful and essentially bijective on objects; 
 

(c) F is fully faithful and essentially surjective on objects; 
 

(d) F is an isomorphism. � 
 
Remark 2.10. (a) It is not, however, true of course that G = F−1 for any equivalence  
(F,G,α,β) : A → B between skeletons.  
 

(b) As follows from 2.5(d) and 2.9(a)⇔(d), skeletons of equivalent categories are always 
isomorphic. In particular so are every two skeletons of the same category. � 
 
Theorem 2.11. Every category has a skeleton. 
 

Proof. Given a category A, we choose:  
 

• an object in each isomorphism class of objects in A, and for any object A in A, the chosen 
object isomorphic to A will be denoted by Φ(A);  
• an isomorphism ϕA : A → Φ(A), assuming for simplicity that ϕΦ(A) = 1Φ(A); 
• Φ : A → A to be the functor obtained from the identity functor of A and the family (ϕA)A∈A0 
as in Theorem 2.1 (see also Remark 2.2(a)), making ϕ : 1A → Φ an isomorphism; 
• S to be the full subcategory in A with object all Φ(A) (A ∈ A0); 
• F : S → A to be the inclusion functor; 
• G : A → S defined by FG = Φ (which indeed defines a functor since the image of Φ is 
inside S), making GF = 1S, since ϕΦ(A) = 1Φ(A) for all objects A in A0.   
 

Here S is a skeleton and (F,G,11S,ϕ) : S → A is a category equivalence. � 
 
Theorem 2.12. (a) A functor is a category equivalence if and only if it is fully faithful and 
essentially surjective on objects. 
 

(b) Two categories are equivalent if and only if they have isomorphic skeletons. 
 

Proof. (a): Suppose F : A → B is fully faithful and essentially surjective on objects. Consider 
the diagram 
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                            F 
             A                            B 
           
          K    L                     M    N                                                                                             (2.4) 
                          NFK 
          Sk(A)                     Sk(B) 
                         (NFK)−1 

 
in which: 
 

• the vertical arrows determine equivalences A ~ Sk(A) and B ~ Sk(B), which exist by 
Theorem 2.11. 
• the composite NFK is fully faithful and essentially surjective on objects, because so are N, 
F, and K; therefore NFK is an isomorphism by Lemma 2.9(c)⇒(d). 
 

Using Observation 2.5 we conclude that MNFKL is a category equivalence, and then that 
since MNFKL ≈ 1BF1A = F, so is F. 
 

The “only if” part is Lemma 2.7.  
 

(b): Again, just use Observation 2.5, Lemma 2.9, and the square diagram above (although the 
“only if” part has already been proved: see Remark 2.10(b)). � 
 
3. Yoneda lemma and Yoneda embedding 
 
The purpose of this section is to describe fully faithful functors 
 
                       Y                                G 
          C                        SetsCop                       (Cat↓C),                                                         (3.1) 
 
where C is an arbitrary category, SetsCop is the category of functors Cop → Sets, and (Cat↓C) 
is the comma category of the category Cat of all categories over the category C (i.e. the 
category of pairs (D,P), where D is a category and P : D → C a functor. As we will see, the 
fully faithful-ness of Y will follow from 
 
Theorem 3.1(“Yoneda lemma”). For any functor T : Cop → Sets and any object C in C, the 
map  
 
          Nat(homC(−,C),T) → T(C),   τ |→ τC(1C)                                                                    (3.2) 
 
from the set Nat(homC(−,C),F), of natural transformations from homC(−,C) to T, to the set 
T(C) is bijective. 
 

Proof. Let us denote the map above by α and define a map β : T(C) → Nat(homC(−,C),T) by  
 
          β(t)A(f) = T(f)(t) – for a t ∈ T(C) and a morphism f : A → C in C.  
 
We are going to show that α and β are inverse to each other. We have 
 
          αβ(t) = β(t)C(1C) = T(1C)(t) = t for each t ∈ T(C), 
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proving that αβ is the identity map of T(C). On the other hand, for τ : homC(−,C) → T and  
f : A → C, we have 
 
          βα(τ)A(f) = T(f)(α(τ)) = T(f)(τC(1C)) = τA(homC(f,C)(1C)) = τA(f), 
 
where the last equality is visible in the naturality square 
 
                                       τC 
             homC(C,C)                      T(C) 
           
   homC(f,C)                                       T(f)  
                           
             homC(A,C)                      T(A), 
                                       τA 
 
and the equality βα(τ)A(f) = τA(f) (for all f) implies that βα is the identity map of 
Nat(homC(−,C),T). � 
 
Consider the special case of this theorem in which the functor T is of the form T = homC(−,C') 
for some C' in C. Then the bijection of Theorem 3.1 together with its inverse become 
 
                                                         τ |→ τC(1C) 
          Nat(homC(−,C),homC(−,C'))                     homC(C,C'),                                               (3.3) 
                                                        (f |→ tf) ←| t 
  
where (f |→ tf) ←| t means that t : C → C' is sent to the natural transformation  
 
          τ : homC(−,C) → homC(−,C') defined by τA(f) = tf. 
 
However this map homC(C,C') → Nat(homC(−,C),homC(−,C')) is the same as YC,C', where  
 
          Y : C → SetsCop is the functor defined by Y(C) = homC(−,C), 
 
i.e. the functor corresponding to the functor hom : Cop×C → Sets via the canonical category 
isomorphism 
 
          homCat(Cop×C,Sets) ≈ homCat(C,SetsCop).                                                                   (3.4) 
 
Therefore Theorem 3.1 gives 
 
Corollary 3.2. The functor 
 
          Y : C → SetsCop defined by Y(C) = homC(−,C)                                                            (3.5) 
 
is fully faithful. � 
 
The functor Y above is usually called the Yoneda embedding (for C), while the functor  
G : SetsCop → (Cat↓C) we are going to introduce now has no name; a somewhat artificial 
name would be “the discrete form of Grothendieck construction”. 

 8



 

For a functor T : Cop → Sets, the category El(T) is defined as the category of pairs (A,a), 
where A is an object in C and a is an element T(A); in this category, a morphism 
 
          f : (A,a) → (B,b) is a morphism f : A → B in C with T(f)(b) = a.  
 
We define the functor 
 
          G : SetsCop → (Cat↓C) by G(T) = (El(T),PT),   
 
where PT : El(T) → C is the forgetful functor, sending f : (A,a) → (B,b) to f : A → B. In order 
to see how exactly is G defined on morphisms, let us describe morphisms in (Cat↓C) of the 
form Φ : (El(T),PT) → (El(U),PU): 
 

Such a morphism is a functor Φ : El(T) → El(U) making the diagram 
 
                              Φ 
          El(T)                          El(U)  
 
                 PT                      PU 
 
                              C 
 
commute. At the level of objects this means that, for each (A,a) in El(T), Φ(A,a) should a pair 
whose first component is A. This means that to give the object function of Φ is to give a 
fimily of maps ϕ = (ϕA : T(A) → U(A))A∈A0 and define Φ on objects by Φ(A,a) = (A,ϕA(a)). 
After that, again, since the diagram above commutes, on morphisms Φ must be defined by  
 
          Φ(f : (A,a) → (B,b)) = f : (A,ϕA(a)) → (B,ϕB(b)). 
 
This simply means that the images of morphisms are uniquely determined, but the fact that Φ 
is indeed defined on morphisms puts the following condition on the family ϕ: if f is a 
morphism from (A,a) to (B,b), then it also must be a morphism from (A,ϕA(a)) to (B,ϕB(b)). 
And since f is a morphism from (A,a) to (B,b) if and only if a = T(f)(b), this means that every  
f : A → B must be a morphism from (A,ϕAT(f)(b)) to (B,ϕB(b)) for each b in T(B). In other 
words, for every f : A → B in A, we must have ϕAT(f) = U(f)ϕB, which is the same as to say 
that ϕ is a natural transformation from T to U. 
 
That is, we can define  
 
          G : SetsCop → (Cat↓C) by G(ϕ : T → U) = Φ : (El(T),PT) → (El(U),PU)                  (3.6) 
 
In the notation above (omitting routine verification of preservation of composition and 
identity morphisms), and this makes it fully faithful. 
 
4. Representable functors and discrete fibrations 
    
Definition 4.1. (a) A functor T : Cop → Sets is said to be representable if it is isomorphic to a 
functor of the form Y(C) = homC(−,C) for some object C in C.  
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(b) A functor P : D → C is said to be a discrete fibration, if the diagram 
                      
          D1                     D0 
 
       P1                           P0                                                                                                     (4.1) 
 
          C1                     C0, 
 
in which the horizontal arrows are the codomain maps of D and C, and the vertical arrows are 
the morphism function and the object function of P respectively, is a pullback. � 
 

This section is devoted to the following two theorems: 
 

Theorem 4.2. A functor T : Cop → Sets is representable if and only if the category El(T) has a 
terminal object. Moreover, a natural transformation τ : homC(−,C) → T is an isomorphism if 
and only if the pair (C,t), in which t is the image of τ under the map (3.2), is a terminal object 
in El(T). 
 

Proof. For the assertions (a) – (f) below we obviously have (a)⇔(b)⇔(c)⇔(d)⇔(e)⇔(f): 
 

(a) τ : homC(−,C) → T is an isomorphism; 
 

(b) τA : homC(A,C) → T(A) is a bijection for each object A in C; 
 

(c) for every object A in C and every a ∈ T(A) there exists a unique morphism f : A → C with 
τA(f) = a; 
 

(d) for every object A in C and every a ∈ T(A) there exists a unique morphism f : A → C with 
T(f)τC(1C) = a; 
 

(e) for every object (A,a) in El(T) there exists a unique morphism from (A,a) to (C,τC(1C)); 
 

(f) (C,τC(1C)) is a terminal object in El(T). 
 

And since (C,τC(1C)) is exactly the image of τ under the map (3.2), this completes the proof. � 
 
Theorem 4.3. A functor P : D → C is a discrete fibration, if and only if the object (D,P) of 
(Cat↓C) is isomorphic to G(T) = (El(T),PT), for some functor T : Cop → Sets. � 
 

Proof. “If”: We have to prove that (El(T),PT) is always a discrete fibration. This means to 
prove that for every morphism f : A → B in C and every b ∈ T(B), there exists a unique a ∈ 
T(A) for which f is a morphism from (A,a) to (B,b). However this is trivial since f is a 
morphism from (A,a) to (B,b) if and only if a = T(f)(b). 
 

“Only if”: Assuming that P : D → C is a discrete fibration, we define a functor T : Cop → Sets 
as follows: 
 

• For an object C in C, we take T(C) to be the set of objects D in D with P(D) = C. 
• For a morphism f : A → B in C, and an element b in T(B), which in fact an object in D with 
P(b) = B, we take g to be the morphism g in D, with P(g) = f and codomain of g equal to b. 
The existence and uniqueness of such a g follows from the fact that the diagram (4.1) is a 
pullback. We then take T(f)(b) to be the domain of g. 
 

Accordingly the procedure of defining T(f)’s (for all f) displays as 
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          D 
 
            T(f)(b)                     b 
                                – 
 
 
                                                                                                                                               (4.2) 
 
          C 
    
                    A                     B 
 
 
 
 
and it is easy to see that it indeed defines a functor T : Cop → Sets in such a way that 
(El(T),PT) becomes isomorphic to (D,P). � 
  
5. Adjoint functors 
 
Adjoint functors will be defined at the end of this section via several equivalent kinds of data 
that will be described before. 
  
Definition 5.1. Let U : A → X be a functor and X an object in X. A universal arrow X → U is 
a pair (F(X),ηX) in which F(X) is an object in A and ηX : X → UF(X) a morphism in X with 
the following universal property: for every object A in A and every morphism u : X → U(A) in 
X there exists a unique morphism f : F(X) → A making the diagram 
 
 
          UF(X)      U(f) 
                                       U(A) 
         ηX                                                                                                                                  (5.1) 
                            u 
             X 
 
commute. � 
 

Theorem 5.2. Let U : A → X be a functor and ((F(X),ηX))X∈X0 a family of universal arrows  
X → U given for each object X in X. Then there exists a unique functor F : X → A for which 
the family ((F(X),ηX))X∈X0 determines a natural transformation η : 1X → UF. 
 

Proof. Given a morphism h : X → Y in X, we can define F(h) : F(X) → F(Y) as the unique 
morphism making the diagram (5.1) commute for A = F(Y) and u = ηYh. Since the 
commutativity of (5.1) in this case is equivalent to the commutativity of the naturality square 
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                          UF(h)                      
          UF(X)                     UF(Y) 
 
         ηX                                    ηY                                                                                          (5.2) 
 
              X                             Y, 
                              h 
 
this proves the theorem. � 
 
Observation 5.3. (a) The universal property given in Definition 5.1 can be equivalently 
reformulated as: the map 
 
          ϕX,A : homA(F(X),A) → homX(X,U(A)), defined by ϕX,A(f) = U(f)ηX,                          (5.3)  
 
is a bijection for each object A in A. Moreover, since this map is obviously natural in A, that 
universal property can also be reformulated as: the natural transformation 
 
          ϕX,− : homA(F(X),−) → homX(X,U(−)), defined by ϕX,A(f) = U(f)ηX,                          (5.4)  
 
is an isomorphism. Furthermore, let 
 
          ϕX,− : homA(F(X),−) → homX(X,U(−))                                                                        (5.5)  
 
be an arbitrary isomorphism. Then, for any f : F(X) → A, using the naturality square 
 
                                              ϕX,F(X) 
             homA(F(X),F(X))                      homX(X,U(F(X))) 
           
   homA(F(X),f)                                                        homX(X,U(f))                                         (5.6)  
                           
                homA(F(X),A)                           homX(X,U(A)), 
                                                ϕX,A 
 
we obtain ϕX,A(f) = ϕX,AhomA(F(X),f)(1F(X)) = homX(X,U(f))ϕX,F(X)(1F(X)) = U(f)ϕX,F(X)(1F(X)). 
Therefore we have one more reformulation of the universal property given in Definition 5.1, 
namely: there exists an isomorphism (5.5); and with this reformulation ηX and ϕX,− determine 
each other by 
 
          ϕX,A(f) = U(f)ηX and ηX = ϕX,F(X)(1F(X)).                                                                       (5.7) 
 
(b) The relationship between ηX and ϕX,− can be seen of course as a special case of the 
statement dual to Theorem 4.2, but we omit details here. 
 

(c) Suppose ηX, or, equivalently, ϕX,− is given for every object X in X. Then, by Theorem 5.2, 
there is a unique way to make F a functor X → A, so that the family ((F(X),ηX))X∈X0 
determines a natural transformation η : 1X → UF. And it is easy to check that this will also 
make ϕX,− natural in X, yielding a natural isomorphism 
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                              Aop×A 
  
              Fop×1                        homA 
 
          Xop×A                   ϕ         Sets                                                                                     (5.8) 
 
               1×U                         homX 
 
                              Xop×X  
 
Moreover, the “ϕ approach” shows that the unique functoriality of F is actually a consequence 
of the fact that the Yoneda embedding Cop → SetsC is fully faithful. Indeed, given a 
morphism h : X → Y in X, the naturality square 
 
                                                 ϕY,− 
                   homA(F(Y),−)                      homX(Y,U(−)) 
           
      homA(F(h),−)                                                homX(h,U(−))                                             (5.9)  
                           
                   homA(F(X),−)                      homX(X,U(−)), 
                                                 ϕX,− 
 
determines homA(F(h),−), and since the Yoneda embedding Cop → SetsC is fully faithful, 
homA(F(h),−) determines F(h). � 
 
From Observation 5.3 we obtain 
 
Theorem 5.4. For a functor U : A → X, the following kinds of data uniquely determine each 
other: 
 

(a) a family ((F(X),ηX))X∈X0 of universal arrows X → U given for each object X in X; 
 

(b) a functor F : X → A and a natural transformation η : 1X → UF such that (F(X),ηX) is a 
universal arrow X → U for each object X in X; 
 

(c) a family (F(X))X∈X0 of objects in A and a family  
       
          (ϕX,− : homA(F(X),−) → homX(X,U(−)))X∈X0  
 
of isomorphisms given for each object X in X; 
 

(d) a functor F : X → A and an isomorphism (5.8).  
 

Moreover, the ηX of (a) corresponds to the ηX of (b), the ϕX,− of (c) corresponds to (the  
X-component) of ϕ of (d), and these ηX and ϕX,− corresponding to each other via (5.7). � 
 
The data 5.4(d) shows certain dual symmetry between U and F, and suggests to dualize 
Definition 5.1 and Theorem 5.4 as follows: 
 
Definition 5.5. Let F : X → A be a functor and A an object in A. A universal arrow F → A is 
a pair (U(A),εA) in which U(A) is an object in X and εA : FU(A) → A a morphism in A with 
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the following universal property: for every object X in X and every morphism f : F(X) → A in 
A there exists a unique morphism u : X → U(A) making the diagram 
 
 
          FU(A)      F(u) 
                                       F(X) 
         εA                                                                                                                                 (5.10) 
                            f 
             A 
 
commute. � 
 
Theorem 5.6. For a functor F : X → A, the following kinds of data uniquely determine each 
other: 
 

(a) a family ((U(A),εA))A∈A0 of universal arrows F → A given for each object A in A; 
 

(b) a functor U : A → X and a natural transformation ε : FU → 1A such that (U(A),εA) is a 
universal arrow F → A for each object A in A; 
 

(c) a family (U(A))A∈A0 of objects in X and a family  
       
          (ψ−,A : homX(−,U(A)) → homA(F(−),A))A∈A0  
 
of isomorphisms given for each object A in A; 
 

(d) a functor U : A → X and an isomorphism 
 
                              Aop×A 
  
              Fop×1                        homA 
 
          Xop×A                   ψ         Sets                                                                                   (5.11) 
 
               1×U                         homX 
 
                              Xop×X  
 
Moreover, the εA of (a) corresponds to the εA of (b), the ψ−,A of (c) corresponds to (the  
A-component) of ψ of (d), and these εA and ψ−,A corresponding to each other via 
 
          ψX,A(u) = εAF(u) and εA = ψU(A),A(1U(A)). �                                                                 (5.12) 
 
Remark 5.7. The data described in Theorem 5.4(d) is obviously identical to the data 
described in Theorem 5.6(d): just take ϕ and ψ inverse to each other. Therefore these two 
theorems actually describe eight equivalent kinds of data. � 
 
Remark 5.7 is not the end of this story: although eight is a large number, it is good to add at 
least one more, which is purely equational. For, we observe: 
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• Having functors U : A → X and F : X → A, and merely natural transformations  
η : 1X → UF and ε : FU → 1A, we can still define natural transformations ϕ and ψ as in (5.8) 
and in (5.11) respectively. 
• Under no conditions on η and ε, those ϕ and ψ will also be merely natural transformations 
independent from each other. But requiring them to be each other’s inverses and 
reformulating this requirement in terms of η and ε will give us a new equivalent form of the 
desired data, which is purely equational. 
• Requiring ϕ and ψ to be each other’s inverses means to require ψX,AϕX,A(f) = f and  
ϕX,AψX,A(u) = u for each f : F(X) → A in A and each u : X → U(A) in X. But then Yoneda 
lemma (Theorem 3.1) tells us that it suffices to have these equalities for  
f = 1F(X) : F(X) → F(X) and u = 1U(A) : U(A) → U(A). 
• Thus, we are interested in ψX,F(X)ϕX,F(X)(1F(X)) = 1F(X) and ϕU(A),AψU(A),A(1U(A)) = 1U(A). 
Translated into the language of η and ε, these equations become  
 
          εF(X)F(ηX) = 1F(X) and U(εA)ηU(A) = 1U(A),                                                                   (5.13)   
 
and we obtain: 
 
Theorem 5.8. Let U : A → X and F : X → A be functors and η : 1X → UF and ε : FU → 1A 
natural transformations. The following conditions are equivalent: 
 

(a) (F(X),ηX) is a universal arrow X → U for each object X in X, and ε is the corresponding 
family of morphisms, i.e. U(εA)ηU(A) = 1U(A) for every object A in A;    
 

(b) (U(A),εA) is a universal arrow F → A for each object A in A, and η is the corresponding 
family of morphisms, i.e. εF(X)F(ηX) = 1F(X) for every object X in X; 
 

(c) the equalities εF(X)F(ηX) = 1F(X) and U(εA)ηU(A) = 1U(A) hold for every object X in X and 
every object A in A. � 
 
Remark 5.9. Using the standard notation for composing functors and natural transformations, 
the equalities (5.13) (for all X and A) are displayed as commutative diagrams 
 
                  Fη                                    ηU 
          F              FUF            UFU              U 
 
                                εF        Uε                                                                                            (5.14) 
 
                             F                   U 
 
and called triangular identities. � 
 
Definition 5.10. Let U : A → X and F : X → A be functors, η : 1X → UF and ε : FU → 1A be 
natural transformations satisfying the triangular identities, and ϕ and ψ be as in Theorems 5.4 
and 5.6 respectively. We will say that: 
 

(a) (F,U,η,ε) : X → A is an adjunction; however, we might also omit either η or ε, or replace 
them with either ϕ or ψ; 
 

(b) F is the left adjoint (of U), U is the right adjoint (of F), η is the unit of adjunction, and ε is 
the counit of adjunction. � 
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6. Monoidal categories 
 
In this section we introduce monoidal categories with some examples and related concepts. 
 
Definition 6.1. A monoidal category is a system (C,I,⊗,α,λ,ρ) in which: 
 

(a) C is a category; 
 

(b) I is an object in C; 
 

(c) ⊗ : C×C → C is a functor, written as ⊗(A,B) = A⊗B; 
 

(d) α = (αA,B,C : A⊗(B⊗C) → (A⊗B)⊗C)A,B,C∈C, λ = (λA : A → I⊗A)A∈C, and  
ρ = (ρA : A → A⊗I)A∈C are natural isomorphisms making the diagrams commute: 
 
                                  α 

          A⊗(I⊗B)                      (A⊗I)⊗B 
 
        1⊗λ                                         ρ⊗1                                                                                (6.1) 
 
             A⊗B                              A⊗B,                 
 
                                   α                                              α        
A⊗(B⊗(C⊗D))                       (A⊗B)⊗(C⊗D)                       ((A⊗B)⊗C)⊗D 
                                                                     
   1⊗α                                                                                                     α⊗1                        (6.2) 
 
A⊗((B⊗C)⊗D)                                                                       (A⊗(B⊗C))⊗D.             
                                                           α 
 
commute. Here and below we write just α instead of αA,B,C for short; it is also often useful to 
write (C,I,⊗,α,λ,ρ) = (C,I,⊗) = (C,⊗) = C. A monoidal category (C,I,⊗,α,λ,ρ) is said to be 
strict if A⊗(B⊗C) = (A⊗B)⊗C for all A, B, C; I⊗A = A = A⊗I for all A; and α, λ, and ρ are 
the identity morphisms. � 
 
Example 6.2. Any monoid M = (M,e,m) can be regarded as a strict monoidal category 
(C,I,⊗), in which C is the underlying set M regarded as a discrete category (i.e. a category 
with no non-identity arrows), I = e, and ⊗ = m. 
 
Example 6.3. Any category X yields the strict monoidal category End(X) = (End(X),1X,•) of 
functors X → X, where 1X is the identity functor X → X and • is the composition of functors. 
 
Example 6.4. If C is a category with finite products, then (C,I,⊗,α,λ,ρ), in which I = 1 is a 
terminal object in C, ⊗ = × is a (chosen) binary product operation, and α, λ, ρ arise from the 
canonical isomorphisms A×(B×C) ≅ (A×B)×C, A ≅ 1×A, A ≅ A×1 respectively, is a monoidal 
category. Such a monoidal structure is said to be cartesian. � 
 
Example 6.5. An internal graph G in a category C is a diagram of the form  
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                       dG 
          G1                      G0 
                       cG 
 
in C. For a fixed object O, the internal graphs G in C with G0 = O are called internal O-graphs 
in C, and their category will be denoted by Graphs(C,O); a morphism f : G → H in 
Graphs(C,O) is a morphism f : G1 → H1 in C with dHf = dG and cHf = cG. When C has chosen 
pullbacks, this category becomes a monoidal category (Graphs(C,O),I,⊗,α,λ,ρ) as follows: 
 

• I has I0 = I1 = O and dI = cI = 1O; 
• ⊗ is defined as the span composition, i.e. for G and H in Graphs(C,O), G⊗H is defined by 
(G⊗H)1 = G1×OH1, dG⊗H = dHπ2, and cG⊗H = cGπ1 via the diagram 
 
                                          G1×OH1 
  
                                 π1                      π2 
 
                           G1                                 H1                                                                           (6.3) 
 
              cG               dG                      cG               dG 
 
          O                                 O                                  O, 
 
in which diamond part is the chosen pullback of the pair (dG,cG). 
• α, λ, and ρ arise from the appropriate canonical isomorphisms.  
 

In the special case in which O = 1 is a terminal object in C, the pullbacks we need become 
binary products, and the monoidal category we obtain coincides with the one from Example 
6.4. � 
 
Example 6.6. Dualizing Example 6.4, if C is a category with finite coproducts, then 
(C,I,⊗,α,λ,ρ), in which I = 0 is an initial object in C, ⊗ = + is a (chosen) binary coproduct 
operation, and α, λ, ρ arise from the canonical isomorphisms A+(B+C) ≅ (A+B)+C, A ≅ 0+A, 
A ≅ A+0 respectively, is a monoidal category. � 
 
Example 6.7. Let R be a commutative ring, and C the category of R-modules. Then 
(C,I,⊗,α,λ,ρ), in which I = R, ⊗ the usual tensor product over R, and α, λ, ρ the usual natural 
isomorphisms, forms a monoidal category. � 
 
Definition 6.8. Let C = (C,I,⊗,α,λ,ρ) and C' = (C',I,⊗,α,λ,ρ) be monoidal categories (we use 
the prime sign ' only for C, although the I, ⊗, etc. in C and in C' are not, of course, supposed 
to be the same). A monoidal functor F = (F,θ,φ) : C → C' consists of 
 

(a) an ordinary functor F : C → C'; 
 

(b) a morphism θ : I → F(I) in C'; 
 

(c) a natural transformation φ = (φA,B : F(A)⊗F(B) → F(A⊗B))A,B∈C making the diagrams 
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                                                   α 
          F(A)⊗(F(B)⊗F(C))                     (F(A)⊗F(B))⊗F(C)  
                                                                      
               1⊗φ                                                           φ⊗1 
 
            F(A)⊗(F(B⊗C))                          (F(A⊗B))⊗F(C)                                                    (6.4) 
 
                    φ                                                           φ      
  
               F(A⊗(B⊗C))                               F((A⊗B)⊗C),          
                                                F(α) 
 
                                             λ 

                   I⊗F(A)                            F(A) 
 
                θ⊗1                                          F(λ)                                                                       (6.5) 
 
                 F(I)⊗F(A)                      F(I⊗A),  
                                             φ 
 
                                             ρ 

                   F(A)⊗I                            F(A) 
 
                1⊗θ                                          F(ρ)                                                                       (6.6) 
 
                 F(A)⊗F(I)                      F(A⊗I),  
                                             φ 
 
commute. A monoidal functor F = (F,θ,φ) is said to be strong if θ and φ are isomorphisms, 
and strict if moreover F(I) = I, F(A)⊗F(B) = F(A⊗B) for all A and B, and θ and φ are the 
identity morphisms. � 
 
Definition 6.9. Let Fi = (Fi,θi,φi) : C → C' (i = 1,2) be monoidal functors. A monoidal natural 
transformation τ : F1 → F2 is an ordinary natural transformation τ : F1 → F2 such that the 
diagrams 
 
                      θ1 
          I                      F1(I) 
 
                                       τ                                                                                                      (6.7) 
 
          I                      F2(I),  
                      θ2 
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                                         φ1 

          F1(A)⊗F1(B)                      F1(A⊗B) 
 
           τ⊗τ                                               τ                                                                             (6.8) 
 
          F2(A)⊗F2(B)                      F2(A⊗B)  
                                         φ2 
 
commute. � 
 
Several examples of monoidal functors are used as definitions of important concepts. Two of 
them will be given here with further cases considered in the next sections. 
 
Definition 6.10. Let C be monoidal category and X a category. A C-action on X is a 
monoidal functor C → End(X), where End(X) is as in Example 6.3. � 
 
Equivalently such a C-action can be defined as a functor C×X → X, which we will write as 
(C,X) |→ C⊗X, equipped with natural transformations  θ = (θX : X → I⊗X))X∈X and  
φ = (φA,B,X : A⊗(B⊗X) → (A⊗B)⊗X)A,B∈C; X∈X making the diagrams 
                                       
          A⊗(B⊗(C⊗X))                         A⊗(B⊗(C⊗X))  
                                                                      
             1⊗φ                                                      φ 
 
          A⊗((B⊗C)⊗X)                       (A⊗B)⊗(C⊗X)                                                             (6.9)         
 
                  φ                                                      φ 
  
          (A⊗(B⊗C))⊗X                        ((A⊗B)⊗C)⊗X,          
                                         α⊗1 
                                    
                  A⊗X                             A⊗X 
 
                  θ                                         λ⊗1                                                                         (6.10) 
 
              I⊗(A⊗X)                       (I⊗A)⊗X,  
                                     φ 
                                    
                  A⊗X                              A⊗X 
 
            1⊗θ                                          ρ⊗1                                                                         (6.11) 
 
              A⊗(I⊗X)                       (A⊗I)⊗X,  
                                     φ 
 
commute.  
 
Observation and Definition 6.11. Let 1 be the trivial monoid considered as a monoidal 
category. A monoidal functor from it to an arbitrary monoidal category C can be presented as 
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a triple M = (M,e,m), in which M is an object in C and e : I → M and m : M⊗M → M 
morphisms in C making the diagram 
 
                                α                         m⊗1                              (e⊗1)λ      
          M⊗(M⊗M)         (M⊗M)⊗M             M⊗M                                               M 
                                                                     
         1⊗m                                                    m                                          (1⊗e)ρ               (6.12) 
                                                  
               M⊗M                                                M                                               M⊗M                       
                                            m                                                      m 
 
commute. Such a triple is called a monoid in C. � 
 
Moreover, a monoidal natural transformation τ : (M1,e1,m1) → (M2,e2,m2) being a morphism  
τ : M1 → M2 in C with τe1 = e2 and τm1 = m2(τ⊗τ), is nothing but a monoid homomorphism 
in C. So, the monoids in C form a category Mon(C), which is the category MonCat(1,C) of 
monoidal functors 1 → C. In particular this immediately tells us that every monoidal functor 
F = (F,θ,φ) : C → C' induces a functor Mon(F) : Mon(C) → Mon(C'), which sends (M,e,m) to 
the composite 
 
                 (M,e,m)             (F,θ,φ) 
          1                      C                      C' 
 
considered as a monoid in C'. 
 
7. Monads and algebras 
 
In this section we introduce monads, algebras over monads, and free algebras; we also 
introduce a very general notion of a monoid action as a “general example”.  
 
Definition 7.1. A monad on a category X is a monoid in the monoidal category End(X) of 
Example 6.3. Explicitly, a monad on X is a triple T = (T,η,μ), in which T : X → X is a functor 
and η : 1X → T and μ : T2 → T natural transformations making the diagram 
 
                      μT                    ηT      
          T3                     T2                      T                          
                                                                     
    Tμ                               μ                      Tη                                                                           (7.1) 
                                                  
          T2                     T                       T2                                  
                       μ                      μ 
 
commute. � 
 
Definition 7.2. Let T = (T,η,μ) be a monad on a category X. A T-algebra (or an algebra over 
T) is a pair (X,ξ), in which X is an object in X and ξ : T(X) → X a morphism making the 
diagram 
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                           μX                       ηX      
          T2(X)                     T(X)                    X                          
                                                                     
    T(ξ)                             ξ                                                                                                     (7.2) 
                                                  
          T(X)                        X                                                         
                            ξ                       
 
commute. A morphism h : (X,ξ) → (X ',ξ') of T-algebras is a morphism h : X → X ' making the 
diagram 
 
                          T(h)      
          T(X)                     T(X ')                                             
                                                                     
          ξ                                 ξ'                                                                                               (7.3) 
                                                  
            X                           X '                                                         
                            h                       
 
commute. The category of T-algebras will be denoted by XT. � 
 
Theorem 7.3. Let T = (T,η,μ) be a monad on a category X, and let UT : XT → X be the 
forgetful functor defined by UT(X,ξ) = X. Then: 
 

(a) for each object X in X, the pair (T(X),μX) is a T-algebra; 
 

(b) the functor FT : X → XT, defined by FT(X) = (T(X),μX) is a left adjoint of UT. The unit and 
counit of the adjunction are η : 1X → T = UTFT and ε : FTUT → 1XT defined by ε(T(X),μX) = μX 
respectively.  
 

Proof. (a): We have to prove the commutativity of 
 
                         μT(X)                       ηT(X)      
          T3(X)                     T2(X)                    T(X)                          
                                                                     
    T(μX)                         μX                                                                                                     (7.4)                         
                                                  
          T2(X)                     T(X)                                                         
                          μX                       
 
but it follows from the commutativity of (7.1). 
 

(b): The square part of (7.4) insures that putting  
 
          ε(T(X),μX) = μX 
 
determines a natural transformation ε : FTUT → 1XT, and it is easy to see that η and ε satisfy 
the triangular identities. � 
 
Example 7.4. Let X be a category equipped with an action of a monoidal category C. 
According to Definition 6.10, such an action is simply a monoidal functor F : C → End(X), 
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and, like every monoidal functor, it induces a functor Mon(F) : Mon(C) → Mon(End(X)). 
Therefore every monoid M = (M,e,m) in C determines a monad on X; the algebras over that 
monad are called M-actions, and their category is denoted by XM. Explicitly, such an M-action 
is a pair (X,ξ), in which ξ : M⊗X → X is a morphism in X making the diagram 
 
                               φ                        m⊗1                             (e⊗1)θ      
          M⊗(M⊗X)         (M⊗M)⊗X             M⊗X                                                X 
                                                                     
          1⊗ξ                                                    ξ                                      
                                                  
              M⊗X                                                X             
                                            ξ                                                   
 
commute. Here θ and φ are as in (6.9)–(6.11). � 
 
Remark 7.5. (a) According to G. M. Kelly, an “M-action” is the right name not for a pair 
(X,ξ) above, but just for its structure morphism ξ. 
 

(b) Example 7.4 is at the same time a “generalization”. Indeed, starting from an arbitrary 
monad T on X, we can consider T-algebras as T-actions in the sense of Example 7.4, putting 
C = End(X) and considering the identity momoidal functor End(X) → End(X) as the action of 
End(X) on X. �   
 
8. More on adjoint functors and category equivalences 
 
This section contains additional observations on adjoint functors and category equivalence; 
some them will be explicitly used later, while others simply help to understand the concepts 
involved. We begin with 
 
Observation 8.1. (a) It is easy to see that (F,U,η,ε) : X → A is an adjunction if and only if so 
is (Uop,Fop,εop,ηop) : Xop → Aop (in the obvious notation). Therefore every general property of 
adjoint functors has its dual, where the left and the right adjoints exchange their roles (see e.g. 
Theorems 8.5 and 8.6 below). 
 

(b) Since in an adjunction (F,U,η,ε) : X → A, ηX : X → UF(X) is a universal arrow X → U for 
each object X in X, the functor U alone determines such an adjunction uniquely up to an 
isomorphism; dually, the same is true for F. 
 

(c) It is easy to see that adjunctions compose: if (F,U,η,ε) : X → A and (G,V,ϑ,ζ) : Y → X are 
adjunctions, then so is (FG,VU,(VηG)ϑ,ε(FζU)) : Y → A (cf. 2.5(c)). 
 

(d) Let 
 
                       K 
          A                      B 
                       M 
      K'   M '              N    L                                                                                                       (8.1) 
                       N ' 
          B'                     C 
                       L' 
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a diagram of functors in which M, M ', N, and N ' are the left adjoints of K, K', L, and L' 
respectively. Then, as easily follows from (b) and (c), we have LK ≈ L'K' ⇔ MN ≈ M 'N '. �  
 
Lemma 8.2. Every fully faithful functor reflects isomorphisms, i.e. under such a functor only 
isomorphisms are sent to isomorphisms. 
 

Proof. Let U : A → X be a fully faithful functor with U(f : A → B) being an isomorphism. 
Since U is full, U(f)−1 = U(g) for some g : B → A in A. Then since U(gf) = 1U(A), U(fg) = 1U(B), 
and U is faithful, we obtain gf = 1A and fg = 1B, which shows that f : A → B is an 
isomorphism.  
 
Definition 8.3. An adjunction (F,U,η,ε) : X → A is said to be an adjoint equivalence if η and 
ε are isomorphisms. � 
 
Theorem 8.4. Let U : A → X be a category equivalence, F0 a map from the set X0 of objects 
in X to the set A0 of objects in A, and η = (ηX : X → UF0(X))X∈X0 a family of isomorphisms. 
Then there exists a unique functor F : X → A and a unique natural transformation  
ε : FU → 1A, for which F0 is the object function of F and (F,U,η,ε) : X → A is an adjunction. 
Moreover, that adjunction is always an adjoint equivalence.  
 

Proof. Since U is fully faithful (by Lemma 2.7) and each ηX : X → UF0(X) is an isomorphism, 
it is easy to see that ηX : X → UF0(X) is a universal arrow X → U for each object X in X. After 
that the first assertion of the theorem follows from Remark 5.7 (see also Definition 5.10). 
Next, since ηX’s are isomorphisms, so are U(εA)’s (by the second identity in (5.13)), and by 
Lemma 8.2 this implies that ε is an isomorphism. � 
 
Theorem 8.5. Let (F,U,η,ε) : X → A be an adjunction. Then: 
 

(a) U is faithful if and only if ε is an epimorphism; 
 

(b) U is full if and only if ε is a split monomorphism; 
 

(c) and therefore U is fully faithful if and only if ε is an isomorphism. 
 

Proof. For two arbitrary objects A and B in A, consider the diagram 
 
                                                              homX(U(A),U(B))  
 
                                   UA,B 
 
          homA(A,B)                            u |→ εBF(u)    f |→ U(f)ηU(A)                                           (8.2) 
 
                        homA(εA,B) 
 
                                                                homA(FU(A),B), 
 
where the vertical arrows are bijections inverse to each other (since they are ψU(A),B and ϕU(A),B 
respectively: see (5.7) and (5.12)). Since the left-hand vertical arrow is bijective and makes 
the triangle commute (by naturality of ε), we have: 
 
          UA,B is injective ⇔ homA(εA,B) is injective; 
          UA,B is surjective ⇔ homA(εA,B) is surjective; 
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          UA,B is bijective ⇔ homA(εA,B) is bijective. 
 
Since homA(εA,B) is injective, surjective, or bijective if and only if εA is an epimorphism, split 
monomorphism, or isomorphism respectively, this completes the proof. � 
 
Dually, we obtain: 
 
Theorem 8.6. Let (F,U,η,ε) : X → A be an adjunction. Then: 
 

(a) F is faithful if and only if η is a monomorphism; 
 

(b) F is full if and only if η is a split epimorphism; 
 

(c) and therefore F is fully faithful if and only if η is an isomorphism. � 
 
– which helps to prove the following:  
 
Theorem 8.7. The following conditions on an adjunction (F,U,η,ε) : X → A are equivalent: 
 

(a) (F,U,η,ε) : X → A is an adjoint equvalence; 
 

(b) F and U are fully faithful; 
 

(c) F is fully faithful and U reflects isomorphisms; 
 

(d) η is an isomorphism and U reflects isomorphisms; 
 

(e) U is fully faithful and F reflects isomorphisms; 
 

(f) ε is an isomorphism and F reflects isomorphisms. 
 

Proof. (a)⇔(b), (c)⇔(d), and (e)⇔(f) follow from 8.6(a)⇔(c) and 8.5(a)⇔(c). (b)⇒(c) and 
(b)⇒(e) follow from Lemma 8.1. Therefore it suffices to prove the implications (d)⇒(a) and 
(f)⇒(a). Moreover, since these implications are dual to each other, it suffices to prove only 
one of them, say, (d)⇒(a). For, consider the second identity U(εA)ηU(A) = 1U(A) in (5.13). 
Assuming that η is an isomorphism, we conclude that so is U(εA) for each A, and, when U 
reflects isomorphisms, this implies that ε is an isomorphism, as desired. � 
 
9. Remarks on coequalizers 
 
The remarks on coequalizers we make in this section are presented as a definition and an 
example: 
 
Definition 9.1. (a) A coequalizer diagram in a given category is a diagram in of the form 
 
                       f 

          A                      B          h          C                                                                                 (9.1) 
                       g 
       
in which hf = hg, and for every morphism h' : B → C' with h'f = h'g, there exists a unique 
morphism k : C → C' with kh = h'. We will then also say that h is the coequalizer of the pair 
(f,g). 
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(b) A morphism that occurs in a coequalizer diagram as the morphism h occurs in (9.1) is 
called a regular epimorphism. 
 

(c) A coequalizer diagram is said to be absolute, if it is preserved by any functor, i.e. if its 
image under any functor is a coequalizer diagram. � 
 
Example 9.2. (a) Consider a split fork, i.e. a diagram of the form 
 
                       j                        i 
 
                       f 

          A                      B           h         C                                                                                 (9.2) 
                       g 
       
in which hf = hg, hi = 1C, fj = 1B, and gj = ih. In each such diagram f, g, and h form a 
coequalizer diagram. Indeed, given h' : B → C' with h'f = h'g, it is easy to see that there is a 
unique morphism k : C → C' with kh = h': just take k = h'i, which gives  
 
          kh = h'ih = h'gj = h'fj = h', 
 
and the uniqueness follows from the fact that h is a split epimorphism. Since the conditions 
imposed on the diagram (9.2) were purely equational and therefore are “preserved” by every 
functor, this also proves that f, g, and h form an absolute coequalizer diagram.  
 

(b) An arbitrary split epimorphism h : B → C can be involved in a split fork, namely in 
 
                       1B                      i 
 
                       1B 

          B                      B           h         C                                                                                 (9.3) 
                       ih 
       
where i is a splitting, i.e. a morphism from C to B with hi = 1C. Therefore every split 
epimorphism is a regular epimorphism. 
 

(c) For a monad T = (T,η,μ) on a category X, any T-algebra (X,ξ) determines the following 
split fork in X: 
 
                          ηT(X)                         ηX 
 
                            μX 

          T2(X)                      T(X)           ξ          X   �                                                                (9.4) 
                          T(ξ) 
       
10. Monadicity 
 
In this section we discuss the relationship between adjunctions and monad.   
 
Theorem 10.1. For every adjunction (F,U,η,ε) : X → A, the triple T = (T,η,μ) defined by 
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• T = UF, 
• η of (T,η,μ) is the same as η of (F,U,η,ε), 
• μ = UεF, i.e. μ = (μX : T2(X) → T(X))X∈X0 is defined by μX = U(εF(X)), 
 

is a monad on X.  
 

Proof. For the triple above, and any object X in X, the X-component of the diagram (7.1) 
becomes 
 
                                            U(εFUF(X))                         ηUF(X)      
                    UFUFUF(X)                     UFUF(X)                         UF(X)                          
                                                                     
           UFU(εF(X))                           U(εF(X))                                        UF(ηX)                     (10.1) 
                                                  
                      UFUF(X)                          UF(X)                          UFUF(X)                                  
                                              U(εF(X))                          U(εF(X)) 
 
and its left-hand square commutes by the naturality of ε while the triangles commute by the 
triangular identities (5.13). � 
 
Example 10.2. (a) Starting from an arbitrary monad T = (T,η,μ) on a category X, we obtain 
the forgetful-free adjunction (FT,UT,ηT,εT) : X → XT described in Theorem 7.3. It is easy to 
see that the corresponding monad on X is the same as the original monad T = (T,η,μ). This 
tells us that every monad can be obtained from an adjunction as in Theorem 10.1. Since this 
result is originally due to S. Eilenberg and J. Moore, the category XT is often called the  
Eilenberg-Moore category (of algebras over T). Note also, that using only free T-algebras, i.e. 
the T-algebras of the form FT(X) = (T(X),μX) we could also obtain an adjunction whose 
corresponding monad is T = (T,η,μ). Furthermore, since such an algebra (T(X),μX) is fully 
determined by its underlying object X, the full subcategory in XT with objects all free  
T-algebras can be described as the so-called Kleisli category of T, whose objects are the same 
as the objects in X. In detail: 
 

• The category Kleisli(T) is defined as the category with the same objects as the in X, and a 
morphism f : X → Y being a morphism f : X → T(Y) in X; the composite of morphisms  
f : X → Y and g : Y → Z in Kleisli(T) is the composite 
 
                 f             T(g)             μZ 
          X   →   T(Y)   →   T2(Z)   →   T (Z) 
  
in X. 
• The forgetful functor U : Kleisli(T) → X is defined by U(f : X → Y) = μZT(f) : T(X) → T(Y), 
and free functor F : X → Kleisli(T) is defined by F(f : X → Y) = ηYf : X → T(Y), considered as 
a morphism from X to Y in Kleisli(T).   
• And the monad obtained from adjunction as in Theorem 10.1 is again the same as the 
original monad T = (T,η,μ) (a result due to H. Kleisli). �  
 
It is now natural ask, to what extend is it possible to recover the adjunction  
(F,U,η,ε) : X → A from the monad T = (T,η,μ) in the situation of Theorem 10.1? In order to 
formulate this question properly, we need:   
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Theorem 10.3. (F,U,η,ε) : X → A and T = (T,η,μ) be as in Theorem 10.1. Then there exists a 
unique functor K : A → XT with UTK = U and KF = FT. 
 

Proof. Existence: Simply define K by 
 
          K(A) = (U(A),U(εA)).                                                                                                 (10.2) 
 
To prove that (U(A),U(εA)) is indeed a T-algebra is to prove that the diagram 
 
                               U(εFU(A))                        ηU(A)      
          UFUFU(A)                     UFU(A)                    U(A)                          
                                                                     
   UFU(εA)                            U(εA)                                                                                       (10.3)                        
                                                  
            UFU(A)                          U(A)                                                         
                                  U(εA)  
 
commutes, which, for the left-hand square, follows from the naturality of ε, and, for the 
triangle, follows from the second identity in (5.13) (cf. (10.1)). Defining K by (10.2), we also 
obviously have UTK = U, and KF = FT since KF(X) = (UF(X),U(εF(X))) = (T(X),μX) = FT(X). 
 

Uniqueness: Let H : A → XT be a functor satisfying UTH = U and HF = FT. Since UTH = U, 
such a functor must be given by H(A) = (U(A),ξA) for some natural transformation  
ξ : UFU → U. On the other hand, since HF = FT, we must have ξF(X) = μX = U(εF(X)). After 
that, comparing the naturality square from (10.3) with the naturality square 
 
                          U(εFU(A)) = ξFU(A)                               
          UFUFU(A)                      UFU(A)                                                   
                                                                     
   UFU(εA)                                        U(εA)                                                     
                                                  
             UFU(A)                          U(A)                                                            
                                      ξA                       
 
we obtain ξAUFU(εA) = U(εA)UFU(εA), which implies ξA = U(εA), since UFU(εA) is a split 
epimorphism by the second identity in (5.13). � 
  
Definition 10.4. Let (F,U,η,ε) : X → A and T = (T,η,μ) be as in Theorems 10.1 and 10.3. 
Then: 
 

(a) the functor K : A → XT as in Theorem 10.3 is called the comparison functor; 
 

(b) the functor U : A → X is said to be monadic if the functor K : A → XT above is a category 
equivalence. � 
 
Accordingly, saying that an adjunction (F,U,η,ε) : X → A can be recovered from the 
corresponding monad T = (T,η,μ) on X should be understood as saying that the functor U is 
monadic. In order to formulate some of the monadicity results, we will need the following 
construction containing long calculations: 
 

 27



Construction 10.5. Let (F,U,η,ε) : X → A and T = (T,η,μ) be as above, and suppose that for 
every T-algebra (X,ξ), the pair (εF(X),F(ξ)) has a coequalizer in A. Then the comparison 
functor K : A → XT has a left adjoint forming an adjunction (L,K,ή,έ) : X → A that can be 
described as follows: 
 

(a) For a T-algebra (X,ξ), the object L(X,ξ) is defined via the coequalizer diagram 
 
                              εF(X) 

          FUF(X)                      F(X)       π(X,ξ)       L(X,ξ)                                                         (10.4) 
                              F(ξ) 
 
(b) For a morphism h : (X,ξ) → (X ',ξ') of T-algebras, we form the diagram 
 
                              εF(X) 

           FUF(X)                      F(X)       π(X,ξ)        L(X,ξ)                                                          
                              F(ξ) 
 
   FUF(h)                                    F(h)                         L(h)                                                   (10.5) 
 
                              εF(X ') 

          FUF(X ')                      F(X ')       π(X ',ξ')     L(X ',ξ')                                                          
                              F(ξ') 
 
of solid arrows, in which  
 
          π(X ',ξ')F(h)εF(X) = π(X ',ξ')εF(X ')FUF(h) = π(X ',ξ')F(ξ')FUF(h) = π(X ',ξ')F(h)F(ξ) 
 
implies the existence and uniqueness of the dotted arrow making the right-hand square 
commute. This determines a functor L : XT → A. 
(c) We then define ή(X,ξ) : (X,ξ) → KL(X,ξ) = (UL(X,ξ),U(εL(X,ξ))) as the composite U(π(X,ξ))ηX, 
which we can do since the diagram 
 
                           UF(ηX)                    UFU(π(X,ξ))      
          UF(X)                     UFUF(X)                      UFUL(X,ξ)                          
                                                                     
           ξ                                                                             U(εL(X,ξ))                                     (10.6) 
                                                  
              X                            UF(X)                           UL(X,ξ)                                  
                              ηX                           U(π(X,ξ)) 
 
commutes. Indeed, we have  
 
          U(εL(X,ξ))UFU(π(X,ξ))UF(ηX) = U(εL(X,ξ)FU(π(X,ξ))F(ηX)) (by functoriality of U) 
          = U(π(X,ξ)εF(X)F(ηX)) (by naturality of ε) 
          = U(π(X,ξ)) (by the first identity in (5.13)) 
          = U(π(X,ξ))U(εF(X))ηUF(X) (by the second identity in (5.13) applied to A = F(X)) 
          = U(π(X,ξ)εF(X))ηUF(X) (by functoriality of U) 
          = U(π(X,ξ)F(ξ))ηUF(X) (since (10.4) is a coequalizer diagram) 
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          = U(π(X,ξ))UF(ξ)ηUF(X) (by functoriality of U) 
          = U(π(X,ξ))ηXξ (by naturality of η). 
 
(d) To show that ή(X,ξ) is a universal arrow (X,ξ) → K is to show that for every morphism  
k : (X,ξ) → (U(A),U(εA)) there exists a unique morphism l : L(X,ξ) → A with 
 
          U(l)U(π(X,ξ))ηX = k.                                                                                                     
 
Since U(l)U(π(X,ξ)) = U(lπ(X,ξ)) and (F,U,η,ε) is an adjunction, this is the same as to show that 
there exists a unique morphism l : L(X,ξ) → A with lπ(X,ξ) = εAF(k). Since (10.4) is a 
coequalizer diagram this simply means to show that 
 
          εAF(k)εF(X) = εAF(k)F(ξ).                                                                                           (10.7) 
 
For, we have 
 
          εAF(k)F(ξ) = εAF(kξ) (by functoriality of F) 
          = εAF(U(εA)UF(k)) (since k : (X,ξ) → (U(A),U(εA)) is a morphism of T-algebras) 
          = εAFU(εAF(k)) (by functoriality of U) 
          = εAF(k)εF(X) (by naturality of ε), 
 
as desired. 
 

(e) In particular, for an object A in A, the morphism έA : LK(A) → A is the unique morphism 
L((U(A),U(εA)) → A making the diagram 
 
                                εFU(A) 

          FUFU(A)                      FU(A)      
π(U(A),εA)      L((U(A),U(εA))                         

                               FU(εA)                                                                                                   (10.8) 
                                                            εA                         έA 
 
                                                                          A 
 
commute. � 
 
Remark 10.6. As an intermediate result of the calculation in 10.5(c), we have  
 
          U(π(X,ξ))ηXξ = U(π(X,ξ))                                                                                              (10.9) 
 
for every T-algebra (T(X),ξ). Since ή(X,ξ) : (X,ξ) → KL(X,ξ) was defined (in 10.5(c)) as 
U(π(X,ξ))ηX, this equality together with Example 9.2 tell us that ή(X,ξ) considered as a morphism 
in X is the unique morphism making the diagram 
 

 29



                          U(εF(X)) = μX 

          UFUF(X)                      UF(X)                   ξ                   X                         
                          UF(ξ) = T(ξ)                                                                                            (10.10) 
                                                    U(π(X,ξ))                           ή(X,ξ) = U(π(X,ξ))ηX 
 
                                                                        UL(X,ξ) 
 
commute. �    
 
Theorem 10.7. For (F,U,η,ε) : X → A and T = (T,η,μ) as above the following conditions are 
equivalent: 
 

(a) the functor U : A → X is monadic; 
 

(b) the functor U preserves the coequalizer diagram (10.4) for every T-algebra (X,ξ), and, for 
every object A in A, the morphism εA is the coequalizer of the pair (εFU(A),FU(εA)); 
 

(c) the functor U reflects isomorphisms and preserves the coequalizer diagram (10.4) for 
every T-algebra (X,ξ); 
 

(d) the functor U reflects isomorphisms, and every pair (f,g) of parallel morphisms in A, for 
which the pair (U(f),U(g)) has an absolute coequalizer, has a coequalizer preserved by U.  
                                

Proof. We observe: 
• Since UTK = U, and UT : XT → X obviously reflects isomorphisms, U reflects isomorphisms 
if and only if K does.  
• As follows from Remark 10.6 and the fact that the top part of the diagram (10.10) is a 
coequalizer diagram (see Example 9.2), the functor U preserves the coequalizer diagram 
(10.4) if and only if ή(X,ξ) : (X,ξ) → KL(X,ξ) is an isomorphism.  
• As follows from 10.5(e), the morphism εA is the coequalizer of the pair (εFU(A),FU(εA)) if 
and only if έA : LK(A) → A is an isomorphism. 
• This proves (a)⇔(b) and makes (b)⇔(c) a consequence of Theorem 8.7 (in fact a 
consequence of the last argument in its proof). 
• Since the pair (U(εF(X)),UF(ξ)) = (μX,T(ξ)) involved in (10.10) is a part of a split fork (9.4), 
(d) implies (c). 
• After this all we need to prove is that if (f,g) of parallel morphisms in XT, for which the pair 
(f,g) has an absolute coequalizer in X, then (f,g) has a coequalizer in XT preserved by UT. For, 
consider the diagram 
 
                         T(f) 

          T(X)                      T(Y)        T(h)       T(Z)                                                                                  
                         T(g) 
                                                                                                                                           (10.11) 
                           f 

            X                           Y             h            Z                                                                                  
                           g 
 
where: h is the coequalizer of (f,g) in X; the left-hand and the middle vertical arrow are the 
domain and the codomain of f (and of g) respectively in the category XT; and the dotted arrow 
is determined by the fact that the top row in (10.11) is a coequalizer diagram (since h is the 
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absolute coequalizer of (f,g) in X). Using the fact that not only T but also T2 preserves the 
equalizer of (f,g), it is easy to check that the dotted arrow determines a T-algebra structure on 
Z and then makes h is the coequalizer of (f,g) in XT – and this coequalizer is trivially 
preserved by UT. � 
 
Remark 10.8. (a) Condition 10.7(d) can modified by asking the pair (U(f),U(g)) to be a split 
coequalizer (i.e. to be a part of a split fork) instead of an absolute one. As one can see from 
the argument proving (d)⇒(c) of Theorem 10.7, this follows from the fact that the diagram 
(9.4) is a split fork. 
 

(b) The pair (εF(X),F(ξ)) involved in (10.4) is reflexive, which means that εF(X) and F(ξ) are 
split epimorphisms with a common splitting – which is F(ηX). Therefore using the same 
arguments as in the proof of Theorem 10.7, we can prove the following: if a functor admits a 
left adjoint, reflects isomorphisms, and preserves coequalizers of reflexive pairs, then it is 
monadic. � 
 
11. Internal precategory actions 
 
This section presents generalized versions of very first concepts of internal category theory 
need for the purposes of categorical Galois theory. 
 
Definition 11.1. An internal precategory in a category X is a diagram  
P = (P0,P1,P2,d,c,e,m) = 
 
                      p                    d 
                          

          P2        m        P1        e         P0                                                                                  (11.1) 
 
                      q                    c 
 
in X with de = 1 = ce, dp = cq, dm = dq, and cm = cp. An internal precategory in Sets is 
simply called a precategory. � 
 
Example 11.2. Any (small) category C can be regarded as a precategory; it is then to be 
displayed as 
 
                      p                    d 
                          

          C2        m        C1        e         C0                                                                                  (11.2) 
 
                      q                    c 
 
where: 
 

• C0 is the set of objects in C; 
• C1 is the set of morphisms in C; 
• d and c are the domain map and the codomain map respectively, i.e. d(f) = x and  
   c(f) = y if and only if f is a morphism from x to y; 
• C2 = {(g,f)⏐d(g) = c(f)} is the set of composable pairs of morphisms in C; 
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• p and q are the projection maps, i.e. p(g,f) = g and q(g,f) = f. � 
 
Example 11.2 suggests: 
 
Definition 11.3. An internal category in a category X with pullbacks is an internal 
precategory C in X, in which the diagram formed by d, c, p, q is a pullback (yielding C2 = 
C1×(d,c)C1) and the diagram  
 
                                     1×m                              〈ec,1〉 
          C1×(d,c)C1×(d,c)C1                       C1×(d,c)C1                            C1  
 
              m×1                                         m                                         〈1,ed〉                          (11.3)                        
 
                C1×(d,c)C1                                  C1                             C1×(d,c)C1 
                                       m                                    m 
commutes. � 
 
Observation 11.4. (a) Comparing diagrams (11.3) and (6.12) makes clear that an internal 
category C in X is nothing but a monoid in the monoidal category (Graphs(X,O),I,⊗,α,λ,ρ), 
described in Example 6.5, for O = C0.  
 

(b) An internal category in Sets is of course the same as an ordinary (small) category. �   
 
The readers familiar with simplicial sets might prefer to consider precategories as truncated 
simplicial sets, and present Example 11.2 via the notion of nerve of a category. According to 
this approach, but also independently of it, given a precategory P, it is convenient to use 
displays like 
 

          x          h           z          
                      t                        x             e(x)                                                                         (11.4) 

              
f
       y      

g
 

 
for t in P2, g = p(t), f = q(t), h = m(t), x = d(f) = d(h), y = d(g) = c(f), and z = c(g) = c(h). Note 
that these displays “remember” all identities required in Definition 11.1. 
 
Thinking of internal precategories as generalized categories, we are going now to generalize 
functors. In fact there are several concepts to be introduced, and the first obvious step is to 
define precategory morphisms as the corresponding diagram morphisms, which brings us to 
 
Definition 11.5. Let P and P' be internal precategories in X. A morphism ϕ : P → P' is a 
diagram in X of the form 
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                        p                    d 
                          

          ( P2        m        P1        e         P0 ) = P                                                                        
 
                        q                    c 
        ϕ2                   ϕ1                   ϕ0                                                                                    (11.5)                         
                        p'                    d ' 
                          

          ( P'2        m'       P'1        e'        P'0 ) = P'                                                                        
 
                        q'                    c' 
 
which reasonably commutes, i.e. has ϕ0d = d 'ϕ1, ϕ0c = c'ϕ1, ϕ1e = e'ϕ0, ϕ1p = p'ϕ2, ϕ1q = q'ϕ2, 
and ϕ1m = m'ϕ2. A morphism ϕ : P → P' above is said to be  
 

(a) a discrete fibration if the squares ϕ0c = c'ϕ1 and ϕ1p = p'ϕ2 in (11.5) are pullbacks; 
 

(b) a discrete opfibration if the squares ϕ0d = d 'ϕ1 and ϕ1q = q'ϕ2 in (11.5) are pullbacks. � 
 
Remark 11.6. It is easy to show that if ϕ : P → P' is a discrete fibration and P' is an internal 
category, then P also is an internal category. On the other hand, if P and P' were internal 
categories, then ϕ : P → P' is a discrete fibration whenever just the square ϕ0c = c'ϕ1 in (11.5) 
is a pullback. Therefore discrete fibrations of internal categories in Sets are the same as 
ordinary ones defined in 4.1(b). � 
 
Next, we need “functors” P → X, and since this concept is less obvious, let us begin with the 
case X = Sets: 
 
Definition 11.7. Let P be a precategory. Then: 
 

(a) For a category C, a prefunctor P → C is a precategory morphism P → C, where C is 
regarded as a precategory in the same way as in Example 11.2. 
 

(b) A P-action is a diagram A = (A0,π,ξ) = 
 

          P1×P0A0         ξ        A0        π         P0,                                                                        (11.6) 
 
where P1×P0A0 = P1×(d,π)A0 is the pullback of d and π, ξ is written as ξ(f,a) = fa, and  
 
          π(fa) = c(f), e(x)a = a, ha = g(fa)                                                                               (11.7) 
 
in the situation (11.4) whenever π(a) = x. � 
 
Remark 11.8. (a) When P is a category (see Example 11.2), the equalities (11.7) are to be 
rewritten as 
 
          π(fa) = c(f), 1xa = a, (gf)a = g(fa).                                                                             (11.8) 
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That is, when P is a category, a P-action is nothing but a functor from P to Sets. To be 
absolutely precise, we should say that in that case there is a canonical equivalence between 
the category of P-actions and the category of functors from P to Sets.  
 

(b) The general case reduces to the case of categories. Indeed: Let  
 
          L : Precategories → Categories                                                                                 (11.9) 
 
be the left adjoint of the inclusion functor from the category of categories to the category of 
precategories. Explicitly, for a precategory P = (P0,P1,P2,d,c,e,m), the category L(P) is the 
quotient category Pa(G)/∼, where: 
 

• Pa(G) is the free category (“the category of paths”) on the underlying graph  
G = (P0,P1,d,c) of P; that is, the objects of Pa(G) are the elements of P0, and a morphism  
x → y is a finite (possibly empty) sequence (f0,…,fn), in which d(fn) = x, c(fi) = d(fi−1) (for  
i = 1,…,n), and c(f0) = y.   
• ∼ is the smallest congruence on Pa(G), for which e(x) ∼ 1x and m(t) ∼ p(t)q(t) for each x in 
P0 and t in P2. 
 

Requiring m(t) ∼ p(t)q(t) here is of course the same to require h ∼ gf in the situation (11.4), 
and the category of P-actions can be identified with the category of L(P)-actions.  
 

(c) The category of P-actions is canonically equivalent to the category of prefunctors  
P → Sets. This can be either shown directly, or deduced from (a) and (b), since the category 
of prefunctors P → Sets is obviously canonically isomorphic to the category of functors  
L(P) → Sets. � 
 
Internalizing now Definition 11.7(b) we arrive at: 
 
Definition 11.9. Let P = (P0,P1,P2,d,c,e,m) be an internal precategory in a category X with 
pullbacks. A P-action is a diagram A = (A0,π,ξ) = 
 

          P1×P0A0         ξ        A0        π         P0,                                                                      (11.10) 
 
where P1×P0A0 = P1×(d,π)A0 is the pullback of d and π, and the diagram 
 
                           〈p,q〉×1                                       1×ξ                              〈eπ,1〉 
    P2×(dq,π)A0                       P1×(d,c)P1×(d,π)A0                       P1×(d,π)A0                       A0  
 
  m×1                                                                                       ξ                                         
 
     P1×(d,π)A0                                                                              A0                                     (11.11) 
                                                        ξ 
   proj1                                                                              π 
 
          P1                                                    P0 
                                   c 
 
commutes. The category of P-actions will be denoted by XP. � 
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Remark 11.10. When P is an internal category, the diagram (11.11) becomes 
 
                                      1×ξ                               〈eπ,1〉 
    P1×(d,c)P1×(d,π)A0                       P1×(d,π)A0                       A0  
 
      m×1                                           ξ                                         
 
         P1×(d,π)A0                                   A0                                                                            (11.12) 
                                        ξ                  
      proj1                                             π 
 
              P1                                         P0 
                                        c 
 
This makes a P-action a special case of an M-action in the sense of Example 7.4. Specifically: 
• we take the monoidal category C of Example 7.4 to be (Graphs(X,P0),I,⊗,α,λ,ρ); 
• the role of X in Example 7.4 will be played by the comma category (X↓P0) (of pairs  
A = (A0,π), where π : A0 → P0 is a morphism in X);  
• the C-action on (Graphs(X,P0),I,⊗,α,λ,ρ) is defined in the obvious way using  
P⊗A = (P1×(d,π)A0,c(proj1)) defined via 
 
                                         P1×(d,π)A0 
  
                            proj1                        proj2 
 
                           P1                                 A0                                                                       (11.13) 
 
                c               d                        π                
 
         P0                                 P0;                                   
 
• then since P becomes a monoid in (Graphs(X,P0),I,⊗,α,λ,ρ), we have the category (X↓P0)P 
of P-actions in the sense of Example 7.4, and it coincides with the category XP of P-actions in 
the sense of Definition 11.9. �  
 
We end this section with a natural (dual) internal-precategorical version of the results of 
Section 4 concerning discrete fibrations: 
 
Theorem 11.11. Let P = (P0,P1,P2,d,c,e,m) be an internal precategory in a category X with 
pullbacks and A = (A0,π,ξ) a P-action. Then the diagram 
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                         (1×ξ)(〈p,q〉×1)                   proj2 
                          

            P2×(dq,π)A0      m×1      P1×(d,π)A0     〈eπ,1〉    A0                                                                        
 
                                   q×1                             ξ 
           proj1                           proj1                               π                                                     (11.14)                        
                                     p                               d 
                          

                   P2              m             P1              e         P0                                                                         
 
                                     q                               c 
 
is a discrete opfibration. Moreover, sending A to the so defined opfibration determines an 
equivalence between the category XP of P-actions and the category DisOpfib(P) of discrete 
opfibrations over P (i.e. the category of discrete opfibrations ? → P considered as a full 
subcategory of the comma category ((Precategories in X)↓P)). 
 

Proof is a routine calculation. � 
 
12. Descent via monadicity and internal actions 
 
In this section we develop a simplified approach to Grothendieck descent theory suitable for 
our purposes. 
 

Let p : E → B be a fixed morphism in a category C with pullbacks. Consider the diagram 
 
                                   K 
          (C↓B)                              (C↓E)T   
 
                           p*            F 
                     p!                        U                                                                                          (12.1) 
 
                              (C↓E) 
 
in which: 
 

• p! is defined as the composition with p, i.e. by p!(D,δ) = (D,pδ); 
• p* is the pullback-along-p (change-of-base functor determined by p), and we will write 
p*(A,α) = (E×(p,α)A,proj1) = (E×BA,proj1); 
• it is to see that p! is the left adjoint p*, and T denotes the corresponding monad on (C↓E); 
• (C↓E)T is the category of T-algebras and U, F, and K the corresponding forgetful functor, 
free functor, and comparison functor respectively. 
 

Explicitly: 
 

• a T-algebra is a diagram (D,δ,ζ) = 
 

          E×(p, pδ)D         ζ        D        δ         E,                                                                        (12.2) 
 
for which the diagram 

 36



 
                                         1×ζ                           〈δ,1〉 
             E×(p,p)E×(p,pδ)D              E×(p,pδ)D                         D 
 
     〈proj1,proj3〉                                   ζ                                                                                           
                                           ζ 
                  E×(p,pδ)D                        D                                                                                  (12.3) 
                                                         
                 proj1                            δ                                                            
                                         
                        E                                                                                        
 
commutes; 
• the functor U is defined by U(D,δ,ζ) = (D,δ);  
• the functor F is defined by F(D,δ) = (E×(p,pδ)D,proj1,〈proj1,proj3〉), where (here and below) 
proji (i = 1, 2, 3) are suitable projections; 
• the functor K is defined by K(A,α) = (E×(p,α)A,proj1,〈proj1,proj3〉). 
 

The diagrams (12.2) and (12.3) look almost similar to the diagrams (11.10) and (11.11) (see 
also (11.12)), and in fact they are special cases of those. For, let us take (X = C and) P to be 
the internal category Eq(p) = 
 
                                〈proj1,proj2〉                              proj2 
                          
 

          E×BE×BE        〈proj1,proj3〉        E×BE             〈1,1〉             E                                    (12.4)            
 
 
                                 〈proj2,proj3〉                              proj1 
 
 
          E×(p,p)E×(p,p)E                            E×(p,p)E 
 
 
and write (D,δ) instead of (A0,π) in (11.10) and (11.11). Then (11.10) becomes 
 

          (E×(p,p)E)×(proj2,δ)D         ξ        D        δ         E,                                                          (12.5) 
 
and a straightforward calculation proves: 
 
Theorem 12.1. For an object (D,δ) in (C↓E), the morphism 
 
         ⎯δ = 〈proj1,proj3〉 : (E×(p,p)E)×(proj2,δ)D → E×(p,pδ)D                                                    (12.6) 
 
is an isomorphism and (D,δ,ζ) is a T-algebra if and only if (D,δ,ζ⎯δ) is an Eq(p)-action. 
Moreover, sending (D,δ,ζ) to (D,δ,ζ⎯δ) determines a category isomorphism 
 
            (C↓E)T ≈ CEq(p). �                                                                                                    (12.7) 
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Remark 12.2. (a) As the notation obviously suggests, Eq(p) is nothing but the right internal 
version of the equivalence on E determined by p. Moreover, of course there are suitable 
notions of an internal groupoid, an internal preorder, an internal equivalence relation, and the 
opposite internal category to a given one, for which: 
 

• every internal groupoid is isomorphic to its opposite internal groupoid;  
• a morphism of internal groupoids is a discrete fibration if and only it is a discrete 
opfibration; 
• an internal preorder is the same as an internal category whose domain morphism and 
codomain morphism are jointly monic; 
• an internal equivalence relation is the same as an internal groupoid that is an internal 
preorder.  
 

In particular we do not need to be too careful in distinguishing Eq(p) from its opposite 
internal equivalence relation. 
 

(b) Every morphism ϕ : P → P' of internal precategories in C obviously determines an 
induced functor Cϕ : CP' → CP, and this determines a pseudofunctor (where “pseudo” refers 
to preservation of composition and identities only up to “good” isomorphisms; omitting 
details let us just mention that this is similar to “preservation” of ⊗ by monoidal functors) 
 
          C? : Precat(C)op → Cat,                                                                                            (12.8) 
 
where Precat(C) and Cat denote the category of internal precategories in C and the category 
of categories respectively. In particular applying this pseudofunctor to the commutative 
diagram 
 
                                   p      
          Eq(1E) = E                B = Eq(1B)   
 
                            
                                                                                                                                             (12.9) 
 
                               Eq(p), 
 
(in the obvious notation) and identifying CEq(1E) and CEq(1B) with (C↓E) and (C↓B) 
respectively, we obtain a diagram   
 
          (C↓B)                               (C↓E)   
 
                            
                                                                                                                                           (12.10) 
 
                               CEq(p) 
 
that can be identified with 
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                                  p* 
          (C↓B)                               (C↓E)   
 
                            
                     K                      U                                                                                          (12.11) 
 
                              (C↓E)T 
 
via the isomorphism (12.7). � 
 
Definition 12.3. A morphism p : E → B in a category C with pullbacks is said to be: 
 

(a) a descent morphism if the comparison functor K : (C↓B) → (C↓E)T is fully faithful; 
 

(b) an effective descent morphism if the functor p* is monadic, i.e. if K is an equivalence of 
categories; in this and in the more general situation considered in later sections we will also 
say that p : E → B is a monadic extension. � 
 
13. Galois structures and admissibility 
 
Admissible Galois structures introduced in this section are the basic categorical structures for 
Galois theory in general categories. 
 
Definition 13.1. A Galois structure is a system (C,X,I,H,η,ε,F,Φ), in which  
 
          (I,H,η,ε) : C → X                                                                                                      (13.1)                       
 
is an adjunction, and F and Φ class of morphisms in C and in X respectively, satisfying the 
following conditions: 
 

(a) I(F) ⊆ Φ and H(Φ) ⊆ F. 
 

(b) The category C admits pullbacks along morphisms from F, and the class F is pullback 
stable; similarly, the category X admits pullbacks along morphisms from Φ, and the class Φ is 
pullback stable. Furthermore, the classes F and Φ contain all isomorphisms in C and X 
respectively. � 
 
Given a Galois structure Γ = (C,X,I,H,η,ε,F,Φ) and an object B in C, there is an induced 
adjunction 
 
          (IB,HB,ηB,εB) : F(B) → Φ(I(B)),                                                                                 (13.2)                       
 
in which: 
 

• F(B) is the full subcategory in (C↓B) with objects all pairs (A,α) with α : A → B in F; 
 

• similarly Φ(I(B)) is the full subcategory in (X↓I(B)) with objects all pairs (X,ϕ) with  
ϕ : X → I(B) in Φ; 
 

• IB(A,α) = (I(A),I(α)); 
 

• HB(X,ϕ) = (B×HI(B)H(X),proj1) is defined via the pullback 
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                                    proj2 
          B×HI(B)H(X)                       H(X) 
 
         proj1                                         H(ϕ)                                                                        (13.3) 
 
                B                               HI(B); 
                                      ηB 
 
• (ηB)(A,α) = 〈α,ηA〉 : A → B×HI(B)HI(A); 
 

• (εB)(X,ϕ) is the composite 
 
                                      I(proj2)                        εX 

          I(B×HI(B)H(X))                       IH(X)                      X,                                        (5.4) 
 
where proj2 is as in (5.3). 
 
Using the notation above we introduce  
 
Definition 13.2. An object B in C is said to be admissible if εB : IBHB → 1Φ(I(B)) is an 
isomorphism. If this is the case for each B in C, then we say that the Galois structure  
Γ = (C,X,I,H,η,ε,F,Φ) is admissible. �   
 
Obvious but important: 
 
Proposition 13.3. If ε : IH → 1X is an isomorphism, then the following conditions on an 
object B in C are equivalent: 
 

(a) B is admissible; 
 

(b) the functor HB : Φ(I(B)) → F(B) is fully faithful; 
 

(c) the functor I preserves all pullbacks of the form (5.3). � 
 
Convention 13.4. From now on Γ = (C,X,I,H,η,ε,F,Φ) will denote a fixed admissible Galois 
structure in which ε : IH → 1X is an isomorphism, and so the equivalent conditions of 
Proposition 5.3 hold. � 
 
More precisely, we will freely use this convention in Sections 14 and 19, and it will hold true 
in all examples of Sections 15-18, which we will prove there. 
 
14. Monadic extensions and coverings 
 
In this section we introduce the main notions of categorical Galois theory (using Convention 
13.4). 
 
Given a morphism p : E → B in C, pulling back along p determines a functor 
 
          p* : F(B) → F(E),                                                                                                      (14.1) 
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and the composition with p determines a functor 
 
          p! : F(E) → F(B),                                                                                                       (14.2) 
 
which is the left adjoint of p*. 
 
Definition 14.1. A pair (E,p), in which p : E → B is morphism in C, or a morphism p : E → B 
itself, is said to be a monadic extension of B if the following conditions hold: 
 

(a) If (D,δ) is in F(E), then (D,pδ) is in F(B);  
 

(b) the functor p* : F(B) → F(E) is monadic. � 
 
We are now ready to introduce our main definition: 
 
Definition 14.2. (a) An object (A,α) in F(B) is said to be a trivial covering (of B) if the 
morphism (ηB)(A,α) : (A,α) → HBIB(A,α) is an isomorphism, or, equivalently, the diagram 
 
                      ηA 
          A                       HI(A) 
 
       α                               HI(α)                                                                                     (14.3) 
 
          B                       HI(B) 
                      ηB 
 
is a pullback. 
 

(b) An object (A,α) in F(B) is said to be split over a monadic extension (E,p) of B if p*(A,α) is 
a trivial covering. 
 

(c) An object (A,α) in F(B) is said to be a covering of B if there exists a monadic extension 
(E,p) of B such that (A,α) is split over (E,p). We will then also say that α : A → B is a 
covering morphism. � 
 
According to this definition we have 
 

          TrivCov(B) = Spl(B,1B) ⊆ Cov(B) = ∪
(E,p)

Spl(E,p) ⊆ F(B),                                       (14.4) 
 
where: 
 

• TrivCov(B) is the full subcategory in F(B) with objects all trivial coverings of B; 
 

• Spl(E,p) is the full subcategory in F(B) of all objects split over (E,p); 
 

• Cov(B) is the full subcategory in F(B) with objects all coverings of B; 
 

• the union of Spl(E,p)’s in (6.4) is taken over all monadic extensions (E,p) of B. 
 
Remark 14.3. The following simple properties of coverings are useful: 
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(a) Since εB : IBHB → 1Φ(I(B)) is always an isomorphism, an object (A,α) in F(B) is a trivial 
covering if and only if (A,α) ≈ HB(X,ϕ) for some (X,ϕ) in Φ(I(B)). 
 

(b) For every morphism β : B' → B, the functor β* : F(B) → F(B') sends trivial coverings to 
trivial coverings, and the functor I preserves pullbacks along trivial coverings. To see this, 
consider the cube diagram 
 
          A'                       H(X) 
 
                      A                       HI(A) 
                                                                                                                            (14.5) 
                       
          B'                       HI(B) 
 
                      B                       HI(B), 
 
where the left-hand face is a pullback, A → B is a trivial covering, the right-hand face is the 
H-image of the pullback formed by the I-images of B' → B and A → B, and the arrows 
connecting the left-hand and right-hand faces are canonical morphisms. In this diagram all 
vertical faces are pullbacks, and, by the admissibility, X can be identified with I(A'). This 
implies our assertions above. 
 

(c) As follows from (b), for monadic extensions (E,p) and (E',p'), we have 
Spl(E,p) ⊆ Spl(E',p') whenever p' factors through p. 
 

(d) Using some further arguments one can show that the union in (14.4) is in fact directed. � 
 
15. Categories of abstract families 
 
In this section we present an example of an admissible Galois structure, which will later help 
us to present the classical Galois theory as a special case of the categorical one. We take X to 
be a full subcategory of the category of sets, closed under finite limits, and A an arbitrary 
category that has a terminal object 1.   
 
Definition 15.1. The category FamX(A) of families of objects in A with index sets in X has: 
 

(a) its objects all families A = (Ai)i∈I(A) of objects Ai in A with I(A) in X; 
 

(b) a morphism A → B in FamX(A) is a pair (f,α), in which f : I(A) → I(B) is a map of sets and 
α is a family of morphisms α = (αi : Ai → Bf(i))i∈I(A) in A. � 
 
Sending (f,α) : A → B to f : I(A) → I(B) determines a functor I : FamX(A) → X, with the right 
adjoint H defined by H(X) = (Ai)i∈I(A), where I(A) = X and Ai = 1 for all i. This can easily be 
checked either directly, or using the following obvious facts 
 

• Sending A to FamX(A) determines a 2-functor 
 
          FamX : CAT → CAT,                                                                                               (15.1) 
 
where CAT is the 2-category of all categories. 
 

• FamX(1) is canonically isomorphic to X, where 1 denotes a (the) one-morphism category 
(=the terminal object in the category of all categories). 
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• The unique functor A → 1 has the right adjoint sending the unique object of 1 to the 
terminal 1 object in A, and the functor I : FamX(A) → X above is nothing but the composite 
FamX(A) → FamX(1) ≈ X. 
 
It is then easy to prove: 
 
Theorem 15.2. Let Γ = (FamX(A),X,I,H,η,ε,F,Φ) be a Galois structure, in which 
I : FamX(A) → X and H : X → FamX(A) are as above, with suitable η and ε, Φ the class of all 
morphisms in X, and F an arbitrary class of morphisms in FamX(A) containing H(Φ) and 
satisfying 5.1(b). Then ε : IH → 1X is an isomorphism and Γ is admissible. � 
 
Theorem 15.3. Let Γ = (FamX(A),X,I,H,η,ε,F,Φ) be as in Theorem 7.2, and (f,α) : A → B be 
in F. Then (A,(f,α)) is a trivial covering of B if and only if αi : Ai → Bf(i) is an isomorphism for 
each i ∈ I(A). � 
 
16. Coverings in classical Galois theory 
 
In this section we describe the relationship between the separable/Galois extensions in 
classical Galois theory and covering morphisms of categorical Galois theory. 
 

Here, K denotes a field, C the opposite category of commutative unitary K-algebras that are 
finite-dimensional as K-vector spaces, and X the category of finite sets. We define here  
I : C → X by 
 
          I(A) = the set of minimal (non-zero) idempotents in A;                                            (16.1) 
 
that is I(A) consists of all e ∈ A such that e2 = e ≠ 0 and e'2 = e' ≠ 0 ≠ ee' implies ee' = e. 
Sending A to the family (Ae)e∈I(A) determines a category equivalence  
 
          C ∼ FamX(A),                                                                                                            (16.2) 
 
where A is the full subcategory in C with objects all (commutative unitary) K-algebras with 
no non-trivial idempotents, i.e. no elements e with e2 = e and 0 ≠ e ≠ 1. Moreover, the functor 
I : C → X above is a special case of the one defined in the previous section up to the 
equivalence (16.2). Using this fact and Theorem 15.2 we obtain: 
 
Theorem 16.1. Let I : C → X be as above, H : X → C the right adjoint of I defined therefore 
by  
 
          H(X) = K +…+ K = the K-algebra of all maps from X to K,                                     (16.3) 
 
                      coproduct 
                      in C of K 
                      with itself 
                      “X-times” 
 
η and ε the unit and counit of adjunction, and F and Φ the classes of all morphisms in C and 
in X respectively. Then ε : IH → 1X is an isomorphism and Γ = (C,X,I,H,η,ε,F,Φ) is an 
admissible Galois structure. � 
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Next, using Theorem 10.7, we easily prove: 
 
Theorem 16.2. A morphism p : E → B in C, in which B is a field, is a monadic extension if 
and only if E is a non-zero ring. In particular this is the case whenever E is a field. �  
        

Proof. The functor p* : F(B) → F(E), whose monadicity we have to prove for a non-zero E, is 
the same as the functor 
 
  E⊗B(−) : (Commutative unitary B-algebras)op → (Commutative unitary E-algebras)op.  (16.4) 
 
According to Theorem 10.7 it suffices to prove that this functor reflects isomorphisms and 
preserves coequalizers. Moreover, since the coequalizers in the categories involved are the 
same as equalizers of algebras, and since those are calculated via the corresponding equalizers 
of underlying modules, we only need to prove that the functor 
 
          E⊗B(−) : B-modules → E-modules                                                                           (16.5) 
 
reflects isomorphisms and is (left) exact, which is obvious since B is a field. � 
 
Now we are ready to prove: 
 
Theorem 16.3. Let K ⊆ B ⊆ E be finite (=finite-dimensional over B) field extensions and A = 
(A,α) a B-algebra (in particular α : B → A is a ring homomorphism and B acts on A via ba = 
α(b)a). Out of the following three conditions, the first two are always equivalent, and the third 
always follows from them and implies them when B ⊆ E is a Galois extension: 
 

(a) (A,α) belongs to Spl(E,p) (where Spl(E,p) is defined with respect to the Galois structure 
described in Theorem 16.1) with p being the inclusion map B → E considered as a morphism  
E → B in C; 
 

(b) E⊗BA ≈ E×…×E (a finite product of K-algebras = a finite coproduct in C); 
 

(c) A ≈ E1×…×En for some natural n (0 is not excluded), where B ⊆ Ei ⊆ E (i = 1,…,n) (and 
therefore E1,…,En are field extensions of B).  
 

Proof. (a)⇔(b) easily follows, using the equivalence (16.2), from Theorem 16.3 and the fact 
that E⊗BA considered as an object in C is the same as p*(A,α). 
 

(b)⇔(c) ((b)⇒(c) always, and (b)⇐(c) when B ⊆ E is a Galois extension) is well known in 
classical algebra, and we only sketch the proof here: 
 

(b)⇒(c): (b) implies that A has no nilpotent elements. Therefore A ≈ E1×…×En as B-algebras, 
for some field extensions E1,…,En of B, say, by the Wedderburn Theorem. After that in order 
to show that E1,…,En can be chosen among the subextensions of B ⊆ E, it suffices to show 
that each of E1,…,En admits a B-algebra homomorphism into E. This, however, immediately 
follows from E⊗BA ≈ E×…×E and A ≈ E1×…×En.  
 

(c)⇒(b) when B ⊆ E is a Galois extension: Since a finite product of B-algebras satisfying (b) 
itself obviously satisfies (b), we can assume from the beginning that A is a B-subalgebra in E. 
Moreover, since B ⊆ E is a Galois extension, there is a polynomial u ∈ B[x] that splits into 
linear factors u = ∏m

i=1(x − ai) with ai = aj ⇒ i = j, and has B[x]/uB[x]. Therefore 
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          E⊗BA ≈ E⊗B(B[x]/uB[x]) ≈ E[x]/uE[x] ≈ E[x]/(∏m
i=1(x − ai))  

          ≈ ∏m
i=1(E[x]/(x − ai)E[x]) ≈ E×…×E (m times), 

 
as desired. � 
 
In fact the connection with classical Galois theory goes much further, and provides 
categorical proofs for many of its results. Let us mention just two of them that are “almost 
corollaries” of Theorem 8.3: 
 
Theorem 16.4. Let K ⊆ B ⊆ E be finite field extensions and p the inclusion map B → E 
considered as a morphism E → B in C. Then the following conditions are equivalent: 
 

(a) (E,p) belongs to Spl(E,p); 
 

(b) B ⊆ E is a Galois extension. � 
 
Theorem 16.5. Let K ⊆ B be a finite field extensions and A = (A,α) a B-algebra as above. 
Then the following conditions are equivalent: 
 

(a) (A,α) is a covering of B; 
 

(b) there exists a finite field extension B ⊆ E, such that (A,α) belongs to Spl(E,p), where 
Spl(E,p) is as in Theorem 8.3; 
 

(c) there exists a finite Galois field extension B ⊆ E, such that (A,α) belongs to Spl(E,p), 
where Spl(E,p) is as in Theorem 8.3; 
 

(d) A = (A,α) is a commutative separable B-algebra; 
 

(e) A = (A,α) is a finite product of finite separable field extensions of B. �   
 
17. Covering spaces in algebraic topology 
 
The purpose of this section is to present classical covering maps of locally connected 
topological spaces as covering morphisms in the sence of categorical Galois theory.  
 

Therefore we take here C to be the category of locally connected topological spaces and X the 
category of sets. And we define the functor I : C → X by 
 
          I(A) = π0(A) the set of connected components of A.                                                  (17.1) 
 
Sending spaces to the families of their connected components determines a category 
equivalence  
 
          C ∼ FamX(A),                                                                                                            (17.2) 
 
where A is the category of connected locally connected topological spaces. Moreover, the 
functor I : C → X above is a special case of the one defined in Section 15. Using this fact and 
Theorem 15.2 we easily obtain: 
 
Theorem 17.1. Let I : C → X be as above, H : X → C the inclusion functor, η and ε the unit 
and counit of adjunction, F = Étale the class of local homeomorphisms (=étale maps) of 
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locally connected topological spaces, and Φ the class of all morphisms in X. Then  
ε : IH → 1X is an isomorphism and Γ = (C,X,I,H,η,ε,F,Φ) is an admissible Galois structure. � 
 
A brief story of monadic extensions and coverings with respect to this Galois structure is: 
 
Theorem 17.2. A morphism p : E → B in C is a monadic extension if and only if it is a 
surjective local homeomorphism. 
 

Proof. “If”: Assuming that p : E → B is a surjective local homeomorphism, we have to prove 
that the functor (6.1), which we write here as 
 
          p* : Étale(B) → Étale(E),                                                                                         (17.3) 
 
is monadic. We observe: 
 

(i) Since the class of local homeomorphisms is closed under composition the functor (17.3) 
has a left adjoint.  
 

(ii) A morphism f : (A,α) → (A',α') in Étale(B) is an isomorphism if and only if the map 
f : A → A' is bijective; this easily implies that, for a surjective p, the functor (17.3) reflects 
isomorphisms. 
 

(iii) When α : A → B is a local homeomorphism, the local connectedness of B implies the 
local connectedness of A. Therefore Étale(B) can be identified, up to a category equivalence, 
with the topos of sheaves (of sets) over the space B. The same is true for E, and the functor 
(17.3) can be identified with the inverse image functor 
 
          p* : Shv(B) → Shv(E)                                                                                               (17.4) 
 
between the toposes of sheaves. Since the functor (17.4) has a (well-known) right adjoint, 
namely the direct image functor 
 

          p* : Shv(E) → Shv(B),                                                                                              (17.5) 
 
we conclude that it preserves all coequalizers. Indeed, it is easy to show that any left adjoint 
functor preserves all colimits, and in particular all coequalizers.   
 

(iv) The desired monadicity follows from (i), (ii), (iii), and Theorem 10.7.  
 

“Only if”: When (E,p) is a monadic extension, p must be a local homeomorphism by 
Definition 6.1(a) (applied to δ = 1E). Therefore we only need to prove that p is surjective. For, 
consider the objects (B,1B) and (p(E), inclusion) in F(B) = Étale(B); note that (p(E), inclusion) 
is indeed in F(B) since p is open. Since the functor p* reflects isomorphisms and sends the 
canonical map (p(E), inclusion) → (B,1B) to an isomorphism, we must have p(E) = B, as 
desired. � 
 
Lemma 17.3. Suppose B (in C) is connected. Then the following conditions on an object 
(A,α) in F(B) = Étale(B) are equivalent: 
 

(a) (A,α) is a trivial covering of B (in the sense of Definition 14.2(a)); 
 

(b) A is a disjoint union of open subsets, each of which is mapped homeomorphically on B by 
α. 
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Proof. This is an easy corollary of Theorem 15.3. � 
 
Theorem 17.4. The following conditions on an object (A,α) in F(B) = Étale(B) are 
equivalent: 
 

(a) (A,α) is a covering of B (in the sense of Definition 14.2(c)); 
 

(b) every element b in B has an open neighbourhood U for which the pair  
 
          (α−1(U), the map α−1(U) → U induced by α)                                                            (17.6) 
 
is a trivial covering of U (in the sense of Definition 14.2(a)); 
 

(c) the same as (b), but with U required to be connected; 
 

(d) (A,α) is a covering space over B in the classical sense, i.e. every element in B has an open 
neighbourhood whose inverse image is a disjoint union of open subsets, each of which is 
mapped homeomorphically on it by α.  
 

Proof. (a)⇒(b) easily follows from the “only if” part of Theorem 17.2, and (b)⇒(a) can easily 
be deduced from the same theorem and the following simple observation: 
 

For each b in B, let Ub be a chosen open neighbourhood of b, let E be the topological 
coproduct of all these neighbourhoods, and let p : E → B be the map induced by the family of 
inclusion maps Ub → B (for all b in B). Then p is a local homeomorphism. 
 

(b)⇒(c) follows from the local connectedness of B and (c)⇒(b) is trivial.  
 

(c)⇔(d) follows from the local connectedness of B and Lemma 17.3. � 
 
18. Central extensions of groups 
 
The purpose of this section is to present central extensions of groups as covering morphisms 
in the sence of categorical Galois theory.  
 

Accordinly C will denote now the category of groups, X the category of abelian groups, and  
I : C → X the left adjoint of the inclusion X → C, which will plays the role of H. That is: 
 

• From the viewpoint of universal algebra I is the abelianization functor sending groups to 
their quotients determined by the identity xy = yx, we could write 
 
          I(A) = A/R, where R is the congruence generated by {(a,b) ∈ A×A | ab = ba}.        (18.1) 
 
• From the viewpoint of group theory I is to be defined by 
 
          I(A) = A/[A,A],                                                                                                           (18.2) 
 
where [A,A] is the commutator of A with itself.  
• From the viewpoint of homological algebra I is to be defined by 
 
          I(A) = H1(A,Z),                                                                                                           (18.3) 
 
where H1(A,Z) is the first homology group of A with coefficients in the additive group of 
integers, on which A acts trivially. 
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The Galois structure Γ = (C,X,I,H,η,ε,F,Φ) that we fix in this section will have C, X, I, H as 
above, with the canonical η and ε, and F and Φ being the classes of surjective 
homomorphisms of groups and of abelian groups respectively. The morphism ε : IH → 1X is 
obviously an isomorphism here, but the admissibility needs a little proof: 
 
Theorem 18.1. Γ = (C,X,I,H,η,ε,F,Φ) is admissible.  
 

Proof. Consider the pullback (13.3), which now becomes 
 
                                proj2 
          B×B/[B,B]X                           X 
 
        proj1                                        ϕ                                                                           (18.4) 
 
                B                            B/[B,B]. 
                                  ηB 
 
We need to prove that proj2 : B×B/[B,B]X → X has the universal property of the abelianization of 
B×B/[B,B]X, or, equivalently, that the kernel Ker(proj2) of this morphism is contained in 
[B×B/[B,B]X,B×B/[B,B]X]. We observe that any element k in Ker(proj2) is of the form k = (b,1), 
where b is in [B,B], and so we can present it as 
 
          k = ([b1,b'1]…[bn,b'n],1) = ([b1,b'1],1)…([bn,b'n],1).                                                     (18.5) 
 
Since ϕ is surjective, there exist x1,…,xn,x'1,…,x'n in X with ϕ(x1) = b1[B,B], …, 
ϕ(xn) = bn[B,B], ϕ(x'1) = b'1[B,B], …, ϕ(x'n) = b'n[B,B]; and since X is abelian, we have [x1,x'1] 
=…= [xn,x'n] = 1. Therefore 
 
          k = ([b1,b'1],[x1,x'1])…([bn,b'n],[xn,x'n]) = [(b1,x1),(b'1,x'1)]…[(bn,xn),(b'n,x'n)],                (18.6) 
 
which shows that k is in [B×B/[B,B]X, B×B/[B,B]X], as desired. � 
 
Remark 18.2. The surjectivity of ϕ played a crucial role in the proof of Theorem 10.1. 
Indeed, taking X = 0 in (10.4), we would obtain Ker(proj2) ≈ [B,B], but at the same time 
[B×B/[B,B]X, B×B/[B,B]X] ≈ [[B,B],[B,B]] (canonically). � 
 
Next, the monadic extensions: 
 
Theorem 18.3. A morphism p : E → B in C is a monadic extension if and only if it is 
surjective. 
 

Proof. “If”: According to Remark 10.8(b), it suffices to prove that, for a surjective p, the 
functor p* : F(B) → F(E) reflects isomorphisms and preserves coequalizers of reflexive pairs. 
However, it is an easy exercise to show that the coequalizers of reflexive pairs of group 
homomorphisms are calculated as in the category of sets – which reduces the problem to the 
case of sets, where the proof becomes another easy exercise.   
 

The “only if” part follows from Definition 14.1(a) (applied to δ = 1E). � 
 
In order to characterize coverings we will also need the following almost obvious fact: 
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Lemma 18.4. For a pullback diagram 
 
                       u 
          D                       A 
 
       δ                              α                                                                                            (18.7) 
 
          E                       B 
                       v 
 
with α and δ surjective, the conditions (a) and (b) below are related as follows: (a) always 
implies (b), and (b) implies (a) whenever v is surjective. 
 

(a) (A,α) is a central extension of B (i.e. ka = ak for all k in Ker(α) and all a in A); 
 

(b) (D,δ) is a central extension of E. � 
 
– after which we are ready to prove 
 
Theorem 18.5. The following conditions on an object (A,α) in F(B) are equivalent: 
 

(a) (A,α) is a covering of B; 
 

(b) (A,α) is a central extension of B. 
 

Proof. (a)⇒(b) follows from (the “only if” part of) Theorem 18.3 and Lemma 18.4.  
 

(b)⇒(a): As follows from the “if” part of Theorem 18.3, (A,α) is a monadic extension of B. 
Consider the object 
 
          α*(A,α) = (A×BA,proj1)                                                                                             (18.8) 
 
in F(A). It has Ker(proj1) canonically isomorphic to Ker(α), and proj1 is a split epimorphism. 
Being central by Lemma 18.4(a)⇒(b), it is therefore isomorphic to  
 
          α*(A,α) = (A×Ker(α), the first projection),                                                               (18.9) 
 
after which we only need to observe:  
 

The object (18.9) is a trivial covering of A since (Ker(α), Ker(α) → 0) is a trivial covering of 
0, and the class of trivial coverings is pullback stable by Remark 14.3(b). � 
 
19. The fundamental theorem of Galois theory 
 
In this section we formulate and prove the fundamental theorem of categorical Galois theory. 
 

Let Γ = (C,X,I,H,η,ε,F,Φ) be a fixed abstract Galois structure satisfying Convention 5.4. We 
begin by considering various induced adjunctions: 
 

We can obviously look at the category of internal precategories in C as the functor category 
Cτ, where τ is the free category determined by the graph 
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                    p                    d 
                          

          2        m         1         e         0                                                                                      (19.1) 
 
                    q                    c 
 
and the identities de = 1 = ce, dp = cq, dm = dq, and cm = cp as in Definition 11.1. And then 
the category of internal precategories in C becomes nothing but the functor category Cτ. Our 
adjoint functors between C and X induce adjoint functors between C and X, which we will 
display as 
 
          (Iτ,Hτ,ητ,ετ) : Cτ → Xτ.                                                                                              (19.2)                       
 
Using also Fτ = the class of all κ in Cτ with κ0, κ1, and κ2 in F, and the similarly defined Φτ, 
we obtain the induced Galois structure 
 
          Γτ = (Cτ,Xτ,Iτ,Hτ,ητ,ετ,Fτ,Φτ)                                                                                     (19.3) 
 
for internal precategories. After that we take an object P in Cτ, and construct a further induced 
adjunction in the same way as the adjunction (13.2) was constructed out of an object B in C; 
we display it as 
 
          (IP, HP,ηP,εP) : Fτ(P) → Φτ(IP).                                                                                (19.4)                       
 
where we write IP instead of Iτ(P), since Iτ(P) is nothing but the composite of P : τ → C with 
I : C → X. 
 
From Remark 14.3(b) we obtain: 
 
Lemma 19.1. If (Q,κ) is a discrete opfibration over P, in which κ0 is a trivial covering, then 
κ1 and κ2 also are trivial coverings, and IP(Q,κ) is a discrete opfibration over Iτ(P). � 
 
Corollary 19.2. The adjunction (19.4) induces an equivalence between: 
 

(a) the full subcategory in Fτ(P) with objects all (Q,κ) that are discrete opfibrations with κ0 
being a trivial covering, and 
 

(b) the full subcategory in Φτ(Iτ(P)) with objects all objects in it that are discrete opfibrations. 
� 
 
Identifying now discrete opfibrations with actions (see Theorem 11.11), we obtain 
 
Theorem 19.3. The adjunction (19.4) induces an equivalence between: 
 

(a) the full subcategory Triv(CP) in CP with objects all A = (A0,π,ξ) in CP, in which π is a 
trivial covering; 
 

(b) the full subcategory XIP∩Φ in XIP with objects all X = (X0,π,ξ) in XP, in which π is in Φ. � 
 
– after which we are ready to prove: 
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Theorem 19.4. (“The fundamental theorem of Galois theory”) Let Γ = (C,X,I,H,η,ε,F,Φ) 
be a fixed abstract Galois structure satisfying Convention 5.4 as above, and let (E,p) be a 
monadic extension of an object B in C. Then sending an object (A,α) in Spl(E,p) to the triple 
(I(E×BA),I(proj1),I(proj1)×I(proj2)), determines a category equivalence  
 
          Spl(E,p) → XI(Eq(p))∩Φ                                                                                              (19.5) 
 
(denoting by proji (i = 1, 2) suitable projections, in particular using proj1 for both E×BA → E 
and E×BE → E, and using the notation of Theorem 19.3 for P = Eq(p)). 
 
Proof. All we need is to consider the diagram 
 
             F(B)             F(E)T ≈ CEq(p)∩F 
 
                                                                                                                                             (19.6) 
 
          Spl(E,p)                      Triv(CEq(p)) ∼ XI(Eq(p))∩Φ, 
 
in which: 
 

(i) T is the monad determined by the monadic functor p* : F(B) → F(E), and  
F(B) → F(E)T is the comparison functor, which is a category equivalence since p* is monadic. 
 

(ii) F(E)T ≈ CEq(p)∩F is the isomorphism established in the same way as the isomorphism 
(12.7) in Theorem 2.1. It therefore sends a T-algebra (D,δ,ζ) to the triple (D,δ,ζ⎯δ), where δ = 
〈proj1,proj3〉 : (E×(p,p)E)×(proj2,δ)D → E×(p,pδ)D as in Theorem 12.1. 
 

(iii) Calculating the composite F(B) → F(E)T ≈ CEq(p)∩F we easily conclude that it sends an 
object (A,α) to the triple (E×BA,proj1,proj1×proj2), where proji (i = 1, 2) are the same as in the 
formulation of the theorem. 
 

(iv) The vertical arrows are the inclusion functors. 
 

(v) (A,α) belongs to Spl(E,p) exactly when (E×BA,proj1) is a trivial covering. Therefore (iii) 
tells us that the composite F(B) → F(E)T ≈ CEq(p)∩F determines the dotted arrow in (11.4), 
and that that arrow is an equivalence of categories. 
 

(vi) Triv(CEq(p)) ∼ XI(Eq(p))∩Φ is the equivalence described in Theorem 11.3 (for P = Eq(p)). 
 

(vii) The desired equivalence is the composite of the equivalences Spl(E,p) ∼ Triv(CEq(p)) and 
Triv(CEq(p)) ∼ XI(Eq(p))∩Φ. � 
 
Remark 19.5. (a) According to this theorem it is good to write 
 
          Gal(E,p) = I(Eq(p)),                                                                                                   (19.7) 
 
and call this internal precategory the Galois pregroupoid of the monadic extension (E,p). Here 
“pregroupoid” (rather than “precategory”) refers to a certain extra structure, that makes 
I(Eq(p)) a groupoid whenever it is a category. And in fact it is a groupoid whenever (E,p) is 
normal, which means that (E,p) belongs to Spl(E,p). Other reasonable synonyms of “normal” 
are Galois covering and regular covering. Furthermore, for a normal (E,p), I(Eq(p)) is a group 
if and only if E is connected, i.e. I(E) is a terminal object in X. 
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(b) There is also a reasonable way to define fundamental groupoids as “the largest” Galois 
groupoids. � 
 
20. Back to the classical cases 
 
In this section we consider the simplest applications the fundamental theorem of categorical 
Galois theory. 
 

The classical form of the fundamental theorem of Galois theory is usually formulated as 
follows: 
 
Theorem 20.1. Let B ⊆ E be a finite Galois field extension, and AutB(E) its Galois group. 
Then: 
 

(a) The correspondences 
 
          F |→ AutF(E) and H |→ EH = {x ∈ E | g ∈ H ⇒ g(x) = x}                                        (20.1) 
 
determine inverse to each other and inclusion reversing bijections between the lattice 
Sub(E/B) of field subextensions of B ⊆ E, and the lattice Sub(AutB(E)) of subgroups in 
AutB(E). 
 

(b) If B ⊆ F is a field subextension of B ⊆ E, then every B-algebra homomorphism from F to 
E extends to a B-algebra automorphism of E. 
 

(c) A field subextension B ⊆ F of B ⊆ E is a Galois extension if and only if its corresponding 
subgroup AutF(E) is a normal subgroup in AutB(E). In this case every B-algebra 
automorphism of E restricts to a B-algebra automorphism of F, yielding a short exact 
sequence  
 
          0 → AutF(E) → AutB(E) → AutB(F) → 0                                                                 (20.2) 
 
of groups. � 
 
How does this theorem follow from Theorem 19.4? 
 
Answering this question requires a number of simple observations: 
 

(i) Every statement of Theorem 20.1 is a statement about purely-categorical properties of the 
category Sub(E/B) of subextensions of the field extension B ⊆ E. The only thing that needs an 
explanation here, is that E itself can be defined categorically as a special object in Sub(E/B). 
For, just observe that it is the only weak terminal object (i.e. the only object that admits 
morphisms from all other objects into it). 
 

(ii) Moreover, it turns out that the category Sub(E/B)op is equivalent to the category of 
transitive (=one-orbit) AutB(E)-sets – which is known as Grothendieck’s form of the 
fundamental theorem of Galois theory – and every statement of Theorem 20.1 follows from 
this fact. 
 

(iii) Furthermore, it is sufficient to know that Sub(E/B)op is equivalent to the category of 
transitive G-sets for some monoid G, because this fact itself implies that G is isomorphic to 
AutB(E). Indeed: 
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• We know that Sub(E/B) has a unique weakly terminal object, namely E, and that the 
endomorphism monoid of this object is AutB(E).  
• On the other hand G acts on itself via its multiplication, and this object is weakly initial in 
the category of transitive G-sets; and its endomorphism monoid is isomorphic to G. 
• Therefore the equivalence of Sub(E/B)op to the category of transitive G-sets implies that G is 
isomorphic to AutB(E). 
 

(iv) Let us now apply Theorem 19.4 to the situation considered in Section 16. As follows 
from the equivalence (a)⇔(c) in Theorem 16.3, which assumes that B ⊆ E is a Galois 
extension and p : E → B is the inclusion map B → E, in that situation we have 
 
          Spl(E,p) ∼ FamX(Sub(E/B)op).                                                                                   (20.3) 
 
At the same time Theorem 19.4 tells us that the category Spl(E,p) is equivalent to the category 
of finite G-sets for some finite monoid G – namely for G = L(I(Eq(p))), where L is the functor 
(11.9), and L(I(Eq(p))) is indeed a monoid since I(E) has only one element. 
 

(v) As follows from (iv), Sub(E/B)op must be equivalent to the category of transitive  
G-sets, as desired. Therefore Theorem 20.1 indeed follows from Theorem 19.4. 
   
The situation with covering spaces is very similar: many standard text books in algebraic 
topology show how the connected covering spaces of a “good” space B are “classified” via 
subgroups of the fundamental group of B by proving a theorem similar to Theorem 12.1, 
usually not showing the categorical result behind, which is: 
 
Theorem 20.2. Let B be a connected locally connected topological space, admitting a 
universal covering space (E,p) over it. Then the category of covering spaces over B is 
equivalent to the category of Aut(E,p)-sets.  
 
– and this theorem can easily be obtained as a corollary of Theorem 19.4, using the results of 
Section 17. Recall, however, that what is called a universal covering space of B is in fact a 
weakly initial object in the category of non-empty covering spaces over B, and that 
“weakness” can be avoided by using pointed spaces. 
 
Applying Theorem 19.4 to the situation considered in Section 18, we obtain, in particular, a 
description of the category Centr(B) of central extension of an arbitrary group B. The full 
explanation would involve some homological algebra and internal category theory (in “nice” 
categories), which would take us too far. Therefore let us just mention that it becomes 
especially simple when B is perfect, i.e. when [B,B] = B: in this case 
 
         Centr(B) ∼ ((Abelian groups)↓H2(A,Z)),                                                                    (20.4) 
 
which presents the second homology group H2(A,Z) as a certain “Galois group”, and implies 
the well-known result saying that every perfect group has a universal central extension. 
 
Finally, let us mention one less familiar examples of Galois theories very briefly; being less 
familiar it was, however, the original motivating example for categorical Galois theory:  
 
Example 20.3. The system (C,X,I,H,η,ε,F,Φ) described below is an admissible Galois 
structure in which ε is an isomorphism: 
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• C is the opposite category of commutative unitary rings;  
• X is the opposite category of (unitary) Boolean rings, or, equivalently, the opposite category 
of Boolean algebras; up to a category equivalence we can identify X with the category of 
Stone spaces (=profinite topological spaces = compact totally disconnected Hausdorff spaces 
= compact 0-dimensional Hausdorff spaces = compact topological spaces in which every two 
points can be separated by a closed-and-open subset);  
• I : C → X is sending rings to the Boolean rings of their idempotents, or, considering X as 
the category of Stone spaces, I is defined by 
 
          I(A) = Boolean spectrum of A = Stone space of the Boolean algebra of 
          idempotents in A = the space of connected components of the Zariski                    (20.5) 
          spectrum of A; 
 
• H : X → C is defined by 
 
          H(X) = hom(X,Z),                                                                                                      (20.6) 
 
where X is any object in X considered as a topological space, Z is the ring of integers 
equipped with the discrete topology, and hom(X,Z) is set of continuous maps X → Z with the 
ring structure induced by the ring structure of Z;  
 

• η and ε are defined accordingly, and F and Φ are the classes of all morphisms in C and X 
respectively. 
 

The covering morphisms with respect to this Galois structure are the same as what A. R. 
Magid calls componentially locally strongy separable algebras; they are defined as follows: 
 

(a) a commutative (unitary) algebra S over a commutative (unitary) ring R is said to be 
separable if it is projective as an S⊗RS-module; 
 

(b) a commutative separable R-algebra S is said to be strongly separable if it is projective as 
an R-module; 
 

(c) an R-algebra S is said to be locally strongly separable if every finite subset in it is 
contained in a strongly separable R-subalgebra; 
 

(d) a commutative R-algebra S is said to be componentially locally strongy separable if its all 
Boolean localizations Sx are locally strongly separable Rx-algebras; here, for a maximal ideal x 
of the Boolean ring of idempotents in R, the Boolean localizations Sx is defined as the quotient 
algebra S/Sx. 
 

And these componentially locally strongy separable algebras were the most general algebras 
involved in Magid’s separable Galois theory of commutative rings. For a field extension  
B ⊆ E we have: 
 
          E is a separable B-algebra ⇔ E is a strongly separable B-algebra  
          ⇔ E is a finite separable extension of B. �                                                               (20.7) 
 
A1. Remarks on functors and natural transformations 
 
A1.1. Natural transformations can be composed vercally and horizontally, and these 
operations agree via the middle interchange law. For, consider the diagram 
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                            F                                  G 
                          

                        σ                                    τ 
          A               F '               B               G'               C                                                       (A1.1)            
                        σ'                                   τ' 
 
                            F ''                                 G'' 
 
 of categories, functors, and natural transformations. While the vertical composite 
 
          σ'σ : F → F '' is defined by (σ'σ)A = σ'AσA : F(A) → F ''(A),                                    (A1.2)  
 
the vertical composite  
 
     τσ : GF → G'F ' is defined by (τσ)A = G'(σA)τF(A) = τF '(A)G(σA) : GF(A) → G'F '(A)    (A1.3) 
 
(in both cases for all objects A in A); here the equality G'(σA)τF(A) = τF '(A)G(σA) is simply the 
commutativity of the naturality square 
 
                           G(σA) 
          GF(A)                       GF '(A) 
 
      τF(A)                                     τF '(A)                                                                                   (A1.4)                         
 
          G'F(A)                      G'F '(A) 
                           G'(σA) 
 
Furthermore, the rows and the columns of (A1.4) are in fact components of the natural 
transformations 
 
          Gσ : GF → GF ' defined by (Gσ)A = G(σA)                                                              (A1.5) 
and 
          τF : GF → G'F defined by (τF)A = τF(A)                                                                   (A1.6) 
 
respectively. Using these natural transformations, the commutativity of (A1.4) for all A in A 
can be expressed as the commutativity of 
 
                        Gσ 
          GF                       GF ' 
 
      τF                                 τF '                                                                                            (A1.7) 
 
          G'F                      G'F ' 
                        G'σ 
 
We also have 
 
           
          Gσ = 1Gσ and τF = τ1F,                                                                                            (A1.8) 
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and the commutativity of (A1.7), written as the equality 
 
          (1G'σ)(τ1F) = (τ1F ')(1Gσ),                                                                                          (A1.9) 
 
can be deduced from the middle interchange law 
 
          (τ'τ)(σ'σ) = (τ'σ')(τσ),                                                                                             (A1.10) 
 
written here for the situation (A1.1). Indeed, applying (A1.10) to 
 
                            F                                  G 
                          

                        1F                                   τ 

          A                F                B               G'               C                  
                        σ                                  1G' 
 
                            F '                                 G' 
and 
                            F                                  G 
                          

                        σ                                  1G 

          A                F '                B              G                C                   
                       1F '                                   τ 
 
                            F '                                 G' 
 
we obtain 
 
          (1G'τ)(σ1F) = (1G'σ)(τ1F) and (τ1G)(1F 'σ) = (τ1F ')(1Gσ)                                         (A1.11) 
 
respectively, which gives 
 
          (1G'σ)(τ1F) = (1G'τ)(σ1F) = τσ = (τ1G)(1F 'σ) = (τ1F ')(1Gσ)                                    (A1.12) 
 
On the other hand the middle interchange law (A1.10) can itself be obtained using the 
appropriate commutative diagrams of the form (A1.7), which is easy to show using the 
diagram 
 
                        Gσ                        Gσ' 
          GF                       GF '                       GF '' 
 
      τF                                 τF '                        τF ''                                                                                      
 
          G'F                      G'F '                      G'F ''                                                               (A1.13) 
                        G'σ                        G'σ' 
      τ'F                                 τ'F '                       τ'F ''                                                                      
 
          G''F                     G''F '                      G''F '' 
                        G''σ                       G''σ' 
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whose four small squares are of the form (A1.7) (for various functors involved): one way of 
doing it is to write 
 
     (τ'τ)(σ'σ) = ((τ'τ)F '')(G(σ'σ)) (by the definition of the horizontal composite of τ'τ with σ'σ)  
     = (τ'F '')(τF '')(Gσ')(Gσ) (by obvious properties of the “usual” composition) 
     = (τ'F '')(G'σ')(τF ')(Gσ) (by commutativity of the right-hand top square in (A1.13) 
     = (τ'σ')(τσ) (by the definition of the horizontal composites of τ' with σ' and of τ with σ). 
 
Note, however, that good understanding of all these calculations requires seeing horizontal 
composition as functors 
 
          Cat(B,C) × Cat(A,B) → Cat(A,C),                                                                      (A1.14) 
 
where Cat(A,B) denotes the category of all functors A → B, etc. 
 
A1.2. The hom functors. For a fixed object A in a category X one can form the covariant 
hom functor 
 
          homX(A,−) : X → Sets, sending a morphism f : X → Y of X to the map 
          homX(A,f) : homX(A,X) → homX(A,Y) defined by α |→ fα                                    (A1.15) 
 
and the contravariant hom functor 
 
          homX(−,A) : Xop → Sets, sending a morphism f : X → Y of X to the map 
          homX(f,A) : homX(Y,A) → homX(X,A) defined by α |→ αf.                                   (A1.16) 
 
Moreover, these two constructions agree in the sense that one can also form the functor 
 
          hom : Xop×X → Sets, sending a morphism (f,f ') : (X,X ') → (Y,Y ') of Xop×X  
          to the map homX(f,f ') : homX(X,X ') → homX(Y,Y ') defined by ϕ |→ f 'ϕf,            (A1.17) 
 
and we have 
 
          homX(A,f) = homX(1A,f) and homX(f,A) = homX(f,1A)                                            (A1.18) 
 
in the situations (A1.15) and (A1.16), and 
 
          homX(f,f ') = homX(Y,f ')homX(f,X ') = homX(f,Y ')homX(X,f ')                                 (A1.19)   
 
in the situation (A1.17). 
 

Note that we use “covariant hom functor” and “contravariant hom functor” only as convenient 
expressions, not as instances of “covariant/contravariant functors” – assuming the convention 
that there are only functors that are always covariant, and a “contravariant functor”, say, from 
A to B, should either be seen as a functor Aop → B or as functor A → Bop (and these two 
functors are dual to each other). For instance it is important that the contravariant hom functor 
homX(−,A) is defined as a functor Xop → Sets, and not as a functor X → Setsop.   
 
A2. Limits and colimits.  
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A2.1. General case. For a graph G = 
 
                        d 
          G1                      G0                                                                                                    (A2.1) 
                        c 
 
we will write, as usually, f : x → y when f is in G1 and d(f) = x and c(f) = y. For a category C 
and a diagram D : G → C a cone over D is a system (C,ϕ) = (C,(ϕx : C → D(x))x∈G0), in which 
C is an object in C, and ϕx : C → D(x) (x ∈ G0) morphisms in C, making the diagram 
   
                                  C 
 
                    ϕx                        ϕy                                                                                         (A2.2) 
 
                         
          D(x)                                    D(y)                        
                                D(f) 
 
commute for every f : x → y in G. A morphism γ : (C,ϕ) → (C',ϕ') of cones over D is a 
morphism γ : C → C' in C, making the diagram 
 
                               γ 
          C                                      C' 
 
                ϕx                          ϕy                                                                                           (A2.3) 
                         
                            D(x)                                                            
 
commute for every x in G. The category of cones over D will be denoted by Con(D), and its 
terminal object  
 
          lim D = (lim D,π)                                                                                                      (A2.4) 
 
(provided it exists) is called the limit of D. The morphisms πx are then called the limit 
projections. There are many important special cases, some of which are listed below. 
 
A2.2. Products. In the notation above, when G1 is empty, and therefore the graph G can be 
identified with the set G0, we write    
 
          lim D = ∏x∈GD(x) = (∏x∈GD(x),π)                                                                           (A2.5) 
 
and call this limit the product of the family (D(x))x∈G. In particular, it is easy to that: 
 

• When G is empty, ∏x∈GD(x) is nothing but the terminal object in C. 
• When G = {x} is a one-element set, ∏x∈GD(x) = D(x). 
• When G has (exactly) two elements, whose images under D are A and B, we have  
∏x∈GD(x) = A×B. 
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And more generally, when G has n elements, whose images under D are A1, …, An, it is 
convenient to write ∏x∈GD(x) = A1×…×An. 
 
A2.3. Infima. If C is an ordered set considered as a category, then for every  
D : G → C we have 
 
          lim D = ∏x∈G0D(x) = Λx∈G0D(x) = inf{D(x) | x ∈ G0},                                             (A2.6) 
 
i.e. lim D is the infimum of the set {D(x) | x ∈ G0} in C. 
 
A2.4. Equalizers. Let G be a graph that has two objects x and y, and two morphisms from x to 
y, and let D be the diagram sending those two morphisms to 
 
                       f 
          A                      B                                                                                                       (A2.7) 
                       g 
 
Then to give a cone over D is to give a morphism h : X → A with fh = gh. Therefore the limit 
of D can be identified with a pair (E,e), in which e : E → A is a morphism in C such that:  
 

(a) fe = ge; 
  

(b) if fh = gh as above, then there exists a unique morphism u : X → E with eu = h. 
 

Such a pair (E,e) is called the equalizer of the pair (f,g). 
 
A2.5. Pullbacks. Let G be a graph that has three objects x, y, and z, one morphism from x to z, 
and one morphism from y to z, and let D be the diagram sending those two morphisms to 
 
                                  B 
                                                         
                                       g                                                                                                   (A2.8) 
 
          A                      C                       
                       f                         
 
Then to give a cone over D is to give a morphisms h : X → A and k : X → B with fh = gk. 
Therefore the limit of D can be identified with a triple (P,p,q), in which p : P → A and  
q : Q → B are morphisms in C such that:  
 

(a) fp = gq; 
  

(b) if fh = gk as above, then there exists a unique morphism u : X → P with pu = h and qu = k. 
 

As suggested by the display 
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          X                 k 
              u 
                    P                      B                       
           h                    q                         
                        p                      g                                                                                          (A2.9) 
 
                    A                      C,                       
                                 f                         
 
the limit of D is called the pullback of f and g. One also says that: 
 

• the square formed by f, g, p, q is a pullback square, or a cartesian square; 
• p is a pullback of g along f, and q is a pullback of f along g; 
• P is a fibred product of (A,f) and (B,g) (since indeed, (P,fp) = (P,gq) is the product of (A,f) 
and (B,g) in the category (C↓C); another good reason is that, say, for C = Sets, it turnes out 
that the fibres of fp = gq are the products of the corresponding fibres of f and g). One also 
writes P = A×(f,g)B = A×CB.  
 
A2.6. Examples of limits. In many concrete categories, including Sets, all varieties of 
universal algebras, and the category of topological spaces, limits can be constructed as 
follows: the products are the same as the usual cartesian products, and then 
 
          lim D = {(ax)x∈G0 ∈ ∏x∈G0D(x) | D(f)(ax) = ay for each f : x → y in G},                 (A2.10) 
           
in the notation above, with πx : lim D → D(x) being induced by the corresponding usual 
product projection for each x in G0. In particular the equalizer of a pair (A2.7) of parallel 
morphisms  in C can be identified with  
 
          {a ∈ A | f(a) = g(a)},                                                                                               (A2.11)   
 
and for the pullback in (A2.9) we can write 
 
          A×(f,g)B = {(a,b) ∈ A×B | f(a) = g(b)}                                                                     (A2.12) 
 
A2.7. Colimits. The colimit of a diagram D : G → C is the same as the limit of the dual 
diagram Dop : Gop → Cop. That is, the notion of colimit is simply dual to the notion of limit. 
And all special limits above have their dual versions: coproducts are dual to products, 
coequalizers to equalizers, and pushouts to pullbacks. The standard notation is: 
 

• colim D – for the colimit of a diagram D;  

• ∑x∈GD(x), or ∐x∈GD(x) – for the coproduct of the family (D(x))x∈G; 
• A+B = A∐B for the coproduct of A and B, and accordingly for pushouts. 
 

However the constructions of colimits in familiar categories are usually more complicated 
than those of limits. When we say that limits in varieties of universal algebras and in the 
category of topological spaces are “constructed in the same way as in the category of sets”, it 
first of all means that the forgetful functors from all these categories to sets preserve limits (in 
the obvious sense). This, however, is usually not the case for colimits. Say, for a variety C of 
universal algebras, the colimit of a diagram D : G → C can be constructed in several steps as 
follows: 

 60



 

• we take A to the free algebra on the disjoint union of all D(x) (x ∈ G0); 
• define the congruence ~ on A as the smallest congruence E for which the composite of the 
canonical maps D(x) → A and A → A/E is a homomorphism of algebras; 
• then one can show that A/~ becomes the colimit of D. 
 
A3. Galois connections 
 
A Galois connection between ordered sets L and M is a pair of maps 
 
          L                      M, both written as x |→ x*,                                                               (A3.1) 
 
and satisfying the following conditions: 
 
          x ≤ y ⇒ y* ≤ x* for all x and y in L and for all x and y in M;                                   (A3.2) 
          x ≤ x** for all x in L and for all x in M.                                                                    (A3.3) 
 
That is, a Galois connection between L and M is nothing but an adjunction L → Mop, or, 
equivalently, an adjunction M → Lop. And just as any adjunction X → A determines a monad 
on X, any Galois connection above determines closure operators on L and on M, both given 
by 
 
         c(x) = x**.                                                                                                                  (A3.4) 
 
Let us recall here that in general a closure operator on ordered sets is unary operation c 
satisfying the following conditions: 
 
          x ≤ y ⇒ c(x) ≤ c(y); 
          x ≤ c(x);                                                                                                                     (A3.5) 
          cc(x) = c(x). 
 
And if c is defined via a Galois connection as above, then the conditions (A3.5) easily follow 
from (A3.2) and (A3.3) of course; the crucial observation is the equality 
 
          x*** = x*,                                                                                                                 (A3.6) 
 
in which x* ≤ x*** by (A3.3) applied to x*, and x*** ≤ x* by (A3.2) applied to (A3.3). 
 

As usually, an element x is called closed (under a given closure operator c) if c(x) = x. From 
the equality (A3.6) we easily conclude: 
 
Theorem A3.1. Any Galois connection (A3.1) induces inverse to each other bijections 
between the set of closed elements in L and the set of closed elements in M. � 
 
When L and M are power sets ordered by inclusion, the Galois connections between L and M 
are nothing but binary relations between the ground sets. More precisely, we have: 
 
Theorem A3.2. Let X and Y be arbitrary sets and P(X) and P(Y) their power sets. Then: 
 

(a) For any Galois connection between P(X) and P(Y), and x in X and y in Y, we have:  
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          x ∈ {y}* ⇔ y ∈ {x}*                                                                                               (A3.7) 
 
(b) Associating to a Galois connection between P(X) and P(Y) the binary relation α ⊆ X×Y 
defined by  
 
          α = {(x,y) | x ∈ {y}*} = {(x,y) | y ∈ {x}*}                                                               (A3.8) 
 
determined a bijection from the set of all Galois connections between P(X) and P(Y) and 
power set P(X×Y). The inverse bijection sends α ⊆ X×Y to the Galois connection between 
P(X) and P(Y) defined by 
 
          A* = {y ∈ Y | a ∈ A ⇒ (a,y) ∈ α} for A ⊆ X,                                                          (A3.9) 
          B* = {x ∈ X | b ∈ B ⇒ (x,b) ∈ α} for B ⊆ Y.                                                        (A3.10) 
 
Proof. (a): We have 
 
          x ∈ {y}* ⇔ {x} ⊆ {y}* ⇒ {y}** ⊆ {x}* (by (A3.2)) 
          ⇒ {y} ⊆ {x}* (by (A3.3)) 
          ⇔ y ∈ {x}*. 
 
Therefore x ∈ {y}* ⇒ y ∈ {x}*. Similarly (and “symmetrically”) the converse implication 
also holds. 
 

(b): It is easy to see that (A3.9) and (A3.10) indeed define a Galois connection. That is, we 
have maps 
 
                        
          Galois connections            ϕ 
          between                                          P(X×Y)                                                             (A3.11) 
          P(X) and P(Y)                    ψ                                                             
                        
 
sending Galois connections to the corresponding binary relations defined by (A3.8) and 
sending binary relations to the corresponding Galois connections defined by (A3.9) and 
(A3.10), and we have to show that ψϕ and ϕψ are the identity maps. 
 

To show that ψϕ is the identity map is to show that, for every Galois connection between P(X) 
and P(Y), we have 
 
          A* = {y ∈ Y | a ∈ A ⇒ y ∈ {a}*} for A ⊆ X,                                                          
          B* = {x ∈ X | b ∈ B ⇒ x ∈ {b}*} for B ⊆ Y.                                                          
 
or, equivalently, to show that 
 

          A* = ∩a∈A{a}* for A ⊆ X,                                                                                     (A3.12) 

          B* = ∩b∈B{b}* for B ⊆ Y.                                                                                     (A3.13) 
 
We have:  
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          y ∈ A* ⇔ ∀a∈A((a,y) ∈ α) ⇔ ∀a∈A(y ∈ {a}*) ⇔ y ∈ ∩a∈A{a}*, 
 
which proves (A3.12), and (A3.13) can be proved similarly. 
 

To show that ϕψ is the identity map is (according to (A3.8)) to show that, for every binary 
relation α ⊆ X×Y, we have 
 
          α = {(x,y) | x ∈ {y}*}, where {y}* = {x ∈ X | (x,y) ∈ α}, 
 
i.e. 
 
          α = {(x,y) | (x,y) ∈ α},  
 
which is trivial. � 
 
Remark A3.3. To construct a closure operator out of a Galois connection via (A3.4) is a 
special case of constructing a monad out of an adjunction. But are there also general theorems 
about adjoint functors that would give Theorems A3.1 and A3.2 as special cases? Yes, but 
they are far more sophisticated and we shall not need them here. �  
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