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Chapter 1

Foliations

1.1 What is a foliation and why is it interesting 7
Question 1 (H. Hopf). Is there a completely integrable plane field on S ? (Plane field - two
dimensional subbundle E C T'S?).

Answer 1 (G. Reeb). Yes, it is a tangent bundle to a 2-dimensional Reeb’s foliation of S3,
described in the example (1.2(6)).

Question 2 (A. Haefliger). Given a plane subbundle E of T'M is it homotopic to an integrable
one ?

Answer 2 (R. Bott). There exists at least one obstruction; not every subbundle has in its
K-theory class an an integrable one.

Roughly speaking, a foliation is the decomposition of a manifold M™ into disjoint family
of submanifolds (immersed injectively) of dimension n — ¢, which is locally trivial.
More precisely

Definition 1.1. (1) A codimension q foliation of an manifold M™ is a family F = {Lqa}aect
of n — g-dimensional connected, injectively immersed submanifolds that satisfy

1.
LaNLg#0iff. a=p and ULa:M.
€l
2. For allp € M there exist open U > p and a diffeomorphism
0: U—-R"=R"9xRY,
such that for alla € T
©((UN La)conn. comp.) =1{ZT;Tn—gt1 = Cngqi1,---,Tn = Cn},
cj = constant, j=n—q+1,...,n.
Example 1.2. 1. Fibrations.

2. Surjective submersions.



3. The Kronecker foliation of T = S! x S, §1 = R/Z.

Solutions of differential equation dy = Ad z with A\ = tan(0) fixed. If a slope is rational
then we get a closed curve - closed leaves of foliation. If A ¢ Q then leaves are dense -
they are immersions of R which is not closed manifold.

Rough quotient space M/F. Two points are equivalent if and only if they belong to the
same leaf. In the Kronecker foliation, when leaves are dense, we get a noncommutative
torus.

4. The 1-dimensional Reeb foliation of T.
PICTURE

5. The 2-dimensional Reeb foliation of a solid torus D? x St.
In the universal cover D% x R — D? x St
PICTURE

We rotate these curves along vertical axis and define relation (z,y,2) ~ (z,y,z + 1).
We have one closed leaf (boundary) and rest are open leaves (images of not closed
manifolds).

6. The 2-dimensional Reeb foliation of S3.
$*=D?x S'[[S" x D?/ ~
53 = {($1’$27$37x4) S R4 ’ IIT% +$% —f—.’Eg —I—jS = 1}

The two tori in above decomposition are

{ze&|af+a3<

}

= N =

{5[7653‘1;%_’_3?%25}

We put on each torus Reeb’s foliation from preceeding example.

The notion of foliation is interesting for two reasons:
1. the definition is multifaceted

2. it gives rise to an interesting equivalence relation on M, which in turn gives rise to an
interesting quotient “space” M/F.
1.2 Equivalent definitions

Definition 1.3 (Manifold reformulation). There exists covering of M by charts (Us, ;)
such that (U;) = V; x W;, where V; and W; are open subsets of R"™9 and RY, respectively,
with the property that if U; N U; # 0 then the diffeomorphism

pjop !t (Ui NU;) — @;(Us N Uj)

s of the form
(@,y) = (hij(2,9),9i5(¥)), 9ij: Wi — W5



Definition 1.4 (1-cocycle reformulation). There exists collection (Us, f;, gij), where (U;)
18 a covering of M, f;: U; — W; are surjective submersions onto open q-dimensional mani-
folds, gij: f;(U; N U;) — fi(UyNUj) - diffeomorphisms satisfying

fi= 9ij ij on U; N Uj and gij © 9jk = Gik, ON U; N Uj NUg.
Definition 1.5. Let (M, F) be manifold with foliation. The tangent bundle to F is
TF :={X € TM | X tangent to a leaf }.

Let S(7F) denote the space of smooth sections of this bundle. Clearly this is an involutive
sub-bundle, i.e.
[S(TF),S(tF)] C S(TF).

because this is local property, obvious on charts.
Conversely by Thm. of Frobenius we can take another

Definition 1.6. Any involutive subbundle E C TM is the tangent bubdle to a unique folia-
tion.

Equivalently we can say

Definition 1.7. The ideal Z(E) generated by the sections of
vF={weT*M|VX € 7F w(X) =0}

is closed under d, i.e. Z(E) is a differential ideal.

1.3 Holonomy grupoid

Let x,y € L C M be points in a leaf of foliation, : [0,1] — M - path from z to y contained
in L.

PICTURE

Let W -transversal through z = gpfl(xl =Cly... Tp_q = Cn—gq). If z' is close to x one
can copy 7 to 7/, at least for a while. By the compactness of 7, there exists transversal
T, C W such that we reach transversal T, through y, starting from any 2’ € T, and such
that 2/ — 3’ =+/(1) is a diffeomorphism h.. We define holonomy of path ~ as

Hol(vy) := germ of h,: germ of T,, — germ of T,

Obviously if 71 ~ ~2 are homotopic, then Hol(y;) = Hol(v2), i.e. holonomy factors
through homotopy.
Recall that grupoid is a small category with all arrows invertible.

Definition 1.8. Holonomy grupoid
G(F) :=={(z,Hol(v),y) | 3 leaf L > x,y, and path v: [0,1] — L from x to y}

with objects
G =M

and composition

(y,Hol(6), z) o (x,Hol(v),y) = (z,Hol(d 0 ), 2).



Interpretation:

e (x,Hol(const),z) “reflexibility” = unit,

e (z,Hol(7),y) = (y, Hol(y!),2) “symmetry” = inverse,

e (y,Hol(0), 2) o (x,Hol(v),y) = (z,Hol(d 0 ), z) “transitivity” = composition.

Let T be a complete transversal to F i.e. T is an immersed submanifold, transverse to
each leaf and intersecting each leaf at least once.

Gr(F) ={ (z,Hol(v),y) € G(F) |,y € T}
C2(Gr(F)) = C*(Gr(F))
(f * g)(Hol(y)) = > f(Hol(71))g(Hol(y2))

Hol(y1) Hol(y2)=Hol(y)

1.4 How to handle “M/F”
“M/F" = grupoid G(F)
(A) “Homotopy quotient” approach, or equivalently via classifying spaces. This is similar
in spirit to
“M/T" < M xr ET — BT,

where I is a group.
“M/F" ~BG(F) — BT,

(B) “Topos” approach, by extending “duality”
Topological spaces <+ Sheaves of sets,
and associating a suitably defined topos to G(F).
(C) Connes noncommutative geometry approach, by extending the duality
Topological spaces <+ Commutative C*-algebras,

to include C*(G), for G-grupoid.

1.5 Characteristic classes

All approaches produce cohomology groups for grupoids, equivalent for (A) & (B), and cyclic
cohomology HC* for (C), as well as characteristic maps. They are all “huge” and not well
understood. The ones which are best understood are the “geometric” characteristic classes.

1. Bott’s construction a la Chern-Weil.
2. Gelfand-Fuks realization.

3. Hopf-cyclic cohomological construction.



Chapter 2

Characteristic classes

2.1 Preamble: Chern-Weil construction of Pontryagin ring

Let
E—-M

be a real vector bundle. A connection on F is a linear operator
V:S(E) —S(T"M @ E) = Q' (M) ® S(E)

satisfying following rule
V(fs)=df ® s + [V (s).

Then V extends to a graded Q(M)-module map
V: Q' (M) S(E) - Q(M)®S(E) =Q"(M, E), by

V(w®s)=dw® s+ (—1)8“wV(s).

The Curvature of V: we can view Q*(M, E) as a module over Q*(M) and then for any
¢ €Q*(M,FE) and any w € Q*(M) we have

V(W) = V(dw( + (-1)*wV(C)) =

= (=1)%*dwV(¢) 4+ (—=1)??dwV (¢) + wV2(() = wV3(Q).

It means that V? is a local operator - multiplication by an element of the base ring. It follows
that
V2(¢)=R-¢, Re Q*M,End(E)).

We call R a curvature form.
Explicit expression in terms of covariant derivative:

X — vector field , Vx(s) = Vs(X)

Vx: S(E) — S(E).

Let {X;} be basis of TM, i.e. linearly independent vector fields, {w’} - its dual basis of
1-forms. Then

V(s) = Zwi ® Vx,(s), hence

6



V3( Zdw ® Vi, (s Zw

—Zdw ® Vx,(s Zw /\wJVXVXs
ij

Where the second sum could be written as

Zwi /\ijXjVXis = Zwi /\wj[VXj,VXi]s.
i,J i<j
Write
dw' = Zf;kwj Awk,

j<k

with f;k = dw'(Xj, X;) = —w'([X;, Xx]). With that, we can rewrite first sum as

Zdw ®Vx,(s) ==Y > W'([X;, X))’ AwF @ Vi, (s) =

j<k 1
= — ij AWk & VZiwi([Xj,Xk])Xi(S) =
i<k
= - ij Aowf @ Vix;x,)(8)-
i<k
We just proved
Lemma 2.1.
Vs = ij A kaXj,Xk (s) = R- s, where
i<k
RX,Y = [VX, Vy] — V[Xy] S End(E), and
R = ZRXj,kai AWk
i<k
For any Lie algebra g of a Lie group G, we denote by Z(g) set of polynomials on g which
are invariant under adjoint action Ad¢g. For

PeSym(g"®...®g")

it means that
P(Ad(g)z1,...,Ad(g)z,) = P(z1,...,x,), where
Ad(g)(a) = gag™".

(
Let gl,,(R) be the Lie algebra of GL,(R). The set Z(gl,,) is in fact ring, and is generated by
elements

Pyr(A) = Por(A, ..., A) = tr(A").

Theorem 2.2 (Chern-Weil). Let P € Z(gl,,(R)) be an invariant polynomial of degree k, R
- curvature of connection V on real vector bundle E — M.

1. Then P(R) = P(R,...,R) € Q%¢(M) is closed and its de Rham cohomology class is
independent of the connection.



2. More precisely, if Vo, V1 are two connections, then
1
P(R)) — P(Ry) = k- d/ Pla, R,.... R))dt,
0
where a € QY (M, End(FE)) is the difference a = V1 — Vo, and Ry is the curvature of a
connection Vi = (1 —t)Vo + tV;.
Proof. 1t is based on the two lemmas.

Lemma 2.3. If deg(P) is odd, then P(R) =0 for any metric connection.

Proof. By hypothesis we have using Euclidean structure (E, (—, —))
X{(s,t) = (Vxs,t) + (s, Vxt).
This implies
XY (s, t) = X((Vys,t) + (s,Vyt)) =
(VxVys,t) + (Vys, Vxt) + (Vxs, Vyt) + (s, VxVyt),
and
[X,Y](s,t) = ([Vx, Vy]s,t) + (s, [Vx, Vy]t) =
= (Vx5 1) + (s, Vix,yt)-
We can write then
(Rxys,t)+ (s, Rxyt) =0, ie.
R+ R'=0, and P(R) = P(R',...,R") = (-1)*P(R).

U
Lemma 2.4. For w € S(M,End(E)) one has
d(trw) = tr[V,w].
Proof. Locally, on a chart U we have V = d + «, o € Q' (U, End(E)). Hence
V,w| = [d+ a,w] = dw + [, w], and
tr[V,w] = trdw + trjo, w] = d(trw).
U

In particular (Bianchi’s identity)
dtr(R*) = tr[V, R*] = tr[V, V] = 0.
This gives proof of the first part, because polynomials of the form tr(R¥) generate Z(gl,(R)).
For the second part, note that if V; = (1 — )V + tV1, we have
d d d d

%(Rt) == (V?) = E(vt)vt + v%vt =
d
— |57 V] =07 = (il

where o = V1 — V. Now

d d dR; ;.

= ktr <[Vt, a]Vf(k_1)> = ktr([Vy, aV?(k_l)]) = kdtr(aRF1).



2.2 Adapted connection and Bott’s theorem

Let E C TM be an involutive subbundle and let Q@ = TM/E with m: TM — @ be the
projection.

Definition 2.5. An adapted (or E-flat) connection on () is a connection V such that
Vxn(Z2) =n([X,Z]), VX € S(E).
This makes sense, since
Vixn(Z) = 7([f X, Z)) = —n(Z(f)X) + fr([X, Z]) = fVxn(Z), and
Vx(fr(2)) = 7((X, £2)) = n(X(£)Z) + fr([X, Z]) = X(f)w(Z) + [V x(x(2)).
To construct such a connection, take a decomposition TM = E & () and set
Vxm(Z) =Vx,m(Z)+Vx,, (Z) =
= n([Xp, Z)) + Vx,, (2)
where we take an arbitrary connection on E-t.

Lemma 2.6. For any adapted connection
RX,Y = 0, VX,Y € S(E)
Proof.
Rxyn(Z) = (VxVy = VyVx — Vixy))(7(Z)) =
O
Theorem 2.7 (Bott’s vanishing theorem). Given E C T'M which is involutive, we have

forQ=TM/E, dimQ = q
Pont~24(Q) = 0.

Proof. Let
Py, (A) := tr(AF).
Then for ' A
R = Z RXi7ijZ A w?
1<J
we have

i1 J1 iok J2k
i Xy W AW A LAWTE A W

Py(R) = tr(R*) =) "tr(Rx,, x,,:-- -, Rx
If £ > q, at least one pair belongs to F, otherwise

WAL AWRE = 0.

Remark 2.8.
Pont(Q) = Pont(TM © E),

hence the above is a restriction of [E] € K°(M).



2.3 The Godbillon-Vey class

Let F be a codimension ¢ foliation of M™, E = 7F, Q = TM/E. First, assume that F is
transversaly orientable i.e. AYQ has nowhere zero section (giving trivialization A?Q) =
M x R).

Lemma 2.9. Let Q be nonvanishing section of A1Q). Then
dQY=a AN
for some a € QY (M, End(E)).

Proof. 1t suffices to prove it locally, then patch by partition of unity.
On a chart U, choose a basis wy,...,w; € Z(E) such that

Q:wl/\.../\wq,

q
dw; = E Q5 N\ Wj
Jj=1

Then
q

A=) (1w A Adwi A Awg =
i=1

q q
:Z(—l)iwl/\.../\ Zaijij Ao AN wy
i=1 =1

Only «a;; A w; can contribute to the sum, so

q
i=1

Lemma 2.10. For all a as above (da)?t! = 0.

Proof.
0=d’Q=darhw—arAdd=daAQ+aAaAQ=daAQ.

Write da using basis of 2-forms extending {w1,...,wq}

do = Z fijwi A wj.

1<i<j<n

Now take exterior product with Q2 = w1 A ... Awy

> fawi Awj Awi AL Awg = 0.
1<i<jsn

If at least one of 4,5 € {1,...,q} then corresponding summand is 0. Hence

E fijwi/\wj/\wl/\.../\quo,
g+1li<y<n

10



SO
fijZOforq+1<i<j<n.

Now we can write

da = Z fijwi ANwj =

i<j; at least one <q
q
Zaj ANwj € S(E),
j=1

and
1
(dOé)q+ = Zfiljl .. .fiq+1jq+lwi1 ANwjp Ao A Wigyq /\qu+1 =0.

We just proved that form n = a A (da)? is closed.

Lemma 2.11. The class
[n] € H**1(M,R)

1s independent on all choices involved in definition.

Proof. First assume that Q' = fQ for f > 0 everywhere. Then

d
dQ’_fdQ+de_faAQ+df/\Q_aAQ’+7fAQ’_

=(a+dlogf)NQ =a' ANQ.

Hence
QA (dY)? = (a+d(log f)) A (da)? = a A (da)Td(log(f)(da)?),

so n and ' = o’ A (do) differ by boundary.
Now assume that dQ = o’ A Q, 8 = a — o/ sucht that 3 A Q = 0. Hence 8 € S(F), and
recall that also da, do’ € S(E). Then we have

n' =a A(da" ) = (a+8) A ((da)?+dB A o)
with

o= ci(da'YA(dB)T e S(E)T!, and do=0.

Then
d'A(dd) =an(da)!+aANdBAo+ BA(da)! + B AdSB Ao,
where the last two summands belong to S(E)?*! = 0, so in fact we have
d'A(da) ! =aAn(da)!+aANdBAo =
=aA(da)!+and(fro)=aA (da)! —dlaNBANo)+daA o,
where the last summand is from S(E)?*! = 0. Again we see, that  — 7 is a boundary. [
Definition 2.12. The class gv(F) := [] € H*7"Y(M;R) is called Godbillon-Vey class of
a manifold with foliation (M, F).

11



Remark 2.13. Nonorientable case. Lift F to F in M = orientable double covering with =
the generator of Z/2. Replacing 2 by %(Q —7*Q) # 0 if needed, we can always assume

74 () = Q.

Then

dQY=aAQ, and d('y*ﬁ) =" (@) Ay ().

Hence N
dQ = v*(a) A Q, and
1

@+ (@)

drops down to M.

2.4 Nontriviality of Godbillon-Vey class

On G = SL(2,R), with TG ~ G x g, (g - Lie slgebra of G = traceless matrices) take the
foliation given by the subbundle F generated by the left invariant vector fields corresponding

to
w=(0a) (3 %)
- (4 0)- (3 4) -

The third basis element is
0 0
r=(V0)

[Y,H] =2Y, [X,Y]=H.

with

with
Take the dual basis {(,7n,x} of g* and extend them as left-invariant 1-forms. Then 7
defines F (i.e. E =kern). One has
dx=axNC+bxAn+cCAn,
b=dx(H,Y)=—x([H,Y]) = 2x(Y) = 0
c=dx(X,Y) = —x([X,Y]) = —x(H) = -1
a=dx(H,X)=x(X, H]) = —2x(X) =0,

hence
dx =—CAn.
Similarly
d¢ = —=2x NG,
dn = 2x A n.

The last implies
a=4xNdx=—4xNCAn.

12



The form « drops down to M =T'\ G for any I' cocompact giving a volume form, hence
[ar] = generator of H3(M;R).

More precisely, let 3, be the Riemann surface of genus g > 2. Then its universal cover is

the upper half plane
H = SL(2,R)/SO(2),

on which I' = m1(X,) acts by Mobius transformation

az+b
cz+d

I' c PSL(2,R), z+

Let T be the double cover of I'. Then I is cocompact. Morover M ~ SlZg (unit tangent
bundle), hence

arl(M) =4 [ cannx=tr [ ¢ay=inreals,) -

= —4r | Kdo = —87%(2 — 2g).
E9

2.5 Naturality under transversality

Let ¢: N — M, E C TM integrable subbundle, F- codimension ¢ foliation, 7F = E.
If V.— M is a vector bundle, then for each invariant polynomial P € Z(g[,(R)) of degree

k, we have a class P(V) € H**(M;R). It behaves naturally with respect to pullback

¢ (V) v
s
N ¢ M

P@*(V)) = ¢"(P(V)).

By Bott’s vanishing theorem (2.7), all classes for @ = TM/E are 0 if & > g. The
Godbillon-Vey class gv(M, F) € H*¢T1(M;R) is a nontrivial invariant.

Definition 2.14. We say that ¢ is transversal to E (or to F), ¢ N E, if for each x € N
To@yM = 6+(IoN) @ Eg(r)-

FEquivalently
70 gt TuN — TyyM/E

18 surjective.

Lemma 2.15. F := ¢, (E) is involutive, hence defining a foliation F = ¢~ (F), whose
leaves are the connected components of ¢~ 1(L), L C F.

Proof. (Short) Let E = 7F be given by a cocycle {(Us, fi, 9ij) ’ i,j € I}, fi: U — R?
submersions, g;;: f;(U; N U;) — fi(U; NU;). Then {(¢~1(U7), fi o ¢, gif) ‘ i,7 € I} define
F 0

13



Proof. (More useful) Any map ¢ can be decomposed as a composition
JN NV VR N V')
z = (2, 0(2)); (2,9) =y
It is sufficient to prove the lemma for
(a) id x¢ - injective immersion,
(b) prj, - projection.
For each map in this composition the statement is obvious.
(a) E=FENTN,

(b) E=TN @ E.

Definition 2.16. A characteristic class for foliation F is an assignment
(M, F) — ~(M,F) € H(M;R)
such that if : N — M s transversal to F, then
VN, ¢*(F)) = ¢"(v(M, F)).

Ezample 2.17. If (M, F) is transversally oriented, i.e. there exists nowhere zero section 2 of
A?Q), then we have Godbillon-Vey class. On local chart U

Q=wi A...ANwg, {wi,...,wg} — generators of S(E|U),

dQ=aAQ, gv(M,F)=laA (da)¥] € H¥(M;R).
For¢: N - M

{¢"(w1),...,0"(wg)} — generators of S(gb*(E)‘d),l(U))

and therefore
de*(Q) = ¢*(dQ) = ¢™(a) A ¢™(2),
and thus

gv(N,¢"(F)) = ¢" (@) A (dg™())? = ¢™(a A (de)?) = ¢"(gv(M, F)).

Ezxample 2.18. Pontryagin classes are characteristic classes of for foliation, since for P €
Ik(g[q(R)) we have

P(¢"(F)) = ¢*(P(F)),
where P(F) = P(Q) for Q =TM/71F.

14



2.6 Transgressed classes

Let (M,F) be a manifold with foliation, Vo, V1 two connections on Q = TM/E, E = 7F.
Then
Vi —Vo=aecQ(MEndE)).

Let Vy := tV1 + (1 — t)Vj be linear homotopy between connections, and Ry, R1, R; corre-
sponding curvatures. Then by the theorem of Chern-Weil (2.2) for P € Ik(g[q (R))

P(Ry) — P(Ry) = dT'P(V1,Vy), where

1
TP(V1, V) ::k/ P(a, Ry, ..., Ry)dt.
0

Let Vi = V” be the E-flat connection (or Bott connection) (def. (2.5)), i.e.
Vi (n(Y)) =n([X,Y]), VX € S(E),n: TM — TM/E = Q.
The corresponding curvature satisfies (lemma )
R (X1, X5) =0, VX1, X, € S(E).
As a second connection Vo we take metric (or Riemannian) connection V*, i.e.
X (s1,892) = (VﬁXsl,sﬁ + (sl,V&sﬁ,

for s1,s2 € S(Q). Then

e P(R’) =0if k > ¢, by Bott’s theorem (2.7),

e P(R') =0 if k is odd, by lemma (2.3).
In particular for k > ¢ odd form TP(V?, V) is closed, dT'P(V?, V#) = 0, so

TP(M,F) := [TP(V’, V"] € H* (M, R).

Definition 2.19. We call TP(M,F) a transgressed class.

Proposition 2.20. For foliation F on a manifold M and P &€ Ik(g[q(R)), k' >q =
dimTM/7F, class [TP(M,F)] € H* L (M;R) is independent of choices V° and V*, and
therefore is an invariant of foliation.

Proof. Let 'V”, "V!, i = 0,1 be two different choices of connections, and let
V= w0V (1 (1),
VE = () VE - (1= 9 (1) VF,
where in both cases ¢: [0,1] — [0, 1] is a smooth function such that ) = 0 near 0 and ¢ =1

near 1.
Now take the bundle E = EGR on M x R (as a integrable bundle of foliation on M x R).

On the quotient pr},(Q) we define the connections V° and V*.

pry(Q)=T(M & R)/E Q=TM/TF

M x R
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Sections of bundles over M x R can be represented as follows

S(T(M x R)) = {f(z,s)Y + g(z, s) | Y € S(TM), f,g € C°(M x R)}.

Spri(Q) = {f(z,s)n(Y) | Y € S(TM),n: TM — Q, f € C®°(M x R)}
It suffices to define
V(Xyg)(w(Y)) =*Vx(n(Y)).

for V = % or ﬂ
We have B
Vx(f(z,s)m(Y)) = X(/)m(Y) + f*Vx(m(Y)),

Vo (e, 9)m(¥)) = Dm(y),

where 5V = sV’ 4+ (1 — 5)°V?, VF = sV + (1 — 5)°V*. Using inclusions is: M — M x R,
is(z) = (x,s), we can write
i(R) =R, i(R)='R
and analogously for V#, Rf. Similarly
i@ ="a, if(@) ="a
for corresponding differences ‘o =0 V° —9 V¥ and 'aw =! V? —! V%, Hence
iS(TP(V’, V) = TPV’ V%), and
TPV, V) =TP(V ' V).

Note that V’ is E—ﬂat, and V* is Riemannian for pri (Q).
The proof is completed by the elementary lemma (homotopy invariance of de Rham
cohomology)

Lemma 2.21. Let w € Q¥(M x R), dw = 0. Then i}(w) — i3(w) is evact.

Proof. We can write
w=m"(a) A fz,t)dt + g(z,t)7"(83),

with a € QF=1(M), B € QF(M).
One has

Lo, (W) = digr + tordw = Lo, (w) = d((=1)* "' f(z, ) pris(e)) =

= (1) f(w, t)dpriy (@) + priy (@) A def + priy(e) A i fdt,
where 0; := %. On the other hand

Lol ooy @) = o]y (is(prie(0) A Fla, )t + g, 1) pry () =

= 0 f(w,1)], prig(a) Adt+ dg(a,t)], pris(B).

Comparing both sides one gets
Big(a,t) Apriy(B) = (=1 (f (2, )dpriy(a) + do f(x, ) Aprys(e) =
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= (=1 du(f (2, 1) prig(@)).

Hence
1
g@AJm&Uﬂ—a@iDm&Uﬂ:(—UkH@(A ﬂxjmpquaO,
SO .
i} (w) —if(w) = —1)k1 x ‘o).
(W) — () d(( V= [ s )
O
UJ

Proposition 2.22. For any P € TF(gl, (R)) with k > q odd, TP(MF) is a characteristic
class.

Proof. It is sufficient to prove the naturality in two special cases
1. : N — M is injective immersion,

2. p: N x M — M a projection.

Case. 1 We have i*(E) = ENTN, i*(Q) = Q‘N, hence V?, V¥ restrict to the same kind of
connections. Thus one has

TP(N,i*(F)) =i"(TP(M,F)).
Case. 2 We lift V?, V¥ to the same kind of connections on N x M. R, = p*(R;), & = p*(«).

O

Definition 2.23. Two vector bundles Eo, By C T'M of codim = q are transversaly homotopic
if there exists E C T(M x R) of codim = q, such that

1. E is involutive,
2. E is transversal to M x {0} and M x {1},
3. it(E) = Ey and i*(E) = E).

Proposition 2.24. The class TP(M,F) depends only on transverse homotopy class of foli-
ation F.
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Chapter 3

Welil algebras

3.1 The truncated Weil algebras and characteristic homomor-
phism

The set of invariant polynomials Z(gl,(R)) is generated by Py(A) := tr(A¥), A € gl (R).
Alternatively we have

q
det(I +tA) =) ci(A)t'.
=0

Coefficients ¢;(A) are symmetric functions of eigenvalues. If

M O - 0
A~ T
0 0 - )\

then
det(I +tA) = (1 +tA)(1+th)... (1 +1tA) =

=1+t + X2+ ) F 2O NA) + AL A
c(A) :=det(I+A) =1+ c1(A) + ...+ ¢4(A),
c¢(A@® B) = c(A)c(B).
The set Z(gl,(R)) can be presented as polynomial ring
Z(gl,(R)) = Rlci, .. ., ¢q)-
For manifold with foliation (M,F), Q@ =TM/E, E = 7F, we have
cx(R) =0, Vk>q.
Moreover for each P € RF[cy, ... Cql, k> g
P(R’) =0 € Q%*(M).

Define
Rler, ... ¢qlqg :=Rler, ..., ¢q)/(weight > 2q), deg(c;) = 2i.

18



For any connection V on E we have a map
Ae(V): Rler, ..., ¢q) = Q°(M),
Ae(V)(P) := P(V?).

Proposition 3.1. 1. )\E(VI’) annshilates all polynomials of degree > q, so it induces a
map
Ae(V): Rer, ..., cqlq — Q°(M).

2. )\E(Vﬁ) annshilates all polynomials of odd degree, in particular

)\E(Vﬁ)(CQl;l) =0.

3. There is a third map
TAe(V*,VE): Rer, ..., ¢ — Q (M)

satisfying
dTAp(V*, V¥)(P) = Ap(V°)(P) — Ap(VH)(P).

In particular
dTAp(V*, V) (cai1) = M(V”) (c2i-1).

This can be summarized in the following cochain complex. First form a differential graded
algebra (DGA)
WOq = A<’LL1, U3,y .. ,u21_1> & R[Cl, RN Cq]q,

where the first algebra in the tensor product is an exterior algebra generated by elements ug; 1
of degree 47 — 3, and [ is maximal integer such that 2/ — 1 < g. Generators of second algebra
c¢; have degree 2j, and this is a quotient of polynomial algebra by the ideal of polynomials of
degree > ¢ (weight > 2¢). Now define d: WO, — WO, as the differenital of degree 1 given
on generators by the formula

N

dug;—1 = cgi—1, 1 <1<,
de; =0, 1<i<q.
Definition 3.2. Define a map A\g: WO, — Q*(M) by
Ag(uzi—1) = TAp(V’, V¥)(cai_1),

Ae(e) = Ae(V)(e;), 1<j<q
Then A\g: WO, — Q*(M) is a map of DGA’s, hence it induces a map

Ag: H*(WO,) — H*(M;R)
of cohomology algebras.
We call A%, a characteristic map in analogy to
v&: H'(BGL,(R)) = Z(gl,,(R)) — H*(M;R)

for a n-dimesional vector bundle £ — M.
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Theorem 3.3 (Bott). 1. X% depends only on E, and not on the choice of connections.
2. Xy is natural, i.e. for o: N — M, ¢\ F, one has
;*(E) =¢" o N}
3. X}, depends only on the transverse homotopy class of E (def. (2.23)).
Proof. Theorem has essentially been proved.
1. This has been proved in proposition (2.20).
2. This has been proved in proposition (2.22).

3. The same proof as in proposition (2.20) and lemma (2.21) with 6,5 on M x I inducing
VY on Ey and V} on Ej.

O
Ezample 3.4 (WO and Godbillon-Vey class). For ¢ = 1 we have
WO, = Aug) @ Rleq]s,
hence {1, u1,c1,uic1} form a R-basis and du; = ¢1, deg = 0. Clearly
H'(WO,) =R -1,
HY(WO,) =0,
H?(WO;) =0,
H3(WO1) =R - ujey.

Let (M, E) be a manifold with codim = 1 foliation F, 7F = E, and assume that Q = TM/E
is trivializable (i.e. E transversaly oriented).

Ae(er) = Ap(V)(c1),

Ae(u1) = TAp(V?, V¥ (c1).

Let € QY(M) be the orientation form of Q*, so E = ker(2. Let Z be a vector field with
Q(Z) = 1, which gives trivialization of ). Then

TM = E®RZ.

Let ) be defined by
Q(X)=0, for X € E,

QZ) = 1.

Then
dQ=aAQ, acQ(M).

Form « defines a Bott connection by
V' (r(2)) = —a ® n(2),

Vi (1(2)) = —a(X)(n(2)) = (X, Z]).
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Indeed, one has for all X € £
dUX, Z) = —Q([X, Z]) = —Q(n([X, Z])), and

aAQX, Z) = a(X)QZ) — a(Z2)X) = a(X).

Thus
a(X) = —Q(n([X, Z])).

Godbillon-Vey class is a class of a A da in H3(M;R). One the other hand one has
(V)2 (m(2) =V (~a@n(Z) = —da®@n(Z)+aNa@n(Z) =

=da®n(Z),

hence
R = da, so

/\E(Cl) = do.

Define a Riemannian connection on @ by
Vi (r(2)) =0, VX € E,
V4 (7(Z)) = 0, where ||Z]| = 1.
Then V’ — V¥ = —a € Q1(M,End(Q)) = Q' (M), hence
Ap(u) = TA(V’, VH(c1) = —a.

This implies
Ae(uier) = a Ada = gv(M, F).

Proposition 3.5. If E = 7F is of codim = q, transversally oriented, then
Ae(uic]) = gv(E).

Proof. We have nonvanishing form Q2 € S((Q*)?). Locally it can be written as
Q=wi A... Nwy,

with {wi,...,w,}- generators of S(E). Write
dw; = Zaij AN wj,
J
and define V*: S(Q) — S(T*M @ Q) by

V' (n(Zi) = — Z i @ m(Zj),

where {Z1,...,Z,} is a dual basis to {wy,...,w;} on a complement of E. One has for all
Xekbk

dwi(X, Zx) = Z(aij(X)Wj(Zk) — a;j(Zx)wj(X)).
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But
dwi(Xv Zk) = _wi([Xa Zk]) = TF([X, Zk])a

and on the right hand side we have only a;;(X), so
([X, Zy)) Z (X

while

Vi (m(Zp) = = Y an(X)m(Z)) = n([X, Zi]),
J
hence it is a Bott connection. Its curvature is

(V") (m(Z:)) = — va(aij ®m(Z;)) =

:_Zdaﬂ@m Zaﬂ > g @n(Zk) =
k

= — Z(daki — Z Qg N Oéjz‘)W(Zk)7
k J

i.e.
R=da—aAa.

This implies
c1(R) = tr(da) — tr(a A a) = tr(da) = d(tr a),
hence

c1(R)? = d(tra)?.

Take Riemannian connection given by an orthogonal matrix form
Z)) =Y _ B @n(Z)
J

Now
(V> = VH(r(Z:) = Z(aij + Bij) @ (Z;),
hence

V' -Vi=—a—-8 tr8=0

so the transgressed form is
Tei(a+ B) =tra.

Now
gv(E) = [tra A (tr(da))?] = [urc1 (R)?].
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3.2 W, and framed foliations

Definition 3.6. Differential graded algebra W,
Wy = Au, ..., uq) @R[er, ..., ¢qlq
dui:ci, dCiZO7 Vizl,...,q.

These algebras are useful for foliation (M, F) with @ trivializable, when one can transgress
to a flat Riemannian connection and get

pE: Wy — Q°(M),
pe(ui) == TAp(V’, V) (c;),
pe(c) = Ap(V)(c).

Notation: for i1 < ... <14, j1 < ... < js we denote

I J
UIC] = Ujy « - Ui Cjy «« - Cj.
Proposition 3.7. The elements
(a)
LU {ures [ [T < g in +[J] > g0 < i}
form a basis of H*(W,).

(b)

. . if r =0 then all ji even,
LU {uey | ig odd ,|J| < q,i1 + |J| > q, and { Z_frf#o then i1 < Ii];nodd{jk}
form a basis of H*(WOy).
Proof. (sketch)
Ad.(a)

d(ures) = (=D g, o duy, g cq =
k=1

T
k-fl —~
= E (=1)" gy .ty - w00 =0,
k=1

because deg c¢;, cy = 2(|J| +141) > 2g.

Ad.(b) If » = 0 then d(cs) = 0. The case r # 0 is treated as above.

Consequences of (a) for H* ().

1.
deg(urcy) = (2i1 — 1)+ ...+ (26, — 1)+ (2j1 + ... + 2j5) <

<2(1+4...4q) —q+2J| <qlg+1) —q+2¢=¢* +2q.

Hence
H™(W,) =0, for m > ¢ +2q.
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2. On the other hand
deg(urcy) = 2|J| > 2q,

hence
H™(W,) =0, for 1 <m < 2q.

With a little more work we can elliminate m = 2¢ which can occur only if |I] even.
3. The product structure is trivial.
4. In H*H(W,) the classes uicf ... c* with Ele a; = q are linearly independent
Similar conclusions hold for H*(WO,):

1.
H™(WO,) =0, for m > ¢* + 2q.

2. For m < 2q one gets the Pontryagin classes

{1,])1, e ,p[%]}.

3. The product structure is trivial in ’high degree’.

4. In H*¥H(WO,) the classes uicy? ... cp" with Zle a; = q are linearly independent.

24



Chapter 4

Gelfand-Fuks cohomology

4.1 Cohomology of Lie algebras
Recall the formula for the exterior derivation
d: QP(M) — QP (M)
p
dw(Xo, ..., Xp) = Y (=1 Xiw(Xo, ..., Xi,..., Xp)+

1=0

+3 (1) Hw((X5, Xj], Xo, o, Xi o X Xp).

i<j
H*(Q°(M),d) = Hip(M;:R).
We can view Q°*(M) as a C°°(M) linear homomorphisms
Q* (M) ~ Homgeo a7y (A*Var, C° (M),
where Vi is a Lie algebra of vector fields on M with
[X,Y]=XY -YX.
More general context consists of
e g - a Lie algebra of finite dimension over a field k,
e A - g-module
e Cochains C*(g; A) := Homy(A®g, A) with differential
d: CP(g; A) — CP*(g; A),
given by the same formula as above.
e Cohomology

H*(g; A) :== H*(C*(g; A),d).
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Relative Lie algebra cohomology is defined as follows. Let fj C g be the Lie subalgebra.
Define relative cochains as

C*(g,h;A):=={ce C*(g;A) | txc=0and txdc=0VX € b}.
By definition it is a subcomplex and its cohomology is
H*(g,b; A) := H*(C*(g, b; 4), d).

Since
Lxy =dix +ixd, Lxw=dixw + txdw =0,

alternatively we can put
C*(g.h; A) :={ce C*(g; A) | ¢ basic i.e. txc=0and Lxc=0VX € b}.

One has
C*(g.h; A) = Homg(A*(g/h), A)V.

Slightly more generally, if H is a Lie group with f = Lie(H), acting on g and A such that,
the differential of the action on g is adg b, then

C*(g,H; A) := {c € Hompg(A®g, A) | txc=0VX € b},

and its cohomology is
H' (g, H; A).

Ezample 4.1. Let g := gl,(R). Its complexification is g¢ := gl,,(C). We have
H*(gc) = H(g) © C.

Also one has for u,, := Lie(U(n))

n
H*(g[n(R)) = H*(un) = A<’U,1,’U,3, R 7U2l+1>,l = [5} .
Furthermore for g € U(n) and k odd
dtr((g~"dg)*) = —tr((g~"dg)**") = 0.

The class uy, := [tr((¢”'dg)*)] is called a Chern-Simons class.

4.2 Gelfand-Fuks cohomology

Let Vs be the algebra of vector fields on a manifold M, that is S(T'M). C*° topology on
Vs is given by C'*° convergence on compacta of the local components (which are functions),
and their derivatives.

X:Zfaxi,f e C®(M).
=1

Definition 4.2. Define the Gelfand-Fuks cohomology as the cohomology of the algebra Vi
continuous with respect to the C* topology on Vs

H¢ g (V) == H;

cont (

Var; R).
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Here C?,,,,(Var; R) are continuous functionals on Vs with respect to C*° topology.
The remarkable fact [Gelfand-Fuks] is that Hf, is finite dimensional. An important step

in the proof of this is played by an algebra of formal vector fields on M

"9 .
n={X =) flom [ feR! .}
i=1

The dual algebra of vector fields
Var = Homeont (Var, R)

consists of distributions with compact support. The notion of support makes sense for the
cochains
C.

cont

(Var, R) :== A*Vy;

and is preserved by
d: AV — ATV

In particular one can take for pg € M the subcomplex
AV, = distributions supported at po.

Then Vﬁpo is a real vector space spanned by V,, and its partial derivatives

X:;f&ci

N 8\a|f@

They only depend on the jet of X at pg. Thus we are dealing with the continuous Lie algebra
complex of

"9 .
DI {X:Zf’ami | fPeR[[z!,..., 2™}
=1

with the Z-adic topology (since the elements of the dual depend on finite set).
In 2L}, we have following forms

0'(X) := f1(0), 1 <i<n,

i of .
9]( )::_6.%-]"33:0’ 1<Z,]<n,
; 82 7 o
Le(X) = 327 Ik |x=0’ <i,7,k <n,
and generally for multiindex o = (a1, ..., ap)
. olal
! = (—1)lel=Z— :
o ( ) 81,04 ‘z:O

We make A®2" into a complex by defining the differential

dw(X(]a cee 7XTL) = Z(_1)2+]w([X27X]]7X07 cee 75(\1'7 s >Xj7 s >X1’L)
1<j
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1. The elements
{0, | 1<i<n,ae(Z)"}

span C(2l,,) = A, hence generate all of

(2, = é ARSI

k=0

Note that 07, = 923 if @« = 3 as an unordered sets.

L <i> 0t = 9}, and

2. The Lie derivative

oz

0 0 i i

Indeed 5 J g
(0= ()00 (4100)
d ; ; n af ;
= %’tzof (... 20 —t,...,2") = _8$i’m:0 = 05(X).
In general
L 0 9t =6

% a — YaUj
Since

9 91_,

ozt oxi |
we have 3 3

2 (5x) £ ()] =0

whence

B P .
Cl(ﬁn)ﬁR{@,,%} {91,...,0 }

i.e. is a free module with n generators over the polynomial ring in n generators.

Proposition 4.3. We have following identities in C*(2,,)

1.
o'+ 0i A 6T =0,
J
2 |
ag+ 3 (65,70 + 6,7 6]) =0,
J
3.

iy + > (03 N0 + 01 N 0] + 05 N O+ 01 7 6, ) = 0.
J
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Proof.
do'(X,Y) = X0'(Y) - YO (X) —0([X,Y]) = —0'([X,Y]),

=0

. 5 5
where X =37, /5%, X =37, ng‘

)= (P -0 L) -

- 027 0aF 7 92k 0nd
Js

Hence

On the other hand ‘ 4 ' , , ,
0L N GI(X,Y) = 05(X)0(Y) — 05(Y)09(X) =

_ of ;. 99 .
_;< 8xjg+6xjf '

This proves (1). To obtain (2) we apply £ <%), and applying £ (8%1) to (2) we obtain (3)
etc. These equations completely determine differential d. O

Denote
Rl =dfi+> 0, NOF € CH(A,) = AU,
k

Then equation (2) becomes

27
i __ i k
Ry == 0 Ao
k

Proposition 4.4. 1.
R; N6 =0,

k
Proof. From (2)
RoAG == 0, NOF AT =0
k

since 9;'.,6 = %.
From (2)
aR; = 3" (av), 7 0f — 0} 1 dok) =
k
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=Z(—Z(ezmelwAeL>Aef+ZezA<9@Ael+9m§>=>

k l l

:Z(R};/\Hf—9}/\02/\9?4—0};/\}??4-912/\91]6/\9;‘) =

k.l
=Y (Binef -0 ARE).
k
O
Corollary 4.5. The subalgebra ﬁ/; = R{O;, R;} is closed under d and finite dimensional.

Proof. Finite dimension follows from (27). O

4.3 Some ”soft” results

We describe the grading on an algebra 2A,,.

A, = {X = Zfl

Zc@xa € R[[z1,...,zp]l,a = (a1,...,an)}.

A, =R"agl,(R)D

One has
i’ 8331
To see grading we take E =) "

] = okat — — ik —
x T

=2 (457 ) o

and if f/ = c&m?l ...xd" with |a| = 7, then

,aﬁ

o7 a a 7/ a (e a

(2

Thus each monomial is an eigenvector for F, and we can write 2, as a sum of eigenspaces

o 0y _ a0

AP = (X e Ny, | Lp(X) = pX},

= @91” ; E’Ql(”) =p-1d.

p=—1

It is a grading, i. e.

[qu(l )752[ Q)] C Q((p+q
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We have a dual grading on the Gelfand-Fuks complex C*(2,) = A®*2;. One has the Lie
derivative

Lp: A — A,
Lg=dig+tgd,
The dual grading on 2 can be described as
)P = {w e A; | L(w) = —pw).
This induces a grading on G-F complex
C™(2An)®) = (A™A7)P) = P A (2A) T @ AR A D @ AR (),

where
ki1+ky+...=m, -k 1+ki+2ks+...+7k-=p.

We have Lpd = dLE (so L is a map of complexes). We can restrict to degree p

Lg

or@yw = P 1d

Proposition 4.6.
dim Hg - (2,) < 00, ¥n > 0,

HE-(2A,) = 0, Vm > n? + 2n.

Proof. One has
Lp(w) =dig(w)+ tpdw

so any w € C™(A,)P) with p # 0 such that dw = 0 is exact, since then
dig(w) = LE(w) = —pw.
This gives on cohomology

HEp () = Hp (%) 1= H™(C* (%)),

where
C™(2An) ) = (AmA) O = P A (2A) T @ AR A D @ L AR (A,
—k_1+ ki +2ky+ ...+ 1k =0,
k_i+ko+ki+...+k =m.
Since
dmATY =dimR" =n = k_; <n,
dm A = n? — ky < n’
Furthermore n
k:lgn,k:ggi, Jkn <1
Hence

dim C™(2,,)©) < o for m >0,
C™(A,) ) =0 for m > n® + 2n.
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Ezample 4.7. For n = 1 we have following

ki+2ko+ ... kr=k_1q,

ki+kot+ki+...+k <3
This gives

ki <lkgs<-etc. = ko=...=k.=0.

| =

The dual algebra

~~

A~ RO © RO RO, @ ..
~—~ N——
deg=—1  (geg=0 deg=1

If k.1 =0 then k1 = ko = ... = 0 hence the only one allowed is
AN =R o RO}
For k_1 =1 we have k1 = 1 and

AR oA @A) @ oA (@)W
—r ——— NY——
=Ro! =RoRO] =R6},

Thus we need only to look at the subcomplex

R{1,0},0" A 61,,0" A O} A 6]}
N————

=01 AR}
because R = df] = —0}; A 6! # 0, so the cohomology is
Hip= R OR@O; ARY).
dim=0 dim=3
4.4 Spectral sequences
The algebra generated by {0;-, R;} is closed under the differential d, so we have a subcomplex
(R{0%, R}, d) =: (Wy,d) C (C*(An),d).

where

R{0}, R}} ~ A°gl,(R)" ® Sy(gl,(R))

Theorem 4.8. The inclusion
(Wn,d) — (C*(2,,),d)

is a quasi-isomorphism (induces isomorphism on cohomology).

The proof uses Hochschild-Serre spectral sequence, which we describe next.
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4.4.1 Exact couples

Assume we have an exact sequence of the form
i
A
A
B

d: B— B, d:=jk, d*=jkjk=0, and

A

It is called an exact couple. Define

H(B) :=kerd/imd.

Now we can form derived couple taking

B' = H(B)
where
o A:=1i(A),
e B’ :=H(B),

o i'(a') = i(d') = i(i(a)),

o j'(d’) = [j(a)] for o’ = i(a),

o E'([b]) = Kk(b).
Check this definitions for independence of representatives. The derived couple is again exact
couple.
4.4.2 Filtered complexes

Let (C*,d) be a filtered complex i.e. there is a sequence of subcomplexes
C*=CioCI>C3D...

Let
A=C,, B:=PCp/Cp1

PEZL PEZL

Inclusions Cjp41 — C), induce exact sequence
0—-ALAB 0,
a long exact sequence of homology
ks

CH(A) &S HA) S HB) B A
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and an exact couple

= H(A)

\

HB):

4.4.3 Illustration of convergence

Consider simple case, filtration of a complex H(C*®)

..20_220_1200301DCQDOZ...

ZC_Q—C_ZCODC1DCQZ =
ZC_ZC_ZCODClDCQZ =

Here
B=..¢0000Cy/C1 C1/CodCo®0& ...

Taking homology we get sequences

H(C*®) = H(Cy) < H(C1) «— H(C3) «— 0 — ...
Al = @H(C
PEZL
H(C®) =H(Cy) D i, H(Cy) «— i H(C3) < 0 «— ...
Ay =i H(C))
pEZ
H(C*) = H(Cy) D i, H(Cy) D iyix H(Cy) «— 0 — ...
Az = @Pini. H(C
PEZL

When we reach the stage in wich all maps become inclusions, process is stationary i.e.

Ay = Ay = ...

By =TH(A;)

where i is inclusion, im k = ker7 = 0 so kK = 0. This means that also
Bs=B;=...

sinced=kj =0
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4.4.4 Hochschild-Serre spectral sequence

Let h C g be a subalgebra of a Lie algebra g.
C*(g; M) = Hom(A®g, M), d: C*(g; M) — C**'(g; M)
dw(Xo, X1,..., X,) = Y (-1 Xiw(Xo, ..., Xy, ..., X))+

) (D) Mw(X X X XL X,
1<J

Define the filtration on the above complex by
FPCPHI(g; M) := {w € CPT9 | 1x, ... 1x,w =0VXy,..., X, € b}
This means that we can associate with w € FPCPT? an element
¢(w) € Hom(A%h, Hom(A?(g/b), M))
given by the formula

HW)(X1,. ., X)) (V1. V) =w(X1, ..., X Y1, ..., V).
———
classes

Then
ker ¢ = FPHiCPtae

Hence there is a spectral sequence with
Eg? ~ C(h; Hom(AP(g/h), M), do = d,
EP? ~ H(h; Hom(AP(g/h), M)),
By = HP (g, b; M),
B, = H'(g; M)

Now we are ready to prove that the inclusion

it Wy — C*(2,,)

induces an isomorphism

H* (W, d) ~ Hgp(2Uy)
that is theorem (4.8).

Proof. Both W, and C*(2A,) are filtered differential graded algebras, and their associated
spectral sequences converge to H*(W,,) and respectively to Hf,(%,,). On the other hand 4

induces isomorphism on the level of Ej.
First W,, is graded by
W, = € A0 ® Si[R]]
r+2s=p

and then . .
Fanp - {we Wnp I | Xy Lx,w =0V Xp,..., X, € 9[20)}
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Fact 4.9.
0, p odd or p > 2n,

b
2

EPY ~ )
’ { Ca(A; Sz [R]), p even and p < 2n.

n

0, p odd or p > 2n,
2
2

EPY ~ '
' HE p(AY); 57 [R]), p even and p < 2n.
The filtration on C*(,,) = P, CP(2Uy,) is the Hochschild-Serre filtration relative to nglo).

Cp+q(91n)’ p<O0

cherq n) =
(2An) { {wecrtidy,) | LXO...Lqu:()VXo,...,Xq6917(10)}, p>0,q>0.

Fact 4.10.
EP ~ HY, (ALY FPOP(RL,,)).

It is a filtration, so

[Q[(U) Ql;p)] C Q[gp)

n

and we have an action of gl, (R) = A on AP for ecach p. Since A acts semisimply on
the coefficients one gets further

n

Bt = 1 (A, (A7A))) = @ BY)

where
BP:={weCP@,) | ixw=0=LxwVX e AV}

are the basic elements with respect to 2", Note that if ¥ = Y7 = X" ais
LyRé = —1y( ;k A Qk) =0,

whence the map

EPI(Wa) — BY(C* ().

Lemma 4.11. The inclusion i: Wy, — C*(2l,,) induces an isomorphism between the ng))—
basic elements of Wy, and C*(2,,).

Proof. Elementary invariance theory to eliminate the form 67, with |a| > 2.

Again let
Wi = Alug, ... up) ® Spler, ..., ¢l

deg(u;) = 2i — 1, deg(¢;) = 21, du; = ¢;, de; = 0.
W, = A(0}) @ Sn[R})

Proposition 4.12. The map
ci— ¢i(R), R=(R})

has an extension to a map of complexes W,, — W,,. Any such extension induces isomorphism
i cohomology

H*(W,) = H*(W,,).
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For example if n = 1 we have

c1 — c1(R) = R},

up — 61,
Proof.
0,2¢—1 /777 _
By (W) = B (g, (R); R) > uj,
where u; is a generator for j =1,...,n. Now each u; has a representative [w;] such that

—2q—1 —2
w; € FOW, ", dwj = ¢; € FXW,, "
thus giving a basic element of W; in

B0 =~ SY(R )i

The basic elements of ﬁ/\n form an algebra isomorphic to R[ey, . .., ¢p].
The extesnsion is given by
uj — wy,
cj — dwj.

Filtering W,, by the ideals FPW,, generated by polynomials of degree at least p in the ¢;’s
one obtains a morphism of complexes compatible with filtrations, which induces isomorphism
on the level of F;. 0

In the relative case 0,, C gl,,(R) = 917(10) gives actions of 0,, on W, and C*(2,,). Passing to
the subalgebras of 0,-basic elements, then restricting the filtrations one obtains isomorphisms

H*(WO,) ~ H* (W, 0,) ~ Hs (U, 0,),

where

wWao,, = A(ul,U3, .. ’U,k> & Sn[cla e ,Cn],
dUQj_l = C2j, de =0.

Corollary 4.13. Any class in H*(,,) (respectively H* (2, 0,)) has a representative which
depends only on the second jet.
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Chapter 5

Characteristic maps and
Gelfand-Fuks cohomology

5.1 Jet groups

Definition 5.1. Let € R™ and let f: U — R"™ be a C®-function. Then jE(f) is an
equivalence class with respect to

ola If‘ a\ Ig

Vol =a1 + ...+ ap < k.

‘:v’

f~rg

Then
Gi(n) == {jg(f) ‘ f local diffeomorphism of R™, f(0) = 0}

1s a Lie group under composition

Identifying with polynomial representatives

JEH ~{ Z alz® € Phxy,. .., ) ’ 1<j<n}
1<]al<k

Then j&(f) € Gj(n) means al, € GL,(R).
One has a sequence of projections

Goo(n) :=... = Gr41(n) — Gg(n) — ... = Gi(n).
Ifh=fog

hz(x17 R 7$n) = fz(gl(xl’ R 7'7;”)7 R 7gn(x1? . '7xn))

ch = 81,14}0 Z 6acl Oaxk Zafbﬁc.
]
;0% of
ik T opi oLk ’0 Z &Bsaxl ‘oax] ’03$k ’o Z Ol ‘Oaxyaxk ’0

R § i 7871 § i1l
Cjk‘ = aslbjbk + albjk
l,s l

SO
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etc. In particular ker(G2(n) — G1(n)) has multipllication

In general
Ni(n) :=ker(Gg(n) — G1(n))

is a vector space equipped with a polynomial multiplication which implies that Ni(n) is a
nilpotent Lie subgroup, and
Gr(n) = G1(n) x Ni(n).

() = Lie(Gi() = (X | X = 30 2%, X(0) = 0}
with the bracket
[ (X), 6 (V)] = =35 ([X, Y]).
5.2 Jet bundles
Definition 5.2. Let M™ be a C°°-manifold. The jet bundle on M
JE(M) = {j(’f(f) ‘ f: U CR"™ — M local diffeomorphism at 0 € U}.
It has a tautological C*°-structure modelled on
JE(R™) = Py (n) ~ polynomial jets
Again one has a sequence of natural projections
JO(M) = ... — J*Y(M) = J*M) — ... = JH M) — M,
which are principal bundles with structure groups
Goo(n):=... = Gir1(n) = Gg(n) — ... = G1(n).

JY M) = F(M) — M is a frame bundle with the structure group GL,(R) = G1(n).
There is a natural (commuting with Diff ;) map

For

and a l-parameter family 1)y of local diffeomorphism of R™ such that

d
¢t(0) =0, Ypo=1Id, X = ]80 (%‘t0> )

we have a curve in a manifold of jets j§°(¢¢). For a local diffeomorphism ¢: R — M™ we
have a curve passing through ¢

d
i (Goowl)
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and J v
. . t
X = 0l =5 (1o

Let u = j§°(¢) € J*(M), and define
= d d
Xy = j§° (Eéﬁolbt}tzo) = a(d’ol/%)‘tzo € T J®(M), ¢oiy|,_,=¢.

The map
A, = T, J*(M), X +— X,

is natural i.e. it commutes with the action of the diffeomorphisms

Tiee (pogyJ ™ (M)
o \

~

Ay,

o)™ (M)
Proposition 5.3. We have a natural isomorphism of differential graded algebras
(C*(Ap),d) = (Q°(J®(M))PT, —d).

Proof. We take for u = j5°(¢)

Ga(Xa e XD = (X, XP).
[557)7] = _[‘7(?_/}/]‘

In particular if we set for a basis {6} of

~ o~ olel pi ,
0L (Xy) = | _ = (-1)llg’ (X
LX) =2 = o)
then they satisfy the same differential equations as 6. O
Ezample 5.4. In local coordinates (v1, ..., v,) around u = j5°(¢)
i _ O og) i 9*(v' 0 ¢) i _ Ol o9)
{ WS g Uk T gk bt = g

one has ' o
dv(l)[: Z ,Ulg[k]efl;-a ﬁ[k] = (ﬁh?ﬁk—i_l::ﬁn)

Bty=a

5.3 Characteristic map for foliation

Let (M, F) be a manifold with foliation, which we can describe by a 1-cycle with values in
I', given by the following data

1. an open cover M = J, Ua,

2. Yo there is a submersion f,: U, — V, € RY,
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3. Vo € Uy N Ug there is a local diffeomorphism go5: Vi, — V3 (neighbourhoods of f,(z)
and fo(z) rspectively) such that fz = ggq o fo near z.

Then
fa(J*®(Vy)) — U,, and fE(JOO(Vﬁ)) — Up

can be identified over U, N Ug via j5°(gsa), giving the principal G¥(q)-bundles over M:
JX(F) = .= JMYF) — JHF) — ... = JHF) — JY(F) — M.

This are jet bundles of “transverse local diffeomorphisms”. In particular J!(F) is a principal
GL,(R)-bundle associated to the transverse bundle Q(F) = T'M/F - bundle of transverse
frames.

The forms 62 on J*®(V,,) are invariant under Diff hence they also define forms on J(F).
They are the “canonical forms” on J*(F).

The characteristic homomorphisms

xar: C* () — Q*(J=(F))

is defined by sending w to the lift to M of the Diff-invariant forms w, on V,. It is a
homomorphism of DGA’s inducing

Xer: Hop(Rg) — B (J%(F)) = H'(J(F)).

Remark 5.5 (Bott’s vanishing theorem revisited). Any E-flat (Bott) connection (def. (2.5))
V® on Q is given by a gl (R)-valued form on J'(F) which is of the form w;'- = s*(@}) for some
GL,(R) -equivariant section s: J'(F) — J?(F). Then its curvature form

Q) =s"(R)) = UGAW =s"(R;N0) =0
hence

Qj.llA...AQ;Z:o, Vp > q.

Assume the normal bundle ) = Q(F) is trivializable and choose a global section s: M —
F. Then the diagram

* * * pr
S OX@gr* HGF(qu) - H*<M) -

H*(J'(F))

Q@
H* (W)

is commutative.
Passing to the relative subcomplex one gets

Xt s C* (%, O(n)) — Q*(J*/O(n))

which induces _
XKL H* (A, O(n)) — H*(JYH(F)/O(n)) = H*(M).

The isomorphism
o*: H*(J1(F)/O(n)) — H*(M)
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is implemented by a metric on @ (i.e. a section o: M — J'(F)/O(n)). Then the diagram

relx

H* (2, O(n)) —CF H* (M)

*

$@
H*(WO,,)

is again commutative.
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Chapter 6

Index theory and noncommutative
geometry

6.1 Classical index theorems

Let (M, g) be a Riemannian manifold, g-metric. Index theorems describe properties of geo-
metric elliptic operators in terms of topological characteristic classes.
For a selfadjoint elliptic operator D = D*

Index(D) := dimker D — dim coker D € Z

We give a few examples of index theorems.
Ezample 6.1. Take a de Rham complex Q°(M) with

d: (M) — QM)

and its adjoint ' '
d*: QU M) — Q7Y M).

One has even/odd grading on forms (y = (—1)9%8), and the operator
d 4 d*: Qv s Qodd
is selfadjoint elliptic operator. Furthermore
Index(d + d*)®’ = dimker(d 4+ d*)®” — dim coker(d 4+ d*)¢”

and
ker(d + d*) = Hjp(M; R),

ker(d + d*)®” = HS%(M;R), coker(d + d*)°% = HIM (M;R).

This means
Index(d + d*) = dim H® (M;R) — dim H*¥(M;R) = x (M)

- the Euler characteristic of a manifold M.

Theorem 6.2 (Gauss-Bonnet).
X(M) = Index(d + d*)®’ = / Pf(R),
M
where Pf(M) is a Pffafian i.e. the square root of the determinant, and R - a curvature.
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This theorem gives topological constraints on Gaussian curvature, for if n = 2 one has
Pf(R) = K. The right hand side depends on the metric, while on the left we have topological
invariant.

Ezample 6.3. In the example above lets take different grading. Assume that dim M = 4n.
Take a Hodge star operator
w: QF (M) — ik,

One has *? = (—1)*#7=k) 50 it gives rise to another grading v on Q*(M). It splits the complex
into Q7 (M) and Q (M) (negative and positive eigenspaces). Furthermore

Index(d + d*)" = dim H**(M)" — dim H**(M) = o(M)
- the signature of M i.e. a signature of bilinear form
H?"(M) x H**(M) - R, (a,f)— / aApB.
M

On the other side
Theorem 6.4 (Hirzebruch signature thm.).

=

R
(M) = Index(d + d*) — /ML(R), L(R) := (det) <tan2hE>
2

as a formal series. L(R) is a L-genus of a manifold.

L(R) is a combination of Pontryagin classes which depends on a metric structure of a
manifold.
Ezample 6.5. Let E be a holomorphic Hermitian bundle on a manifold M. One has an
operator O @ 0% on Q% ® S(E). Its index
Index(9g @ 95;) = x(F)
- the Euler characteristic of a bundle £. On the other hand

Theorem 6.6 (Riemann-Roch-Hirzebruch).
X(E) = Index(0p © 0},) = / Td(M) ch(E),
M
where the Todd class of M and Chern character of E are given by

Rhol

Td(M) = det eRthf_l

, ch(E) = Tr(ef®).

Ezample 6.7. The most general example one has for Dirac operator ). One has a grading
lD+, )~ from Spin-bundle.

Index Ip = dim ker I) — dim coker Ip = S(M)

( \ )
2

- 1 R
smh§

K(R) is another combination of Pontryagin classes. Together with Lichnerowicz theorem
it gives constraints on scalar curvature.

- the spinor number of a manifold M. On the other side

Theorem 6.8 (Atiyah-Singer).

NI

S(M) = Index Ip = /Mﬁ(R), A(R) := (det)

Summarizing
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‘ Elliptic operator and grading ’ Analitic index ‘ Index formula (characteristic classes) ‘ Corollaries

6.2 General formulation and proto-index formula

Let A be a Cx-algebra and 2 its dense subalgebra such that if @ € 2 has an inverse a=! € A,
then a=! € A

Ezample 6.9. M - closed manifold, A = C(M), A = C*>°(M). Then
K* (M) = K.(C(M)) = K.(C*(M)),

(via Serre-Swan theorem) where the right hand side has algebraic definition (purely for * =
even and almost for x = odd).

In general

Ko () := Idemp(Moo(U))/ ~ =~ m1(GLx (),

where ~ is some equivalence relation,
K () := GLoo(A)/ GLoo (A)° =~ 7o (GLoo (),

where GL4 (20)Y is a group of connected components. For the definition of K (%) we need a
topology on 2. We can replace GLoo (2U) by Uso (%) (unitary matrices). From Bott periodicity
Ka(2A) = Ko(A) and so on.
What is the dual (homology) theory ? K-homology.
Assume A C B(H) (bounded operators on Hilbert space H). Let F = F* € A, Fredholm
operator, such that
[F,A] C K(H), (compact operators),

and moreover
[F,2] C LP(H), (Schatten class)

for some p > 1. The triple (2, H, F') is a p-summable Fredholm module. Together with
grading v such that
Y =1d, y=7",ya=ayVaec

YE + Iy =0,

the quadruple (2, H,~, F') is a K-cycle. The Hilbert space H decomposes into positive and
negative eigenspaces of
H=H"&H"

0 F*
(L5,

Lemma 6.10. Let F be bounded selfadjoint involution on H (i.e. F? =1d). Then

and there is a decomposition of F

1. Ife? = e c A then
F,:=¢eFe

1s Fredholm operator.
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2. If g € GL1(Jl) and P = # then
F,:= PgP
18 Fredholm operator.

Proof.Ad. 1
F?2 =¢FeFe=e([F,e] + eF)Fe

which is a sum of e and compact operator on eHe.

Ad. 2
FyFy = PgPg~'P = Pg([P,g"| + g~ 'P)P

which is a sum of P and compact operator on PHUP.

If 2 =e € My(R) =A® My(C) then we can form
Hy:=HeCN, Fy:=F®Id.
For an idempotent e, assignment
(F,e) — Index(F,\) € Z

extends to a pairing
K1) x Ko(2) — Z.

Similarly for g € GL1(2l), assignment

1+ F

(P,g) = (T,g) — Index(F,) € Z

extends to a pairing
K'R) x Ky () — Z.

Lemma 6.11 (Well known). Let P,Q be bounded operators on a Hilbert space H, such that
Id—QP,1d —PQ € LP.
Then P, Q are Fredholm operatos and
Index(P) = Tr((Id —QP)") — Tr((Id —PQ)"), ¥ n = p.

Proposition 6.12. Assume [F,2] € LP (that is (A, H, F') is p-summable Fredholm module).
Then

1. In the graded case, that is given v: H — H, one has for all projections e

Index(F,") = (—1)™ Tr(ye[F, e]*™), ¥ 2m > p.

e

2. In the ungraded case one has for all g € GL1(2l)

Index(F}) Tr(g[F, g~ ')*™ L, vV 2m > p.

= 92m+1
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Proof. In the graded case
Index(F.") = Tr(vPier ) = Tr(y(e — F2)™) = Tr(y(e — eFeFe)™)
for 2m = n > p. Now as above

e —eFeFe = —e|F,e]Fe = —¢[F,e]([F,e] + eF) = —e[F,e][F,e] — e[F,ele F =
=0
= —e[F,e]* = [F, e]?e

[F,e] = [F,e?] = [F,ele + e[F, e€].

Thus
Tr(y(e — eFeFe)™) = (=1)™ Tr(y(e[F, e]*)™) = (=1)™ Tr(ye([F, €])*™).

In the ungraded case one has
Index(Fy) = Tr((P — Pg~*PgP)™) — Tr((P — PgPg~*P)™)
for m sufficiently large. Furthermore
P—Pg'PgP =P+ P([P,g '] — Pg 1)gP =

= P[P,g"']gP = —P[P,g"']([P,g] - Pg) =
= 7P[P’g_1”Pag] +P[Pag_1]Pg
=0
because
P?=P = [¢o PP+ Plg,P]=[g"',P] = P[P,g"']P=0.
Hence
Tr((P — Pg~'PgP)™) = (=1)™ Te(P([P, g~ '][P, g)™).
Writig again
[P,g~']=PlP,g ']+ [Pg '|P,
[P, g] = P[P, g] + [P, g|P

one has

P[P, g7 '[P, g] = P[P, g7 '|[P, g]P = [P, g "][P, g] P.

Therefore

Te((P — Pg~'PgP)™) = (=1)" Te(P([P, g~ '][P.g)™) =
1+ F

- o (S (G giea) ) -

= % (Te([F, g7 MIF g)™) + Te(E(F, g IF.g)™)

1

Changing g to g~ one gets

(P~ PgPy™ P)") = I (B[P gl[Fo™')") + Te(F(E, 6]l g~ )™)
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Noting that

[F,g [F. gl = (—g '[F.glg")(—glF.g7"19) = g[F. g][F. g "]g

one has
Tr(([F, g~ '[F, g))™) = Te(([F, g][F, g~ '])"™).
Now
((F g F, g™ = (=g~ ' [F g g ' F, g)™ = (=1)™(g'[F, g])*™,
whence

Index(Fy) Te(F (g~ [F, g)*™) = Te(F(g[F.g7'])*™)).

~ 92m+1 (

The second term can be written as
Tr(F(g[F,g~"])*™) = Te(F([F, glg~")*™) =

Te(Fg(g~'[F.9lg™'9)*"g™ ") = Tr(g™ Fy(g ' [F, g])*™).
So the difference gives

Index(Fy) = 22Tl+l Tr((F — g_ng)(g_l[Fa 9])2m) =

— s T g, P9 I 9P = ey Tol(g ™ Fug)P ) =

St Tr((glF, 7112 ).

6.3 Multilinear reformulation: cyclic cohomology (Connes)

Observe that if T € £ then )
Tr(4T) = 5 Tr(~vF[F,T)).

Indeed
Tr(vF[F,T]) = Tr(y(T — FTF)) = Tr(yT) + Tr(vT)

since Fy 4+ ~vF = 0.
Both formulas in proposition (6.12) can be obtained from multilinear forms € Hom(A*"*, C).

( 0 1 ny = Tr(yF[F,a’|[F,a']...[F,a"]) neven >p—1,
TEWS @ s @)= Ty(FIF, a%)[F,al]...[F,a"]) nodd >p—1.

The first comes from (using graded commutators)
Tr(yF[F,a°[F,a']...[F,a"]]) = Tr(yF[F,d°][F,a']...[F,a"])+
+3 Tr(yFa'[F,a']...[F,[F,d']]...[F,a"]),

i=1

where the terms in the sum are 0 because

[F,[F,a]] = F|F,a] + [F,a]FF = a— FaF + FaF —a = 0.
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For anti-commutation reasons, the first expression vanishes for n odd, while the second
expression vanishes for n even.

Element ¢ € Hom(A®" !, C) ic cyclic if
p(a™,a’,....a" ) = (=1)"p(a’, al, ..., a")

i. e. A\p¢ = Id for cyclic operator \»*! =1Id. One has

n

brp(a®,at, ..., a" ) = ZTF(CLO, cooatadtth a4
i=0
+(=1)"rp (a6t .. a™) =

= Z(—w’ Te(F[F,a"] ... [F,a'a'™) .. [F,a"])+

+(—1)"+1 Tr(F[F, a”+1a0][F, al] L [Fya™).

NOW . . . . . .
[F, alaHl] = [F, al]aﬂ'l + a'[F, a”'l].

Because of the alternating signs, terms cancel pairwise if n + 1 is even
Tr(F[F,a’)a'[F,a?] ... [F,a" ™)) + Te(Fa®[F,a'][F,d?] ... [F,a" "))
—Tr(F[F,d"][F,a']a® ... [F,a" ™)) — Txe(F[F,a"|a'[F,a?]...[F,a" ")) + ...
A (D) T (FIF, 0" [F, 0] . . [F o™ )+ (1) Te(Fa" T [F, a°[F,a'] ... [F,a" ™).

Hence for odd n
brr = 0.

For even n
Tr(yF[F,a"][F,a"]...[F,a"""]) = Te(F[F,d"]|[F,d°]...[F,a"']) =
—Tr(F[F,d°...[F,a").
This leads to the definition of cyclic cohomology, a homology of complex
(C2(20),0), C(A) = Homeony (A7, C)

for locally convex algebra 2 (with continuous multiplication).
The fact that n +— n + 2 leaves formulas in proposition (6.12) unchanged is related to the
periodicity operator
S: HCY(A) — HCTT(A)

which in turn is an arrow in Connes long exact sequence
S aEcy@y L ey S oacr @) S aem @y L
For /= C>®(M), 9M =0
T(fo,fl,...,fn):/MfodflA...Adf"
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From Leibniz rule and Stokes theorem
br =0, A1) =1

If w € Q"%(M) then
7o(f0 . fF) ;:/ O AN dfF A w, dw = 0.
M

If C-k-current
ro(f0, . ) = (C, fPdf* AL A dfY), dC =0.

Theorem 6.13 (Connes).

HC{(A) ~ kerd; @H MC@H

) \ \ \
HC{™ () ~ kerdl,, @ H(M;C)eHi"
where the inclusion ker d} — HCS(2A) is

O’_)QsC(fO?fla?fq) <Cf0df1 /\dfq>

Compeatibility considerations lead to the following normalization for the Connes-Chern
character of a K-cycle F over 2 of Schatten dimension p.

e Fornodd >p—1

ma(a al,. .. a") = (~1)* T2 (g - 1) %Tr(F[f, al[F,al]...[F,a™),

Sty = Tn+2

(@, al, . a") = (g)% Te(vFf,a)[F.a']. .. [F,a")),
STn = Tn+2
Homological Chern character is a homomorphism
ch,: K,(M) — HI®(M;C)
It is a special case of the Connes-Chern character for an algebra
ch* K*(2l) — HP* ()

if one takes % = C°°(M). For a cocycle (A, H, F') representing an element in K-homology
one has

ch*(R, H, F) := [¢"],
where ¢" is the following cocycle

¢"(a’,a, ..., a") = Tr(ya’[F,d°] ... [F,a"])
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for n even.
Slo"] = [¢"7]
For a Dirac operator D we can take F' = D|D|~! and then

( E )
2

: R

sinh 5

If v is a gradation on H i.e.

1 0 0 D~
=0 h) =0 %)
Index(D") = Tr(’ye*tDz), t>0

DDt 0
2 _
b _( 0 D+D>'

For t — 0" function Tr(ye *P*) has an expansion

(NI

chy(D) = A(M) = (det)

then

Co+01t+62t2+...,

where

co = /M ws(D)

and ws(D) is called the local index formula.

6.4 Connes cyclic cohomology

HC*(2l) is defined as the cohomology of a complex (C\(2(),b). A cycle representing an
element in HC*(2l) is a triple
@.d. [),

where (€, d) is a differential graded algebra

Q0 Lord 4 Q", d>=0, (finite length),

and [ is a closed graded trace [ Q" — C i.e.

/wle = (—1)lwrllewl /wgwl (graded trace),

/dw =0 (closed).

Using homomorphism p: 2 — QY we can write a character of (£, d, /)
7(a® at, ..., a") = /aoda1 ...da".
It is a cyclic cocycle.
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Define a chain as a triple (2,09, [), where 9Q C Q, dimQ =n, dimdQ =n —1, and d
preserves JS). There is given a surjective homomorphism 7: Q — 99 of degree 0 (restriction
to the boundary) and

/dw =0, V w such that r(w) = 0.

A boundary of such chain is a cycle (99, d, [ "), where for o’ € 9Q"1

!/
/ W= /dw, for r(w) = w'.

Two cycles €, Qs are cobordant, Q1 ~ €y if and only if there exists a chain (£, 09, [)
such that -
0l =01 &Ny

where (€3, d, ]) is a cycle in which ]w =—fw.

Theorem 6.14.
Ql ~ QQ Zﬁ Ty —T1 = Bogf) € im By

where the operator By is defined as follows.
Bop(al,al, ... a") = ¢(1,d°,...,a") — (=1)"p(a®, ..., a" 1).

The operator B is then equal to ABjy, where A is the cyclic antisymmetrization

n

(A¢)(a0’ ala ceey an) = Z(_l)nng(az’ CLH—I, Ce ,ai_l).

i=0
The Connes exact sequence

Boacr?@) S oy L ey S acr @) S

starts with HCQ(2() = H°(2(). Thus if there is an algebra homomorphism 20 — 21" which
induces isomorphism on Hochshild cohomology, then it also induces isomorphism on cyclic
cohomology.

We can form a bicomplex (C™™ b, B) with b*> = 0, B2 = 0, bB + Bb = 0, and C™™ =
oA = A"+ The homology of the total complex is then cyclic cohomology.

6.5 An alternate route, via the Families Index Theorem
Set up: (A, H, D), D = D* unbounded with

[D,2A] € L(H), (1+ D?) € LP

In fact we shall assume that D is invertible with D~! € £P. The bounded version of this
K-cycle is given by (2, H, F), where F = D|D|~! is a phase.
On 2 one has a norm

llalll := llall + [I[D, a||, for a € 2.

Let V = V(2l) be the span of ”vector potentials”, that is
V= {A = Zai[D,bi] ‘ a;,b; € Q(, A= A*} .
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Let U = U(RL) be the gauge group, that is

U=U):={ueGL () | v'u=uu"=1},
acting on V by (affine action)

u-A:=u[D,u"] +uAu* = u(D + A)u* — D.

Denoting D4 := D + A one has
Dy.a =uDu*.

Fact 6.15. D4 has the same dimension as D and D% = D 4. Also ker D 4 = ker(Id +D71A),
hence is finite dimensional.

Let
Vinj 1= {A <% ’ D 4 injective } cVy

It is an open subset with respect to ||| - |||. For A € Vi,; operator D4 is invertible with
D'=Q1+D 1A 'D e P
Graded trivial vector bundle over Vi, ;
HE = inj X HE.
Superconnection is an operator d + ZN?, where
D:H — H, isin the fiber Dq = Ds: HT — HE.
Curvature

R := (yd + D)? = 4dD + Dd + D? = [vd, D] +D*.
——

=:D’

Explicit expression of D’ = d, 15] € U Vinj, H):

d: QP (Vinj, H) — QP (Vs H)

p —~

(dw)(Xo, .., Xpp1) = > Xiw(Xo, ..., Xi, ..., Xp)
1=0

(commutators vanish), where

- . d N

Xuf = @\t:of( +tX), X eV.
One has with F': V;,; — L(H), F(A):=D+ A

vd(Dw) = vdF A w,

Hence B B
D/(w) =dF Nw, dFA(XA) =X,
T
D,(W)A(XO, vy Xpy1) = Z(—l)l Xi wa(Xo,..., X, ..., Xp)
=0 eL(H) eH
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(Super) Chern form

_ (_t)n / Ty (6—51t252ﬁ/e—(81—52)t252ﬁ’ . e—(sn—sn_1)t252ﬁ/e—(l—sn)ﬁfﬂ) dsidss . . . dsy,
Ay
and the integration is over a simplex

Ap={0<s1<so<...<sp <1 s1+s2+...+s,=1}

One has
di(es(A—l—B)e—sB) _ es(A+B)Ae—sB
S
eu(A—i—B) — ouB 4 /u es(A+B)A6(u_s)Bd8.
0

[TO BE CONTINUED ...]

6.6 Index theory for foliations

Let (M™,F) be a foliated manifold. To define an index in noncommutative geometry we
have to complete definitions of the following tasks

1. transverse coordinates,

2. analog of elliptic operator,

3. index pairing between K-theory and K-homology.
Foliation can be described using 1-cocycle (Vj, fi, gij), where

fi: Vi = U; CR™, n = codimF are surjective submersions,
and g;;: f;(ViNV;) — fi(ViN'V;) are diffeomorphisms such that
Ggij © 9jk = Gik-

Above cocycle gives a grupoid I = {g;;} which leads to the algebra of foliation

Ap := CX(FM) x T

fug - guy = fg¢ " ugy, ¢,¢ €T

where FM = JY(M) is a frame bundle. This gives a transverse coordinates. The advantage
in working with frame bundle is that F'M has a natural volume form. It is paralelizable (i.e.
TFM is trivial). One has a principal bundle

GLn(R) — FM
T

M
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One has vertical vector fields Y;j coming from the GL,(R) action, and when chooses a con-
nection, also horizontal vector fields Xj. Let {Hk,wé} be the dual basis of differential forms.
Then

Awi A AGF

is an invariant volume form.
For our second task we have to give up ellipticity. Consider a quotient bundle

FM/SO(n)=: PM

M
The fiber PM, is the space of all Euclidean structures on T, M
(¢;m = (ag,an), a € SO(n).
Section of PM are all Riemannian metrics on T M. Let

Y C TPM = ker 7,

be the vertical subbundle (vectors tangent to the fibers). On the quotient GL,(R)/SO(n)
there is a metric, and determines a metric on V.

TPM/V=: N

PM

The horizontal bundle A/ has a tautological Riemannian structure. Indeed, p € PM is an
Euclidean structure for 77,y M, and N, is identified with Tr(pyM by ..
The bundle TPM has a decomposition into vertical and horizontal part, TPM =V G N.
The Hilbert space
L*(AT*PM,volp)

where volp is a volume form induced by canonical volume form on F'M, decomposes also as
a tensor product of corresponding Hilbert spaces

L*(AT*PM) = L*(AV*) @ L*(AN™).
On this two parts we have operators
e On L?(AV*) with vertical differential dy
Qv :=i(dy +dy)(dv — dy) = —i(dvdy + dydy)
e On L?(AN™) with horizontal differential dy
Qu =dy +dy
On the whole L2(AT*PM) we put Q = Qv @© v Qp, where 7y is the grading of the vertical

signature. Operator () = @Q* is called hypoeliptic signature operator. We have a spectral
triple (/r,H, D), where D is determined by the equation @ = D|D|.
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For a € A [D,a] € L(H) and (1 + D2)7% € LP(H) for p = dimV + 2n, where dim M =
n. The K-cycle (2, H, D) gives an element in Kfy (2A) (Diff ps-equivariant K-cycle). Its
character ch, (D) € HC,(2r) can be expressed in terms of residues of spectrally defined zeta-
functions, and is given by a cocycle {¢,} in the (b, B)-bicomplex of 2r whose components
are of the following form

Ress—¢g Tr(ao[al, D](k‘l) . [an’ D](kn)‘D|*n*2|k|78)

which we denote by

/Tr(ao[al, D](k1) o [an7D](kn)’D‘—n—2|k|—3)

qbn(ao, R ,an) = ch,k/ao[Q al](k1) . [Q,an](k")|Q’_n_2|k|
k
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Chapter 7

Hopf cyclic cohomology

7.1 Preliminaries

Lecture given by Piotr Hajac

7.1.1 Cyclic cohomology in abelian category

Our task is to understand cup product for Hopf-cyclic cohomology with coefficients, that is
mapping
HCH(C; M) @ HCY (A; M) — HC™™(A; M).

Concider a category C, with finite sets [n] := {0, 1,...,n} for n € N as objects, and mor-
phism which preserve order. To describe a cyclic structure we introduce following morphisms

e Face

- injection which misses i.

e Degeneracy
[+ 1] 75 ], 0<j<n,

- surjection which sends both j and 5 + 1 to j.

e Cyclic operator

[n] = [n]
- cyclic shift to the right.

The morphism above satisfy following identities, which we can group to obtain succesive
complications of our category.

e Presimplicial category.

Mor(C) := {(5(") |0<i<n, neN},

)

with
5]‘51' = (SZ‘(SJ’, 7> 1.
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e Simplicial category.
Mor(C) := {6"”, ot |0 <i<n, 0<j<m, n,meN},

with additional identities
0j0; = 00541, 1 < J,

(51'0-]'—1) Z<.]a
O'j(si: 1d[n]a ZG{]?J+1}7
(5i_10j, 1>7+1

e Precyclic category.
Mor(C) := {(5§m), Tn ‘ 0<i<m, mneN},
with the identities as for presimlicial category and
il — idp,
Tndi = 0;_1Tn—1, 1 <i < n.
e Cyclic Category.
Mor(C) := {(5§m), O'J(-l), Tn ‘ 0<i<m, 0<j<I, mlneN}
with all above identieties and
TnoQ = anT,EH,

Tn0j = 0j-1Tp+1, 1 < J < n.

Now, let A be an abelian category, and F': C — A a functor. It means that we have a
sequence of objects, and morphisms

d; o
An —Z’An 7—_n’14n<_% n+1-

Define L
b =Y (=1)';, b, == (~1)'6;,
=0 1=0

An = (=1)"1,, neN.
These morphisms satisfy the following identities
bui1bn =0, (1 —Xp)by = b, (1 — A1),
Consider a diagram

1- /\n+1

ker, 41 — An+1

Iﬁ Ibnﬂ Ib;lﬂ
ker,, - A, L= M - A,

CONSN
ker,_1 — Ap_1 L= Aoy A,
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The composition b,+1b, = 0, so we have a complex

b bn+1
ker,,_1 ", ker, — ker,, 41

ker coker b,, ker by, 41

Define the cyclic cohomology of the complex (A,,b,) as the cokernel of the unique map ¢y,

HC"(F) := HC"(A,) := coker ¢y,.

Define another operator

Mﬁ:§iﬁwﬁn€N.
1=0

Now one can form a bicomplex

bs —b, by b, bs
1—)\ N 1—2X\ N
Ay 20 Ay —2 A 2 Ay — e Ay —
by —b, by —b, by
1—2)\ N VY N
A, Loa, L4, Loa, —Loa,
by —b by b, by
1—\ N, 1—\ N,
A 0, A4y —% A, 0, 49 =% A,

Then the cohomology of the total complex is the cyclic cohomology of the functor F': C —

A
HC"(F) = H"(Tot Au).

7.1.2 Hopf algebras
Summary of notations.

e Coalgebra (C, A, e€)

c CeC
{A [A@M
id @A
coc®2 cocec

c CeC
{A @ %@M
id
coc P o
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e Comodule (M, AR)

M . MeC
{AR Ap®id
Moo 9EAE o s e

M=t MecC

&let@id

M

e Bicomodule (M, Ar, AR)

M—2F L yge
{AL lAL@Jid
Moo 9EAE bo e o

e Hopf algebra (H,m,1, A€, S), where

— (H,m,1) algebra,
— (H, A, €) coalgebra,
— A, € are algebra homomorphisms,

— Convoloution product f * g
frg HSHoH S Hom ™ H,

— Antipode S
S xid = le = id %S.

Properties of S:

e if exists, it is unique,

e it is an antialgebra map: S(ab) = S(b)S(a),

e it is an anticoalgebra map: Ao S = (S®S) o A%,

e if there exists S', it has the above properties and satisfies

S sk pp id = Te = id #0pS ™t

Sweedler notation:
Ah=> a;®b; = BV @h®.

If we treat multiple tensor products as trees, then we can forget how the tree was constructed.
A2 =DM o M@)o {2 = p(1) o AW & 122 = () g 1(2) g KB,

Apm=m@ @m®, Arm=mD @m®.
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7.1.3 Motivation for Hopf-cyclic cohomology

If D is a Dirac operator, E idempotent, then there exists an index pairing
(ch*(D), chy(E)) =: Index(Dg).
For the transverse geometry of a codim = n foliation

ch*(D)(ag, ..., am) = trs(aghi(ar) ... hm(an)),

where h; € H, - the universal Hopf algebra for codim = n foliations, §: H — k- character,
trs - 0-invariant trace.
H,®A— A

h(ab) = KV (a)h P (b), 15(a) = a.

In particular
A(g) = g ® g (group-like element) =— g(ab) = g(a)g(b),

Ar =2 ®1+1®x (primitive element) = x(ab) = x(a)b+ ax(b).

One has
trs(aohi(ar) ... hm(am)) = (=1)" trs(amhi(ao) . . . hm(am—1))

= (—1)"trs(hi(ap) ... hm(am—1)am).

In particular
trs(h(a)) = d(h) trs(a),
)

trs(h(a)b) = trs(A) (@) (P S (1)) (b)) = trs(hD ()R (S(AP)) (1)) =

= tr5(h) (aS(A?)(0))) = 6(hY) tr5(aS (0 (b)) =
= trs(a(d +5)(h)(b))-
Hence
trs(aghi(ar) ... hm(am)) = (=1)™ trs(ag(d * S)(h1)(h2(a1) ... hpm(am—1)am))
Denote

hM®...Q@hy=(=1)"0*S)(h1)(ha® ... hpy ®@1) = (=1)" T (h1 @ ... ® hyp).
For an element o € H,, such that Ac =0 ® o0, §(c) =1
tr§ (ab) = tr§ (bo(a))
which implies
Tm(h1 ® ... @ hp) = (6% 8)(h1)(ha @ ... R by @ 7).
(=1)"™trs(hi(ao) ha(ai) - .. hAm(am—1)am) = (=1)" trs(ao (6 * S)(h1)(h2(a1) ... hpm(am—1)am)) =
b i
= (=1)™ trs(aoh(b)).
(C1) (65 8) () (h ® - @ by @ 1) = Am(1 & - & o).
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Now one has to check that 7! =id. For m = 1
72(h) = 71 ((6 % S)(h)o) = 6(hM)(8 % S)(S(hP)o)o =
S(hN(S(M)) o182 (h o = o716 % S? % 671 (h)o = h

Denote

S3(h) := (6 xS)(h)o.
Now from (71)? = (57)% = id one can deduce after computation that for all m 7! = id
(Connes-Moscovici). This yields a new cyclic complex

(H®m7 5i7 Oj, Tm)mGN
for any Hopf algebra H equipped with modular pair in involution (MPII) (§, o). For example,
if 52 =1id, then (e, 1) is a modular pair in involution.

Ezxample 7.1. Let H = H; be an universal algebra for codim = 1 foliations. First take a Lie
algebra f; with generators X,Y, \,, n € N satisfying

Y, X] =X,
[X, )‘n] = >\n+17
[Y7 )\n] = n)\rh

A Am] =0 Vn,m > 1.

Then form an universal enveloping algebra H; := U(h;). The coproduct on H; id uniquely
determined by
AX)=X®1+10X+MQY,

AY)=Y®1+1RY,
AMN) =AM R@1+1® M\

The counit

The antipode

Now take o =1,

One has to check that
§(hMYS2(R)6(S(h®)) = h.

On generators
YO oyPey® —vyelel+loYel+1le1aY,
S(Y)+S*(Y)-4d(Y) =Y.

Similarly for A;.
XO o x® g x6 =

=XR101+10XR14+110X+13MQY + QY R1I+M®1QY,
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S2(X) +0(S(X)) =S*(AM)d(Y) = S(=X + MY) + Ay =
=0
=X -\MY +8Y)S(\)+A\ =
:[Yv;\:}:/\l

X+M—-MN=X.

Thus (0,1) is a modular pair in involution.

7.1.4 Hopf-cyclic cohomology with coefficients
Motivation:

e Short proof of
7 =id = ! =id.

e Constructive common denominator for all known cyclic theories.

e Non-trivial coefficients are geometrically desired and occur in "real life” in the number
theory work of Connes-Moscovici.

Simplicial structure in coalgebra case:
C"(C,M):=M®@C®C®, neN,
C is an H-module coalgebra
A(he) = hWeM) @ K@@ | e(he) = e(h)e(c).

M is a C-bimodule
Ap(mec) = (m®cY)@d?),
Ar(m@c)=me @ (m® @ ?).
The standard example yields
0i(m®cr®@ ... cp_1) :m®co...®c§1)®c§2)®...®cn,1,

(MR ® ... cp_1) =m© ®c(()2) RC1 R ... R cCp_1 ®m(_1)c(()1),
oiMmMRcp®...QC4+1) =MD ... Q€(Ciy1) ® ... R Cpil.

Simplicial structure in algebra case:
C"(A, M) := Hom(M ® A® A®", k), neN.
A is an H-module algebra
h(ab) = (hVa)(hPb), hl =€(h).
M is aleft H-comodule
Hom(M ® A® A®™ k) ~ Hom(A®", Hom(M ® A, k)).
M ® A is an A-bimodule

(m®a)b=mab, bm®a)=m" (S~ (m)b)a
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The standard example yields
;i) imMRag®...Qay) =f(MRag @ ... R®a;ai11 X ... ap),

Gaf)m@ag® ... @ ay) = f(mO (ST (m)an)ag @ ... ® an_1),
(Gif)(mM®ag®...®a,) = f(MR®a®@...0a;®1®ai11 @ ... ay).

Paracyclic structures:
For {C"(A, M)} nen

(a0 ® ... @ an) = fm (S (m)an) a0 © .. @ ana).
For {Cn(c’ M)}nEN
mEe®.. . ge)=m¥ e .. onam Ve,

Invariant complexes:
CH (A, M) := Hompg (M @ A®"1 k),

M My, (m@ah=mh) @ S, k= h
CH(C, M) := M @y C®"H
M M, Mo oen) = Wco ... & KO,

Cyclic structures:
We say that a bimodule M € My is stable iff.

VvmeM mOnth =,
It is anti-Yetter-Drinfeld iff.
Ap(mh) = S(hE)YmVAD @ mOp® | v m, h.

Theorem 7.2. If M is a stable anti-Yetter-Drinfeld module (SAYD), then the formulas for
i, 0 and T, define cyclic structures on C} (A, M) and C}(C, M).

Shortly

e anti-Yetter-Drinfeld — 7, is well defined,

e stability = 777! =id.
Proof. First we check that 7, is well defined, that is

Th(Mh @)@ ...Q¢cp) =Tn(MRh(cr® ... ¢p)),

(mh)© @g (¢1® ... @ cn @ (mh) " eg) =m® @ (WP (e1©...®¢,) @mTYhVey),

hence it suffices to prove the following identity
(mh) O @y (1@ (mh) V) =m@ gy (h® @ mEVaW),

Take
M ®p (H. ® H.) (diagonal structure)
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and morphism
HeoH2HeH (multiplication on the first term)

d(hok)=nrY o Sh?)k,
> hek)=hrY o n?k.

Now

V((hok) =0 (hok) =19 (hek).

Consider .
My (HoH) 222 Moy (H @ H) ~ Mo H.

(mh)© & (mh) ) = mOp® @ S(AG) )m(-D M.

-anti-Yetter-Drinfeld condition.

T:L”rl(m RECOR ... ¢p) = Tg(m(o) Qe R...Q0c¢y, ®m(’1)co) =
=m® g m(_l)(co ®...0¢c,) = mOmY g ®...®cp =
=mR Ry Q...Q cp,

where in the last equality we used stability of M. O

7.1.5 Special cases

1. Connes-Moscovici construction.

C=H, M="k;

Then “k; is SAYD iff. (6,0) is MPIIL. Let F' be the isomorphism
F:k®y (H © H®) = HO"
Then for f € H®"
Tl @ .. hy) = (Fomo F-Y)h) = (For)(1log ® (10 h)) =
Floy (h©o) =100l ®...0 hy @ 0) =
=10y V@S (hy® ... @ hy @ o) =6(h{)Sh2)(he @ ... ® hy @ 7).

trf € HCY (A ks)
3. Characteristic map of Connes-Moscovici
HCY (H;” ks) @ HCRr(A;7 ks) — HC™(A),
hM@...0~hp+— (a0 ®...Q ap) — tr§(aohi(a1) @ hp(am)))

4. Then > 0 and dim M > 1 already applied in Connes-Moscovici work on number theory.

9.
HOP (A; k) = HC™(A)
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6. Twisted cyclic cohomology
HC} o1 (457 k).

Lemma 7.3.

ks is SAYD <= (4,0) is MPII.

Proof.

m©

m =mel.0=60)=1,
(mh) D @ (mh)© = S(h®)mEVRO @ MmO
a6(h) = S(h3)ohM5(R?)
L(h) = R(h) & (L*op S™1)(h) = (R *0p S™)(h)
L) SED (R = R(A2)SED (M)
SZ(h) = o6(h)SED (MY = §(h)as(h M) =: SZ(h)

By direct computation
S§ 08§ =id = 57 0 5%, i.e.

S5 =)~

Therefore
AYD < (S9)"t =59

(89)? =id (involution condition).

7.2 The Hopf algebra H,

Let the manifold M™ be affine flat (the R™ or the disjoint union of R™). The frame bundle
is then trivial with FM ~ M x GL,(R). In local coordinates (z*) for x € U C M, we can
view the frame coordinates z*, yé‘ as a 1-jet of a map ¢: R" — R”

o(t) =z +yt, z,t eR", ye GL,(R),

where (yt)* = > yi't" for t = (') € R™.
We endow it with the trivial connection, given by the matrix-valued 1-form w = (w;-),
where
whi=> (y N Ldyt = (v dy)]
m

The corresponding basic horizontal fields on F'M are

Xk:ZyZau, k:1,...,n, 8#:@
n

Denote by 6% be the canonical form of the frame bundle

gk .— Z(y—l)ﬁdmu =y ldz)*, k=1,...,n.
W
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Then let
Y?:nyﬁi, ij=1,...,n, 8& = —
w

be the fundamental vertical vector fields associated to the standard basis of gl,(R) and
generating the canonical right action of GL,(R) on FM. At each point of FM, {X;,Y/}
and {Hk ,wé} form bases of the tangent and cotangent space, dual to each other

<w§-,YkZ> = 5,2;55-, <w§~,Xk> =0,

(0", Y) =0, (0, X;) = 4.

The group of diffecomorphism Diffy; = Diffgn acts on FM by the natural lift of the
tautological action to the frame level

P(z,y) = (@), ¢ (x)y)

where ¢'(z) is Jacobi matrix cp’(q:)é- = %;&;.

Viewing Diff j; as a discrete group we form the crossed product algebra
Aps = C°(FM) x Diff

As a vector space, it is spanned by monomials of the form fuy,, where f € C* (FM) and ug,
stands for ¢ ~!. The product is given by

frug, - foug, = fi(f2 0 ¢1)ug,,, -

Since the right action of GL,(R) on FFM commutes with the action of Diffy;, at the Lie
algebra level one has . ‘
upYiul, =Y.

This allows to promote the vertical vector fields to derivations of 2 ;. Indeed, setting
Y7 (ful) = Y7 ()
the extended operators satisfy the derivation rule
Y/ (ab) = Y/ (a)b + aY/ (b), a,be€ Ap.

We shall also prolong the horizontal vector fields to linear transformations Xj € L(%y/) in
similar fashion

The resulting operators are no longer Diff j/-invariant. They satisfy

upXpul, = Xp, — v (0™ Y7,

where ¢ — ’in-k(go) is a group 1-cocycle on Diff 5, with values in C°°(FM). Specifically
Vi) @ y) = (@ (@) 9 )iyl
o

The above expression comes from the pull-back formula for the connection

7 (w)) = wi + ()6
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Now one uses the fact that {6%, (371)*(w ;)} is the dual basis to {u,Xyuy, Y;J}
As a consequence, the operators Xy € L(2(7) are no longer derivations of 2, but satisfy
a non-symmetric Leibniz rule

Xi(a,b) = Xy(a)b + aXp(b) + 05 (a)Y{ (b), a,b€ An,
where the linear operators 5§k € L(Apy) are defined by
ie(ful) = Vi fu.

These are derivations, i.e.

;’k(ab) = ;‘k(a)b + a5§'k(b)-

The operators { Xk, Y;} satisfy the commutation relations of the group of affine transfor-
mations of R" ‘ ‘
7. Y] = 6y - &Yy

Y7, X3 = 6].X,
[Xk, Xi] = 0.
The succesive commutators of the operators 5§k with the X;’s yield new generations of
5;‘k\h...lr = [X,, ... [Xllv(sj'k] s

which involve multiplication by higher order jets of diffeomorphisms
5;'k|l1...lr (fuj;) = /y;k”l-ulrfu;’ where

Syt = Xt - Xoy (Vi)
They commute among themselves
[5}k\11...zr75§'k/\z’1...z;] =0.

It can be checked that the order of {j,k} and {l,...,l,} does not matter - in any case we
get the same operator.

The commutators between Yu)"s and 5§k’s can be obtained from explicit expression of the
cocycle «, by computing its derivatives in the direction of the vertical vector fields. One
obtains

(Y, 050] = 0701 + OR 05, — 01,03,

By induction

A i 7 A
[Y - N
’ szm ]r Juzljs Js—ilbJst1.--Jr k5172143 Jr "

Definition 7.4. Let H,, be the universal enveloping algebra of the Lie algebra by, with basis
(X0, Y 8 [ 1< A i <n, 1< <k<n, 1<l <... <l <n}

and the following presentation
[Xk:7 Xl] == 07

Y7, V] = oy} — oy},
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) st
[XlT7 6jk|ll...lr_1] - 6jk“l1...lr7

T
A i _Z \ si i gA
[Yl’ ) jlj2|j3---jr] - 6]8 J132133--Js—iVis+1---dr V5j1j2|j3---jr’
s=0

7;/

7: J—
[5jk\l1---lr’ 5j/k’\l’1...l;] =0.

We shall endow H,, := U(h,,) with a canonical Hopf structure, which is noncommutative,
and therefore different from the standard structure of a universal enveloping algebra.

Proposition 7.5. 1. The formulae
AXp=Xp®1+1®Xp+ 06 @Y7,

AY =Y/ @1+10Y/,

uniquely determine a coproduct A: H, — H, @ Hy, which makes H, a bialgebra with
respect to the product m: H, ® H, — H, and the counit e: H,, — C inherited from

U(h,)-

2. The formulae o
S(Xy) = =Xy + 05, Y/,
S(Y7) = -Y7/,
S( ;k) = ;’ka
uniquely determine an anti-homomorphism S: H,, — H,, which provides the antipode
that turns Hy into a Hopf algebra.

The notation is justified while one proves that the subalgebra of £L(2(;) generated by the
linear operators { X, Y}i, 5;'14; | i,j,k =1,...,n} is isomorphic to the algebra H,,. The action
of H,, turns 2, into a left H,,-module algebra. Morover to any element h' ® ... ® h? € Hb
we can associate a multilinear differential operator T" acting on 2y, as follows

T(h'®...@h)(d',...,a") = h'(a1) ... hP(ay).

The linearization T': THL — E(Q[%[p, 2Ar) of this assignment is injective for each p € N.
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