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Chapter 1

Homology of Lie algebras of

matrices

Theorem 1.1 (Loday-Quillen, Tsygan). Let k be a characteristic 0 field, A an associative
unital k-algebra. Then

H•(gl(A)) ≃ Λ(HC•−1(A)). (1.1)

On the left hand side of isomorphism (1.1) we have matrices of any size, while on the
right hand side there are no matrices, and the computations are easier.

There are generalizations of the theorem (1.1) for Lie algebras so(A) and sp(A). Also,
if instad of algebra we take an operad, then on the right hand side will be so called graph
homology.

1.1 Leibniz algebras

Definition 1.2. A Leibniz (right) algebra over k is an algebra A with bracket

[−,−] : A ⊗ A → A,

such that [−, z] is a derivation for each z ∈ A, that is

[[x, y], z] = [[x, z], y] + [x, [y, z]].

Definition 1.3. A Lie algebra is a Leibniz algebra such that

[x, y] = −[y, x].

Under this symmetry property, the Leibniz relation is equivalent to Jacobi relation.

There is a chain complex associated to a Leibniz algebra g:

CL•(g) : . . . → g⊗n d
−→ g⊗(n−1) d

−→ . . .
d
−→ g

0
−→ k

CLn(g) = g⊗(n−1), d : CLn+1(g) → CLn(g)

d(x1, . . . , xn) :=
∑

1≤i<j≤n

(−1)j(x1, . . . , [xi, xj ], xi+1, . . . , x̂j , . . . , xn).

Lemma 1.4. The map d is a differential, that is d2 = 0.
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Proof. We will check only the composition

g⊗3 d // g⊗2 d // g
x ⊗ y � // [x, y]

x ⊗ y ⊗ z � // −[x, z] ⊗ y − x ⊗ [y, z] + [x, y] ⊗ z

In this case d2 = 0 is equivalent to Leibniz relation. The general case is analogous.

Definition 1.5. The Leibniz homology of the Leibniz algebra g is

HL•(g) := H•(CL•(g), d).

When g is a Lie algebra, then one can pass to the quotient by the action of symmetric
group (with signature)

g⊗n
։ Λng.

Then d also passes to the quotient and one obtains a Chevalley-Eilenberg chain complex of
g:

C•(g) : . . . → Λng
d
−→ Λn−1g

d
−→ . . .

d
−→ g

0
−→ k

Cn(g) = Λn−1g, d : Cn+1(g) → Cn(g)

d(x1, . . . , xn) :=
∑

1≤i<j≤n

(−1)i+j−1[xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xn.

For a Lie algebra g we define a Lie algebra homology:

H•(g) := H•(C•(g), d).

There is a map HL•(g) → H•(g), which is not an isomorphism in general. For example if g is
abelian, then the boundary in the Leibniz and Chevalley-Eilenberg complex is 0, so we have

HLn(g) = g⊗n

Hn(g) = Λng

Also if g is a simple Lie algebra, then HLn(g) = 0, for n ≥ 1, but Hn(g) does not have to be
0 for n 6= 1.

Let g be a Lie algebra, and g ∈ g. Then g acts on g⊗n

[g1 ⊗ · · · ⊗ gn, g] =
n∑

i=1

g1 ⊗ · · · ⊗ [gi, g] ⊗ · · · ⊗ gn.

Proposition 1.6. This action is compatible with the boundary map d and it is zero on H•(g).

Proof. The first part is easy. For the second part we construct for y ∈ g a map

σ(y) : Λng → Λn+1g

α 7→ (−1)nα ∧ y.

Then σ(y) is a homotopy from conjugation to zero map, that is

dσ(y) + σ(y)d = [−, y].

4



Proposition 1.7. Let g be a Lie algebra, and h be a reductive sub-Lie algebra of g. Then
the surjective map

(Λng) ։ (Λng)h

induces an isomorphism on homology

H•(g) ≃ H•((Λ
ng)h, d).

1.2 Computation of Lie algebra homology H•(gl(A))

Let k be a field, A an associative unital algebra over k. Denote by Mr(A) the algebra of
r × r matrices with coefficients in A, and by glr(A) the same space, but with its Lie algebra
structure given by [α, β] = αβ−βα. There is an inclusion of Lie algebras glr(A) →֒ glr+1(A),

α 7→

(
α 0
0 0

)
,

but it does not preserve the identity in Mr(A). With respect to these inclusions we define
gl(A) :=

⋃
r glr(A), the Lie algebra of matrices over A. Our aim is to compute H•(gl(A)) =

lim
−→r

H•(glr(A)), but unfortunately we cannot compute H•(glr(A)).

Proof. (of the theorem (1.1)) The strategy of the proof of theorem (1.1) can be summarized
in the following four steps:

1. Koszul trick.

2. Coinvariant theory.

3. Hopf-Borel (type) theorem.

4. Computation of primitive part.

The idea is to prove that the composition of the following maps is an quasi-isomorphism

(gl(A)⊗n)Sn����
((gl(A)⊗n)Sn)sl(k)

((gl(k)⊗n ⊗ A⊗n)sl(k))Sn

((gl(k)⊗n)sl(k) ⊗ A⊗n)Sn

(k[Sn] ⊗ A⊗n)Sn��
Λ((k[Un] ⊗ A⊗n)Sn)��

Λ(A⊗n/(1 − t))
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where Un denotes the set of permutations with only one cycle, and A⊗•/1 − t is the Connes
complex computing cyclic homology.

1. The algebra slr(k) is reductive, (glr(A)⊗n)Sn is an slr(k)-module, and we can consider
the projection on the component corresponding to the trivial representation

K ֌ (glr(A)⊗n)Sn ։ ((glr(A)⊗n)Sn)slr(k).

The kernel K has trivial homology, so the projection is a quasi-isomorphism.

2. There is an isomorphism glr(A) ≃ glr(k) ⊗ A which can be proved by decomposing a
matrix with entries in A into the elementary matrices Ea

ij , having one nonzero entry a
in the place (i, j), that is

r∑

i,j=1

E
aij

ij =
r∑

i,j=1

E1
ij ⊗ aij.

From this we derive

(gl(A)⊗n)slr(k) = (glr(k) ⊗ A⊗n)slr(k) = (glr(k)⊗n)slr(k) ⊗ A⊗n.

Now we use

Theorem 1.8. When k is a characteristic 0 field there is an isomorphism of Sn-modules

(glr(k)⊗n)slr(k) ≃ k[Sn].

Proof. The isomorphism is given by

α = α1 ⊗ · · · ⊗ αn 7→
∑

σ∈Sn

T (σ)(α)︸ ︷︷ ︸
∈k

σ,

where for sg ∈ Sn which is decomposed into cycles (i1 . . . ik)(j1 . . . jl)(. . .) . . . we define
a map T (σ) : (glr)

⊗n → k by

T (σ)(α) = Tr(αi1 . . . αik)Tr(αj1 . . . αjl
)Tr(. . .) . . . ,

which is a product of finite number of elements in k. From the trace property Tr(ab) =
Tr(ba) we know that T (σ) is well defined.

Observe that
E1

i1i2
⊗ E1

i2i3
⊗ · · · ⊗ E1

ini1
7→ (12 . . . n).

The action of Sn on k[Sn]⊗A⊗n is conjugation in k[Sn], place permutation on A⊗n and
multiplication by sign.

3. The diagonal map g
∆
−→ g× g induces a graded cocommutative coproduct on homology

H•(g) → H•(g × g) = H•⊗H•(g). For g = gl(A) there is a map

gl(A) × gl(A)
⊕
−→ gl(A),

which we can schematically describe as







∗ ∗ ∗ . . .
∗ ∗ ∗ . . .
. . . . . . . . . . . .


 ,




⋆ ⋆ ⋆ . . .
⋆ ⋆ ⋆ . . .
. . . . . . . . . . . .





 7→




∗ 0 ∗ 0 ∗ 0 . . .
0 ⋆ 0 ⋆ 0 ⋆ . . .
∗ 0 ∗ 0 ∗ 0 . . .
0 ⋆ 0 ⋆ 0 ⋆ . . .
. . . . . . . . . . . . . . . . . . . . .



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It induces a graded cocommutative product.

H•(gl(A)) ⊗ H•(gl(A))
µ=⊕∗
−−−−→ H•(gl(A))

Theorem 1.9. H•(gl(A)) is a commutative cocommutative bialgebra.

For any coalgebra H there is a filtration F•H such that , F0 = k and

Fr := {x ∈ H | ∆(x) ∈ Fr−1 ⊗ Fr−1},

where ∆(x) = ∆(x) − x ⊗ 1 − 1 ⊗ x. We say that a coalgebra H is connected if
H =

∑
r≥0 FrH. Now we recall the Hopf-Borel theorem:

Theorem 1.10. If k is a characteristic 0 field, and H is a connected graded commu-
tative cocommutative bialgebra, then

H ≃ Λ(Prim(H)).

The main point now is that C•(gl(A)) is a graded commutative cocommutative bialge-
bra.

Proposition 1.11.
⊕

n(k[Sn] ⊗ A⊗n)Sn is a graded commutative cocommutative bial-
gebra.

4. The last step in the proof of theorem (1.1) is determining the primitive part of (k[Sn]⊗
A⊗n)Sn . Let Un denote the permutations with only one cycle. Then

Proposition 1.12.

Prim((k[Sn] ⊗ A⊗n)Sn) = (k[Un] ⊗ A⊗n)Sn .

Proof. Assume that σ can be decomposed into more than one cycle, σ = (i1 . . . ik)(j1 . . . jl).
Then the coproduct gives

∆((i1 . . . ik)(j1 . . . jl)) = σ ⊗ 1 + 1 ⊗ σ + (i1 . . . ik) ⊗ (j1 . . . jl) ± (j1 . . . jl)(i1 . . . ik).

We see that σ is primitive if and only if σ has only one cycle.

Now

H•(gl(A)) = Λ(H•((k[U•] ⊗ A⊗•)S•)).

The symmetric group Sn is acting by conjugation in k[Sn] and k[Un]. As an Sn-
representations

k[Un] = IndSn

Cn
k

and the dimension of k[Un] is (n − 1)!. Furthermore

(IndSn

Cn
k ⊗ A⊗n)Sn ≃ (A⊗n)Cn = A⊗n/(1 − t) = Cλ

n(A)
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and for a1 ⊗ · · · ⊗ an ∈ Cλ
n(A) we have by tracing all the steps in the proof

a1 ⊗ · · · ⊗ an ∈ Cλ
n(A)

b // b(a1 ⊗ · · · ⊗ an)

(12 . . . n) ⊗ (a1, . . . , an) ∈ k[Sn] ⊗ A⊗n //_OO
a1a2 ⊗ a3 ⊗ · · · ⊗ an

−a1 ⊗ a2a3 ⊗ · · · ⊗ an

+ . . . + (−1)nana1 ⊗ a2 ⊗ · · · ⊗ an−1

Ea1
12 ⊗ Ea2

23 ⊗ · · · ⊗ Ean

n1
d //_OO

Ea1a2
12 ⊗ Ea3

34 ⊗ · · · ⊗ Ean
n1

+Ea1
12 ⊗ Ea2a3

23 ⊗ · · · ⊗ Ean

n1

+ . . . + Ea1
12 ⊗ Ea2

23 ⊗ · · · ⊗ Eana1
n1

_OO
We proved that (k[Un] ⊗ A⊗n)Sn is the Connes complex, and thus

Λ(HC•−1(A)) ≃ H•(gl(A)).

Example 1.13. If A = k we know that
{

HC2n(k) = k

HC2n−1(k) = 0

From this we can derive

H•(gl(k)) = Λ(x1, x3, . . . , x2n+1, . . .),

H•(gln(k)) = Λ(x1, x3, . . . , x2n−1),

H•(sl2(k)) = Λ(x3).

1.3 Computation of Leibniz homology HL•(gl(A))

Our aim now is to compute HL•(gl(A)). Recall the steps in the proof of theorem (1.1).

gl(A)⊗n

quasi-isomorphism����
(gl(A)⊗n)sl(k)

(gl(k)⊗n ⊗ A⊗n)sl(k)

(gl(k)⊗n)sl(k) ⊗ A⊗n

(k[Sn] ⊗ A⊗n)Sn

We have to modify the third step, because Leibniz homology is not a Hopf algebra. If g is a
Leibniz algebra, then HL•(g) is a graded Zinbiel coalgebra which definition we give below.
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Definition 1.14. A Zinbiel algebra A is an algebra such that its multiplication satisfies
the following identity

x · (y · z) = (x · y) · z + (x · z) · y.

Lemma 1.15. If we define a new product xy := x · y + y · x, then it will be associative.

Zinbiel algebras play the same role to the commutative algebras as the associative algebras
to Lie algebras.

Definition 1.16. A graded Zinbiel algebra A is an algebra such that its multiplication
satisfies the following identity

x · (y · z) = (x · y) · z + (−1)|z||y|(x · z) · y.

Definition 1.17. A Zinbiel coalgebra C is a coalgebra such that its comultiplication
∆: C → C ⊗ C satisfies the following identity

(Id ⊗ ∆) ◦ ∆ = (∆ ⊗ Id) ◦ ∆ + (Id ⊗ τ) ◦ (∆ ⊗ Id) ◦ ∆,

where τ : C ⊗ C → C ⊗ C is given by

τ(x ⊗ y) =

{
y ⊗ x in the non graded case,

(−1)|y||x|y ⊗ x in the graded case.

Proposition 1.18. The Leibniz homology HL•(gl(A)) is a graded Zinbiel as coalgebra and
associative as algebra.

In short we say that HL•(gl(A)) is a graded Zinbc-As-bialgebra. It means that the Zinbiel
coalgebra coproduct and the associative algebra product satisfy some compatibility relation.
If one compares the product with the symmetric coproduct, then one obtatins the Hopf
formula.

There is a following structure theorem for Zinbc-As-bialgebras.

Theorem 1.19. If a Zinbc-As-bialgebra H is connected, then it is free and cofree over its
primitive part.

Corollary 1.20.

HL•(gl(A)) ≃ T (Prim(
⊕

n≥0

k[Sn] ⊗ A⊗n)) = T (
⊕

n≥0

k[Un] ⊗ A⊗n).

Our aim now is to compute H•(
⊕

n≥0 k[Un] ⊗ A⊗n).

Theorem 1.21 (Cuvier). There is a quasi-isomorphism of complexes

. . . // k[Un] ⊗ A⊗n d //���� k[Un−1] ⊗ A⊗(n−1) //���� . . .

. . . // A⊗n b // A⊗(n−1) // . . .
9



The map is given by

g(12 . . . n)g−1 ⊗ α 7→ g(α),

where g ∈ Sn, g(1) = 1 is chosen in such way that g(12 . . . n)g−1 is teh cycle which we want
to sendo to A⊗n. The map in the opposite direction is

α 7→ (12 . . . n) ⊗ α.

and the one composition is identity on A• and the second one is homotopic to the identity.

Corollary 1.22.

HL•(gl(A))
≃ //�� T (HH•−1(A))��

H•(gl(A))
≃ // Λ(HC•−1(A)).

Now we can make a digression on some algebraic topology theorems. Suppose there is a
fibration F → E → B of H-spaces. There is a spectral sequence

E2
pq = Hp(B,Hq(F )) =⇒ Hp+q(E).

Furthermore for any H-space X

Prim(H•(X; Q)) = π•(X) ⊗ Q,

so

H•(X; Q) = Λ(π•(X) ⊗ Q).

If we take a primitive parts on second term of this spectral sequence, then it can be proved
that the only nonzero terms will be on the row q = 0 and column p = 0, and it will be
isomorphic to rational homotopy of the base and the fiber.

q

πr−1(F ) ⊗ Q •

OO
•

dr

ddIIIIIIIIIIIIIIIIIIIIIIIIII //
πr(B) ⊗ Q p

From this spectral sequence we obtain the long exact sequence of homotopy groups.

The motivation for computing H•(glr(A)) for fixed r comes from Macdonald conjecture,
which is some identity with sum on the left hand side and product on the right. To prove it,
it is sufficient to compute Hn(glr(k[t]/tk)). On one side there will be an Euler-Poincae char-
acteristic of the complex, and on the other the Euler-Poincaré characteristic of the homology,
which are equal.
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Theorem 1.23. If k is a characteristic 0 field, A is an associative unital algebra, then

Hn(gln(A)) ≃ Hn(gln+1(A)) ≃ . . . ≃ Hn(gl(A)).

Furthermore for commutative A the following sequence is exact

Hn(gln−1(A)) → Hn(gln(A)) ։ Ωn−1
A /dΩn−2

A .

Theorem 1.24. If k is a characteristic 0 field, A is an associative unital algebra, then

Hn(GLn(F )) ≃ Hn(GLn+1(F )) ≃ . . . ≃ Hn(GL(A)),

and the following sequence is exact

Hn(GLn−1(F )) → Hn(GLn(F )) → KM
n (F ) ⊗ Q.

where KM is the Milnor’s K-theory.

Theorem 1.25. If k is a characteristic 0 field, A is an associative unital algebra, then

HLn(gln(A)) ≃ HLn(gln+1(A)) ≃ . . . ≃ HLn(gl(A)).

Furthermore for commutative A there is an exact sequence

HLn(gln−1(A)) → HLn(gln(A)) ։ Ωn−1
A .

11



Chapter 2

Algebraic operads

2.1 Schur functors and operads

Definition 2.1. An algebraic operad is a functor P : Vect → Vect, together with a natural
transformationa of functors ι : Id → P, γ : P ◦ P → P. They are supposed to satisfy the
following relations

• γ is associative,

P ◦ P ◦ P
id◦γ //

γ◦id �� P ◦ P

γ��
P ◦ P γ

// P
• ι is a unit for γ.

If X is a set, then the structure is just inclusion {∗} → X and if X × X → X is an
operation, then we have the notion of set operad P : Sets → Sets. In analagous way we
can define topological operad, chain complex operad etc.

In the sequel, we suppose that P is Schur functor, which definition we give below.

Definition 2.2. A Schur functor is defined from an S-module P, which is a collection of
right Sn-modules, and

P(V ) :=
⊕

n≥0

P(n) ⊗Sn V ⊗n.

We can as well write
P(V ) :=

⊕

n≥0

(P(n) ⊗ V ⊗n)Sn .

In characteristic 0 we can take the invariants as well as coinvariants.
In these notes we restrict the study of algebraic operads to Schur functors.
The natural transformation γ gives us for each vector space V a linear map

γ : P(P(V )) = P


⊕

n≥0

P(n) ⊗Sn V ⊗n


 → P(V ).

and so for each n ≥ 0, a map

γi1...in : P(n) ⊗ P(i1) ⊗ . . . ⊗ P(in) → P(i1 + . . . + in), n ≥ 0.
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Starting with γi1...in , in order to reconstruct the operad we need to assume that it is compat-
ible with the action of the symmetric group

Sn × (Si1 × . . . × Sin) → Si1+...+in ,

and that it satisfies a certain associativity property, namely the associativity of γ : P◦P → P.

Definition 2.3. An algebra over the operad P (or P-algebra) is a vector space A equipped
with a linear map γA : P(A) → A such that the following diagrams commute

P(P(A))
P(γA) //

γ(A) �� P(A)

γA��
P(A)

γA

// A A
ι(A)//
= ""DDDDDDDDD P(A)

γA��
A

For an algebra over the operad P and each n ≥ 0 there is a map γn : P(n) ⊗Sn A⊗n → A
and we write

(µ; a1, . . . , an) 7→ γ(µ ⊗ (a1, . . . , an)) =: µ(a1, . . . , an).

We call P(n) the space of n-ary operations.

Let V be a vector space, and P an operad. Suppose that we have a type of algebras (for
example associative, Leibniz, Lie). We name it P-algebras, where P denotes the given type.
Then we define

Definition 2.4. The P-algebra A0 is free over V if for any map V → A to a P-algebra A
there is a unique map of P-algebras A0 → A such that the following diagram commutes

V //   AAAAAAAA A0�����
A

Let V = kx1 ⊕ . . . ⊕ kxn be an n-dimensional vector space over k, and P(V ) denote be
the free algebra of a given type over V . The multilinear part of P(V ) of degree n (linear
in each variable) is a subspace which we denote P(n) and it inherits an Sn-action. Thus it
allows us to construct an operad P as a Schur functor. If k ⊇ Q then

P(V ) =
⊕

n≥0

P(n) ⊗Sn V ⊗n.

2.2 Free operads

The notion of free P- algebra over a vector space V gives rise to a functor from the category
Vect of vector spaces to a category P-algebras, which is a left adjoint to the forgetful functor

HomP−alg(P(V ), A) ≃ HomVect(V,A).

There is a forgetful functor from the category Op of operads to the category of Schur functors.
It has a left adjoint F giving rise to free operads.

13



Example 2.5. An S-module is given by the family M(n) of Sn-modules. Suppose M(n) = 0
except M(2) = k[S2]µ. What is F(M)? We have id ∈ F(M)(1), µ ∈ F(M)(2) and the
following two operations in F(M)(3)

µ ◦ (µ, id), µ ◦ (id, µ).

Thus

F(M)(3) = k[S3]µ ◦ (µ, id) ⊕ k[S3]µ ◦ (id, µ).

Proposition 2.6. The free operad F(M), where M is binary and free over S2, has F(M)(n) =
k[Yn−1] ⊗ k[Sn], where Yn−1 is the set of planar binary trees with n leaves.

Exercise 2.7. What is the free operad on N , where N(n) = 0 except N(2) = k - the trivial
representation?

2.3 Operadic ideals

Definition 2.8. For a given operad P and a family of operations in P, the operadic ideal
generated by this family is a sub-Schur functor I (that is I(n) ⊆ P(n)) linearly generated by
all the compositions where at least one of the operations is in the family.

In another words whenever one of the operations is in I, then the image by γ is also in I.

γ : P(n) ⊗ (P(i1) ⊗ · · · ⊗ P(in)) → P(i1 + . . . + in)

Proposition 2.9. The quotient P/I defined as (P/I)(n) := P(n)/I(n) is an operad. It is
called the quotient operad.

A type of algebras consists of generating operations and relations (multilinear). Let F(M)
be the free operad over an S-module M such that M(n) is defined by the n-ary operations.
If we take the ideal I generated by the relators in F(M)(−), then the we have an operad
associated to a given type of algebras represented as a quotient operad P = F(M)/I. The
space P(V ) is exactly the free algebra over V for the given type.

2.4 Examples

Example 2.10. Associative algebras over k with binary associative operation µ : A ⊗ A → A,
µ(xy) =: xy. The corresponding operad As has

As(n) = k[Sn],

As(n) ⊗Sn V ⊗n = V ⊗n,

γ : As(n) ⊗ As(i1) ⊗ · · · ⊗ As(in) → As(i1 + . . . + in),

k[Sn] ⊗ k[Si1 ] ⊗ · · · ⊗ k[Sin ] → k[Si1+...in ]

(σ;ω1, . . . , ωn) 7→ σ(ω1, . . . , ωn) = (ωσ(1) × · · · × ωσ(n)).
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Example 2.11. Commutative algebras over k with binary commutative operation µ : A⊗A →
A, µ(xy) =: xy. The corresponding operad Com has

Com(n) = k,

Com(n) ⊗Sn V ⊗n = SnV,

γ : Com(n) ⊗ Com(i1) ⊗ · · · ⊗Com(in) → Com(i1 + . . . + in),

γ : k⊗(n+1) ≃
−→ k

The general construction of the operad associated to algebras of given type uses the
following data:

• generating operations µn with symmetries which define a right Sn-module M(n), n ≥ 0

• multilinear relations in M(n), n ≥ 0.

From the generating operations we can construct a free operad F(M), and then quotient by
the ideal I generated by the relations which gives us P = F(M)/I.

For example if we have one binary operation µ and one relator µ ◦ (µ⊗ id)− µ ◦ (id⊗ µ),
then we can construct an operad As for associative algebras.

2.5 Koszul duality of algebras

Definition 2.12. A quadratic data is a pair (V,R), where V is a vector space and R ⊂ V ⊗2.

Definition 2.13. An quadratic algebra associated with quadratic data (V,R) is a quotient
algebra of a tensor algebra A(V,R) := T (V )/R.

The algebra A := A(V,R) has universal property

R // // 0 $$
T (V ) // // %%KKKKKKKKKK T (V )/R�����

A′

Let T c(V ) be the tensor module with the deconcatenation operation ∆: T c(V ) → T c(V ) ⊗
T c(V ),

∆(v1, . . . , vn) =

n∑

i=1

v1 . . . vi ⊗ vi+1 . . . vn.

Definition 2.14. A quadratic coalgebra associated with quadratic data (V,R) is a sub-
coalgebra of a cotensor algebra C := C(V,R) having the following universal property

C(V,R) // // 0 %%
T c(V ) // // V ⊗2/R

C ′

OO��� 99ssssssssss
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We can write explicitly

A = k ⊕ V ⊕ V ⊗2/R ⊕ V ⊗3/(V ⊗ R + R ⊗ V ) ⊕ . . . ⊕ V ⊗n/(
∑

i+2+j=n

V ⊗i ⊗ R ⊗ V ⊗j) ⊕ . . .

C = k ⊕ V ⊕ R ⊕ (V ⊗ R ∩ R ⊗ V ) ⊕ . . . ⊕
⋂

i+2+j=n

V ⊗i ⊗ R ⊗ V ⊗j ⊕ . . .

α : C //    ������� A

V
?? ??~~~~~~~

We can define a map dα : C ⊗ A → C ⊗ A by the composition

C ⊗ A
∆⊗id//

dα

55C ⊗ C ⊗ A
id⊗α⊗id// C ⊗ A ⊗ A

id⊗· // C ⊗ A

Lemma 2.15. The map dα is a differential, that is dα ◦ dα = 0.

Proof. This immediately follows from α ∗ α = 0 and dα ◦ dα = dα∗α.

Definition 2.16. A Koszul complex of the quadratic algebra A(V,R) is the complex (C ⊗
A, dα).

Definition 2.17. A quadratic algebra A(V,R) is said to be Koszul algebra if the Koszul
complex is acyclic.

Definition 2.18. The Koszul dual algebra to an algebra A = A(V,R) is defined as

A! := C∗ := C(V,R)∗.

We have A! = T (V ∗)/(R⊥), where R⊥ is defined as the kernel

R⊥
֌ V ∗⊗2 → R∗.

If dim V < ∞, then V ∗∗ = V and there is an epimorphism V ∗⊗2
։ R∗.

2.6 Bar and cobar constructions

Recall that for associative algebras there is so called bar construction

B : As− alg → DGA − coalg,

and for coalgebras there is a dual cobar construction

Ω: As− coalg → DGA− alg.

Theorem 2.19. Let (V,R) be a quadratic data. Then the following are equivalent

1. A(V,R) is Koszul.

2. C ֌ B(A) is a quasi-isomorphism.
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3. Ω(C) ։ A is a quasi-isomorphism.

The last two conditions mean that

2. C ≃ H0(B(A)), Hn(B(A)) = 0 for n 6= 0.

3. A ≃ H0(Ω(C)), Hn(Ω(C)) = 0 for n 6= 0.

Analogous constructions we can perform for quadratic operads. Starting from generating
operations E and relators R ⊂ F(E)(3) we can construct an operad P(E,R) and a cooperad
C(E,R). The cooperads are constructed on the same pattern but using comonoids instead of
monoids, that is they are Schur functors with the comonoid structure with comultiplication
γ : P → P ◦ P and counit η : P → Id.

There are a bar and cobar constructions

B : Op → DGA − coOp

Ω: coOp → DGA− Op

Along the same lines we can construct a Koszul complex as (C ◦P, d), and if it is acyclic then
P is called a Koszul operad.

Define dual cooperad P ! := C∨ := C∗ ⊗ sgn, where sgn is the signature representation of
Sn. For any P-algebra A we define a chain complex P !∨(A) := CP

• (A). The Koszul complex
(P !∨ ◦ P(V )) is a particular case of this construction.

Definition 2.20. The homology HP
• (A) := H•(C

P
• (A), d) is called an operadic homology

of a P-algebra A.

Proposition 2.21. The Koszul complex is acyclic if and only if HP
n (P(V )) = 0 for n > 1,

and HP
1 (P(V )) = V .

Example 2.22. If P = Lie, Lie(n) == IndSn

Cn
= k[Un] then P ! = Com, Com(n) = k for

n ≥ 0. If g is a Lie algebra, then CLie
n = Λng is the Chevalley-Eilenberg complex.

Example 2.23. If P = Leib, Leib(n) = k[Sn] then P ! = Zinb, Zinb(n) = k[Sn] for n ≥ 0. If
A is a Leibniz algebra, hen CLeib

n = g⊗n is the Leibniz complex.

2.7 Bialgebras and props

Recall that the operad is a Schur functor P : Vect → Vect together with natural transfor-
mations ι : Id → P, γ : P ◦ P → P definining a monoid structure. An algebra of given type
P gives rise to an operad by the construction of free algebra P(V ) over V . The free algebra
is an adjoint functor to the forgetful functor Alg → Vect. For bialgebras however, the left
adjoint functor to the forgetful functor does not exist. Recall that for an operad P we have
a family of Sn-modules P(n) such that P(V ) =

⊕
n≥0 P(n) ⊗Sn V ⊗n. The module P(n) is

called a space of n-ary operations. For bialgebras one replaces these modules by P(n,m) for
n,m ≥ 0, because we can do operations and cooperations.

Definition 2.24. A symmetric monoidal category S is a category with distinguished
object 0 ∈ Ob(S) and an associative product � : S × S → S. We say that the category is
strict if the associativity relation is equality, not only an isomorphism.
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Definition 2.25. A prop is a strict symmetric monoidal category S such that

Ob(S) = {0, 1, . . . , n, . . .} ≃ Z

n�m := n + m,

and the morphisms MorS(n,m) is a vector space over k.

Definition 2.26. A algebra over the prop P (gebra) is a functor between symmetric
monoidal categories

(P,�) → (Vect,⊗)

1 7→ A, n 7→ A⊗n.

Example 2.27. Consider the skeleton category of the cateogory of finite sets, denoted by Fin.
Objects are n = {1, 2, . . . , n} and the morphisms are the set-theoretic maps.

The category of gebras over Fin is the category of unital commutative algebras.

3 ���� {1, 2, 3}���� A⊗3

µ⊗id��id⊗µ ��
2�� {1, 2}�� A⊗2

µ��
1 {1} A

0

OO
∅

OO
k

OO
What if we would like to have a prop corresponding to unital associative algebras? Then the
answer is a the category of noncommutative sets ∆S. Its skeleton category NFin has the
same objects {n} as Fin, but the morphism f : n → m is a set map together with a total
order on each fiber f−1(i). For example we have one map 2 = {1, 2} → {1} = 1, but two
morphisms {1 < 2} → {1} and {2 < 1} → {1}, which correspond to the two maps A⊗2 → A
given by a ⊗ b 7→ ab and a ⊗ b 7→ ba.

For the Hochschild complex Cn(A,M) = M ⊗ A⊗n there are idempotents e
(i)
n which

commute with the Hochschild boundary b

Cn(A,M)

b �� M ⊗ A⊗n

e
(i)
n ��

Cn−1(A,M) M ⊗ A⊗(n−1)

e
(i)
n

VV
be(i)

n = e
(i)
n−1b.

When A = M and there is a B-map we also have

Be(i)
n = e

(i)
n−1B.
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All these formulas live in kFin, where MorkFin(n,m) = k[MorFin(n,m)]. If A is commutative,
then we have

b : n → n − 1, b =
n∑

i=1

di

e(i)
n : n → n, n

e
(i)
n //

b �� n

b��
n − 1

e
(i)
n // n − 1

in k[MorFin(n,m)]. There is a functor kFin → M ⊗ A⊗n such that

n � //
f �� M ⊗ A⊗n

f∗��
m � // M ⊗ A⊗m

f∗(m,a1, . . . , an) = (m, b1, . . . , bm), bi =
∏

j, f(j)=i

aj .

When A is not commutative we take NFin.
Any operad P gives rise to a prop. One defines

P(n, 1) := P(n)

P(n,m) := ...

We can say that operads and free operads correspond to abstract rooted trees with data what
happens when we contract an edge. If one considers planar rooted trees, then what one gets
is so called non-symmetric operad (with no action of symmetric group). If any leaf could be
a root, that is we consider abstract trees, then what we get is so called cyclic operads (there
is a cyclic action of Z/(n + 1)Z) on P(n).

Let τ = τn ∈ Z/(n + 1)Z denote the generator. For every n-ary operation µ ∈ P(n) we
have τ(µ) ∈ P(n).

Definition 2.28. A cyclic operad is an operad such that P(n) has a Z/(n + 1)Z-action.
This action together with the Sn-action makes it an Sn+1-module.

There is a relation between cyclic action and composition.

Example 2.29. Let P(1) = R an associative algebra, and P(n) = 0 for n ≥ 0.

r rs

s

If there is a cyclic action r 7→ r̄, ¯̄r = r on R, then rs = s̄r̄. The cyclic operad here correspond
to cyclic algebra with involution.
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Fact 2.30. As, Lie, Com, Poiss are cyclic operad, but Leib is not.

Let P be a cyclic operas. Then we can construct three homology theories HA•, HB•, HC•

which fit into an exact sequence

. . . → HAn(A) → HBn(A) → HCn(A) → HAn−1(A) → . . . ,

where A is a P-algebra, and HBn(A) = HP
n (A) is an operadic homology of A. If P = As,

then HCn is cyclic homology, HAn = HCn−1, HBn = HHn. If P = Lie, then HBn = HLie
n (g),

HAn = HLie(g, g), where g is a Lie algebra and a g-module via the adjoint representation.

g ⊗ Λng //
dCE �� Λn+1g

dCE ��
g ⊗ Λn−1g // Λng

HLie
n (g, g) HLie

n+1(g)

2.8 Graph complex

In the degree n of graph complex the space of n-chains is generated by connected graphs
without loops with n edges and the valence of each vertex is ≥ 3. The differential

d(γ) =
∑

e edges

±γ/e, d : Cn → Cn−1

(when there is a loop we send the graph to 0).

To describe it precisely we assume that the graphs are oriented and the set of vertices is
labelled by 1, . . . ,K.

1��
2

^^��
The equivalence relation:

1. changing the orientation of one edge, ∼1

1��
2

^^�� = − 1����
2

^^
2. permutation of indices, ∼2

1��
2

^^�� = − 2��
1

^^��
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The differential in the complex C̃n is given by

d(γ̃) =
∑

i
e
−→j

(−1)j γ̃/e

and is compatible with the equivalence relation ∼. It is also compatible with the first part
∼1 of the equivalence relation. The complex C̃n quotient by ∼ gives a graph complex Cn.
We denote

Gn := C̃n/ ∼1

(Gs)n := C̃n/ ∼1,∼2

The complex (Gs)• is called the Kontsevich graph complex.

C3
(2) C(2)

1C
(2)
2

0 0

Figure 2.1: H
(2)
2 = Q

(3)
C

(3)
C

(3)
C

(3)
C 1234

0

Figure 2.2: H
(3)
4 = Q

2.9 Symplectic Lie algebra of the commutative operad

We consider the polynomial algebra in p1, . . . , pn, q1, . . . , qm, that is k[p1, . . . , qm] = S(V ).
The Poisson bracket, defined as

{F, G} :=

n∑

i=1

∂F

∂pi

∂G

∂qi
−

∂F

∂qi

∂G

∂pi

is a Lie bracket, and so, S(V ) is a Lie algebra. We denote it by sp2m(Com).
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Theorem 2.31 (Kontsevich). If G• is the graph complex, then

H•(sp(Com)) ≃ Λ(H•(G•)).

The proof follows the same pattern as before:

1. Koszul trick.

2. Coinvariant theory.

3. Hopf-Borel type theorem, primitives.

4. Making the primitive complex smaller by dividing out acyclic complexes.

The key point in step 2 is the following result.

Theorem 2.32. Let A−
r be a linear subspace of degree r in k[ϕij ] 1≤i≤r

1≤i≤r
/ ∼, ϕij ∼ ϕji. Then

(V ⊗2m)sp(V ) ≃ A−
r .

Kontsevich’s idea is to compute

⊕

k1,...,kn

(A−
r )Sk1

×···×Skn

which appears to be a vector space generated by graphs divided by the relation ∼1.
In step 3 one proves that the subcomplex of primitives is connected.
In step 4 we get rid of loops and graphs which have vertices of valence 2.
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Appendix A

Cyclic duality and Hopf cyclic

homology

Lecture given by Piotr Hajac.

A.1 Cyclic duality

Definition A.1. A cyclic (cocyclic) object is a contravariant (covariant) functor from
the cyclic category ∆C to an abelian category A.

Cyclic objects are used to define homology

. . . An−2 An−1

tn−1

WW si //
di

oo An

tn

WW sj //
dj

oo An+1

tn+1

WW sk //
dk

oo An+2 . . .

where 0 ≤ i ≤ n − 1, 0 ≤ j ≤ n, 0 ≤ k ≤ n + 1, n ∈ N , and the faces d and degeneracies s
satisfy the ∆Cop relations.

Cocyclic objects are used to define cohomology

. . . An−2

δi

// An−1

τn−1

GG
δj

// An

τn

FF
δk

//σioo
An+1

τn+1

GGσjoo
An+2

σkoo . . .

where 0 ≤ i ≤ n − 1, 0 ≤ j ≤ n, 0 ≤ k ≤ n + 1, n ∈ N , and the faces δ and degeneracies σ
satisfy the ∆C relations.

Having a cyclic object, we can construct a cocyclic one, and vice versa.

∆Cop
·̂ //

∆C
·̌

oo
Ân := An Ǎn := An

δ̂0 := tnsn−1 ď0 := σn−1τn

δ̂j+1 := sj, 0 ≤ j ≤ n − 1 ďj+1 := σj, 0 ≤ j ≤ n − 1

σ̂j := dj šj := δj

τ̂n := t−1
n ťn := τ−1

n
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The cyclic category ∆C is isomorphic with its opposite ∆Cop. The compositions ·̂ ◦ ·̌ and ·̌ ◦ ·̂
are inner automorphisms implemented by τ• and t• respectively.

A.2 Cyclic homology of algebra extensions

Let B be a subalgebra of A and M an A-bimodule. Define

Bn := B ⊗B⊗Bop (M ⊗B A ⊗B . . . ⊗B A︸ ︷︷ ︸
n times

).

Then
B0 = B ⊗B⊗Bop M = M/[B,M ]

and Bn can be written in a circle.
The simplicial structure is given by

d0(m,a1, . . . , an) := (ma1, a2, . . . , an)

dj(m,a1, . . . , an) := (m,a1, . . . , ajaj+1, . . . , an), 1 ≤ j ≤ n − 1

dn(m,a1, . . . , an) := (anm,a1, . . . , an−1)

sj(m,a1, . . . , an) := (m,a1, . . . , aj , 1, aj+1, . . . , an).

Lemma A.2. The collection {Bn}n∈N is a simplicial module. If M = A, then adjoining the
morphisms tn : Bn → Bn

tn(a0, a1, . . . , an) := (an, a0, . . . , an−1)

makes {Bn}n∈N a cyclic module.

A.3 Hopf Galois extensions

Let H be a Hopf algebra with compultiplication ∆: H → H ⊗ H, ∆(h) := h(1) ⊗ h(2). Let
M be a raight H-comodule with coaction ∆R : M → M ⊗ H, ∆R(m) := m(0) ⊗ m(1).

Let A be a right H-comodule algebra via ∆R : A → A ⊗ H (G-space). Denote

B := {a ∈ A | ∆R(a) = a ⊗ 1}

(functions on quotient).

Definition A.3. The extension of algebras B ⊂ A is called Hopf-Galois extension if

g : A ⊗B A → A ⊗ H

g(a ⊗B a′) := (a ⊗ 1)∆R(a′) = a(a′)(0) ⊗ (a′)(1)

(canonical map) is an isomorphism.

Since g is a B-module map, we can extend it to Bn

g̃(a0, . . . , an−1, an) := (a0, . . . , an−1a
(0)
n ) ⊗ a(1)

n .

Using g̃ we have

B ⊗B⊗Bop (A ⊗B . . . ⊗B A︸ ︷︷ ︸
n times

)
g̃
−→ B ⊗B⊗Bop (A ⊗B . . . ⊗B A︸ ︷︷ ︸

n−1 times

) ⊗ H

After n iterations we land in B ⊗B⊗Bop A ⊗ H⊗n = A/[A,B] ⊗ H⊗n. The key idea is to
transport the cyclic structure via g̃∗.
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A.4 Hopf cyclic homology with coefficients

Definition A.4. Let M be a left H-module and right H-comodule. It is called anti-Yetter-
Drinfeld module if

∆R(hm) = h(2)m(0) ⊗ h(3)m(1)S(h(1)) ∈ M ⊗ H.

M is stable if m(1)m(0) = m.

Denote Hn := (H⊗(n+1)) ⊗H M with diagonal action on H⊗(n+1).

Theorem A.5 (Jara-Stefan, Hajac-Khalkhali-Rangipour-Sommerhaus). The following for-
mulas define a cyclic module structure on {Hn}n∈N.

dj(h0 ⊗ · · · ⊗ hn) ⊗H m := (h0 ⊗ · · · ⊗ ε(hj) ⊗ · · · ⊗ hn) ⊗H m

sj(h0 ⊗ · · · ⊗ hn) ⊗H m := (h0 ⊗ · · · ⊗ ∆hj ⊗ · · · ⊗ hn) ⊗H m

tn(h0 ⊗ · · · ⊗ hn) ⊗H m := (hnm(1) ⊗ h0 ⊗ · · · ⊗ hn−1) ⊗H m(0).

It is well defined if and only if M is stable anti-Yetter-Drinfeld module.

Let B ⊂ A be a Hopf-Galois extension for a Hopf algebra H. The map g : A⊗H → A⊗BA
allows to define the translation map

T : H → A ⊗B A, T (h) := g−1(1 ⊗ h) = h[1] ⊗B h[2].

Lemma A.6 (Mijaschita-Ulbrich, Jara-Stefan, Hajac-Khalkhali-Rangipour-Sommerhaus).
The formula

H ⊗ A/[B,A]
⊲
−→ A/[B,A], h ⊲ ā 7→ h[2]ah[1]

defines a left action. Moreover this action satisfies the stable anti-Yetter-Drinfeld module
compatibility condition for the induced coaction on A/[B,A].

Example A.7. If A = H then h ⊲ k = h(2)kS(h(1)).

Theorem A.8 (Jara-Stefan). The cyclic modules {B ⊗B⊗Bop A⊗Bn}n∈N and {H⊗(n+1) ⊗H

A/[B,A]}n∈N are isomorphic.

Theorem A.9. Let A be a left H-module algebra with respect to H ⊗ A → A, h(ab) =
h(1)(a)h(2)(b), h(1) = ε(h). Let M ⊗ A⊗(n+1) be a right H-module via (m ⊗ ã)h := mh(1) ⊗
S(h(2))ã and k be a right H-module via ε. Then {HomH(M ⊗ A⊗(n+1), k)}n∈N is a cocyclic
module with the cocyclic structure given by

(δjf)(m ⊗ a0 ⊗ · · · ⊗ an) := f(m ⊗ a0 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ an)

(δnf)(m ⊗ a0 ⊗ · · · ⊗ an) := f(m(0) ⊗ (S−1(m−1)an)a0 ⊗ a1 ⊗ · · · ⊗ an−1)

(σjf)(m ⊗ a0 ⊗ · · · ⊗ an) := f(m ⊗ a0 ⊗ · · · ⊗ aj ⊗ 1 ⊗ aj+1 ⊗ · · · ⊗ an)

(τnf)(m ⊗ a0 ⊗ · · · ⊗ an) := f(m(0) ⊗ S−1(m−1)an ⊗ a0 ⊗ · · · ⊗ an).

Special cases:

1. H = k = M - the standard cyclic homology.

2. H = k[σ, σ−1], M = σkε - the twisted cyclic homology.
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Appendix B

Twisted homology and Koszul

Lecture given by Ulrich Kraehmer

B.1 Quantum plane

k = C

xy = qyx , q ∈ k× not root of unity quadratic algebra A
eij = xiyj, i, j ≥ 0 vector space basis (⇒ PBW algebra)
Automorphisms σ(x) = λx, σ(y) = µy, λ, µ ∈ k×

Aim: Compute HCσ
• (A)

B.1.1 General strategy

Compute the simplicial theory underlying the paracyclic object as H•(A,M) = TorAe

• (M,A)
(in our case M = σA) using a nice resolution of A as Ae-module or other techniques

There is a morphisms to the simplicial underlying the cyclic object (in our case this
simplicial will be denoted by HHσ

• (A)). Try to compute this.
Do the spectral sequence arising from the (b,B)-bicomplex to obtain as its limit the cyclic

theory (here HCσ
• (A))

B.1.2 Step 1 a

By bare hands.
Look for free resolution, i.e., exact complex

. . . → (Ae)b1 → (Ae)b0 → A → 0

of Ae-modules. Should be as small as possible.
Thus b0 = 1, augmentation = multiplication
Lemma: A generated by xi, then ker µ generated as Ae-module by 1 ⊗ xi − xi ⊗ 1.
Proof:

∑
aibi = 0 then
∑

ai ⊗ bi =
∑

ai ⊗ bi − aibi ⊗ 1 =
∑

(ai ⊗ 1)(1 ⊗ bi − bi ⊗ 1)

hence it is generated by elements of the form 1 ⊗ f − f ⊗ 1. But f 7→ (1 ⊗ f − f ⊗ 1)
satisfies Leibniz:

1 ⊗ fg − fg ⊗ 1 = (f ⊗ 1)(1 ⊗ g − g ⊗ 1) + (1 ⊗ g)(1 ⊗ f − f ⊗ 1).

Claim follows
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B.1.3 Step 1 b

Thus here: b0 = 1, b1 = 2:

. . . → (Ae)2 → Ae → A → 0

Now determine kernel of the first map

(a ⊗ b, c ⊗ d)

7→ (a ⊗ b)(1 ⊗ x − x ⊗ 1) + (c ⊗ d)(1 ⊗ y − y ⊗ 1)

= a ⊗ xb − ax ⊗ b + c ⊗ yd − cy ⊗ d.

Thus

(eij ⊗ ekl, 0) 7→ eij ⊗ ek+1l − q−jei+1j ⊗ ekl

and

(0, eij ⊗ ekl) 7→ q−keij ⊗ ekl+1 − eij+1 ⊗ ekl

B.1.4 Step 1 c

Playing a bit with grading arguments gives that the kernel is generated as Ae-module by a
single element

ω := (1 ⊗ y − qy ⊗ 1,−q ⊗ x + x ⊗ 1)

Hence we can take b2 = 1. Since A is a domain (again grading argument), the new map

Ae → (Ae)2, (a ⊗ b) 7→ (a ⊗ b)ω

is injective, so thats it: We found a free resolution

0 → Ae → (Ae)2 → Ae → 0

of A as left Ae-module.

B.1.5 Step 2 a

Tensor resolution with σA and take homology

As vector space our complex is

0 → A → A2 → A → 0

The two morphisms are

f 7→ (σ(y)f − qfy,−qσ(x)f + fx)

and

(f, g) 7→ σ(x)f − fx + σ(y)g − gy.

Thus on bases:

eij 7→ ((µq−i − q)eij+1, (−qλ + q−j)ei+1j)

and

(eij , 0) 7→ (λ − q−j)ei+1j

and

(0, ekl) 7→ (µq−k − 1)ekl+1
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B.1.6 Step 2b

Generators of HH2:
eij , λ = q−j−1, µ = qi+1

Generators of HH0: Always
e00

plus
e0l+1 µ = 1

plus
ei+10 λ = 1,

plus
ei+1j+1 λ = q−j−1, µ = qi+1

image contains ei+1j except when λ = q−j and ekl+1 except when µ = qk.

B.1.7 Step 2c

HH1: Kernel generated by

(eij,0) λ = q−j plus (0, ekl) µ = qk

plus
((1 − µq−i−1)eij+1, (λ − q−j−1)ei+1j)

The latter are always trivial in homology.

(eij+1, 0), λ = q−j−1

is trivial except when also µ = qi+1.

(ei0, 0), λ = 1

are always nontrivial. Similarly,

(0, ek+1l) µ = qk+1

is trivial except when λ = q−l−1 and always nontrivial is

(0, e0l), µ = 1

B.1.8 Step 2d

From now on for simplicity
λ = q−1 µ = q

Then
HH2 : 1

HH1 : (y, 0), (0, x)

HH0 : 1, xy

In origina Hochschild:
HH2 : 1 ⊗ x ⊗ y − α ⊗ y ⊗ x

is boundary only when λ = q−1, µ = α = q
In degree one:

x ⊗ y, y ⊗ x
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B.2 How to compute HH
s
•(A)

• The (b,B)-bicomplex with is not a bicomplex, since

b ◦ B + B ◦ b = id − T.

But the columns form a complex. It computes the Hochschild homology H∗(A, sA) with
coefficients in the bimodule sA = A
• Define C0

n = ker(id − T ). Then we have:

If Cn = C0
n ⊕ C1

n, then H∗(A, sA) ∼= HHs
∗(A).

Proof: Since [b, id−T ] = 0, C∗ = C0
∗⊕C1

∗ as complexes, and we have HHs
∗(A) = H∗(C

0
∗ , b)

and H∗(A, sA) = HHs
∗(A) ⊕ H∗(C

1
∗ , b). But (id − T )|C1

∗
is a bijection, and on C1

∗ we have

b ◦ (id − T )−1 ◦ B + (id − T )−1 ◦ B ◦ b = id.

Hence (id − T )−1 ◦ B is a contracting homotopy.
• This applies for example when σ is diagonalizable.

B.3 Cyclic homology

B in normalised:

B : f 7→ 1 ⊗ f

f ⊗ g 7→ 1 ⊗ f ⊗ g − 1 ⊗ σ(g) ⊗ f

f ⊗ g ⊗ h 7→ 1 ⊗ f ⊗ g ⊗ h + 1 ⊗ σ(g) ⊗ σ(h) ⊗ f + 1 ⊗ σ(h) ⊗ f ⊗ g.

On our gens:

1 7→ 1 ⊗ 1, xy 7→ 1 ⊗ xy

x ⊗ y 7→ 1 ⊗ x ⊗ y − q ⊗ y ⊗ x

y ⊗ x 7→ 1 ⊗ y ⊗ x − q−1 ⊗ x ⊗ y

We have (consider b(1 ⊗ x ⊗ y))

[1 ⊗ xy] = [x ⊗ y] + q[y ⊗ x]

Page 2 of spectral sequence:

Nothing in degree 2, the generator of HH2 is in im B

The kernel of B1 is spanned by ω := [x ⊗ y] + q[y ⊗ x] which is in the image of B0.

The kernel of B0 is spanned by [1].

Here the spectral sequence stabilises. So periodically:

HPeven = k[1],HPodd = 0.

and not periodically we have to correct

HC0 = k[1] ⊕ k · [xy].

That is, the quantum plane has the same cyclic theory as the classical one.
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B.4 On Koszul

A = A(V, I) quadratic, A! = A(V ∗, I⊥) Koszul dual, xi, x
i dual bases in V, V ∗ Original Koszul

complex:
K = (A!)∗ ⊗k A

differential multiplication from the right by e := xi ⊗xi. Here A! acts on dual space from the
right.

Why d2 = 0? Identification:

Homk(V
⊗2, V ⊗2) ≃ V ∗ ⊗ V ⊗ V ∗ ⊗ V ≃ (A!

1 ⊗ A1)
⊗2

and

A!
2 ⊗k A2 ≃ (V ∗ ⊗ V ∗/I⊥) ⊗ (V ⊗ V/I)

≃ I∗ ⊗ (V ⊗ V/I) ≃ Homk(I, V ⊗ V/I)

Then µ just become the canical map

Homk(V
⊗2, V ⊗2) → Homk(I, V ⊗ V/I).

Under the dientification e ⊗ e becomes id. Hence µ(e ⊗ e) is zero.

B.5 Bimodule complex

This is
A ⊗ (A!)∗ ⊗ A

built as total complex of a bicomplex:

bL : r ⊗ f ⊗ s 7→ rxi ⊗ fxi ⊗ s

bR : r ⊗ f ⊗ s 7→ r ⊗ xif ⊗ xis

These commute and square to zero. Spectral sequence arguemnt: One complex acyclic iff the
other is. One resolutoin of k, one resolution of A.
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