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Abstract

We consider barotropic motions described by the compressible
Navier-Stokes equations in a box with periodic boundary conditions.
We are looking for density ¢ in the form ¢ = a + 7, where a is a
constant and 7|—¢ is sufficiently small in H?-norm. We assume ex-
istence of potentials ¢ and ¢ such that v = Vo + roty + fvdz.
Next we assume that V|—g is sufficiently small in H?-norm too.
Finally, we assume that the second viscosity coefficient v is suffi-
ciently large. Then we prove long time existence of solutions such
that v € Leo(0,T; H2())NLa(0,T; H3(Q)), v+ € Loo(0,T5; HY(Q)) N
L2(0,T; H?(2)), where the existence time T is proportional to v.
Next for T sufficiently large we obtain that v(T") is correspondingly
small so global existence is proved using the methods appropriate for
problems with small data.
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1 Introduction

We are looking for existence of global regular periodic solutions to the fol-
lowing problem

ovy + ov - Vo — pAv —vVdivo+ Vp=of in Q XR,,
(1.1) or +div (ov) =0 in Q xRy,
V]i=0 = Vo, 0li=0 = 00 in €

where v = v(z,t) = (vi(z,1t),v2(z,t),v3(2,t)) € R is the velocity of the
fluid, o = o(z,t) € Ry is density, f = f(z,t) = (fi(z, 1), fa(x, 1), f3(x, 1)) €
R3 is the external force field, p = p(p) and p, v are constant positive viscosity
coefficients. 0 C R?® is a box and the periodic boundary conditions are
assumed on 0f2.

Looking for weakly compressible motions we assume that
(1.2) o=a-+mn,

where a is a positive constant, 79 = n|;=¢ is sufficiently small and the second
viscosity coefficient v is sufficiently large.
In view of (1.2) we write (1.1) in the form
(a+mn)(ve+v- Vo) — pAv —vVdive 4+ ayVn

(1.3) = (po(a)) — pola+n)Vn + (a +n)f,
'U’t:O = Yo,

where p, = j—’;, ap = p,(a) and

+v-Vn+adive +ndive = 0,
(1.4) Uz n n
Nle=0 = Mo

Sometimes it is convenient to consider (1.3) in the form

Ut—l—v-Vv—HAv—KVdivv—i—@Vn
a a a
S oy N | Vdivv+@ 7 Vn
(1.5) aa-+mn aa—+mn aa+n
1
T oy Pele) mpelat )V + f,
U|t:0:’l}0.

Since we are looking for solutions to (1.1) with large v it is natural to
introduce periodic potentials ¢ and v such that

(1.6) v=Vy+roty + G,
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where G = ﬁ fQ vdzx.

From (1.1); » and assumption (1.2) we obtain

d

pr (a4 n)vdx = /(a+77)fd:£.
0 0

Hence

/vdx = 2{—/nvder/(a+77)fdxdt’+/(a+770)v0dx].

Q Qt Q
Therefore, —
1 '
G = m — [ nudz + [ (a+n)fdxdt' + [ (a+ no)vedz|.
Q Ot Q

In this case equations (1.3), (1.4), (1.5) take the form

(a+n)(Ve, + 1oty + Gy + (Vo + ot 4+ G) - V(V + rot 1))
— pA(Vp +rot ) — vVAp + agVn

= (pola) — pola+n))Vn+ (a+n)f,

Vli—o = Vo, rotili—g = rot iy.

(1.7)

Moreover, we assume that

(1.8) f=h+1

where f, is divergence free and f, is the gradient part. Then div f = div f,,
rot f = rot f,. Next we have

ne+v-Vn+alp+nAp=0

(1.9)
7]|t:0 = To-

Finally, (1.5) takes the form
(1.10)
Vi +roty + G+ (Ve +rot + G) - V(V +rot )

— 'L—LA(V@%—rotw) — ZVAgo—l— @Vn = T Ay
a a a aa-+mn

n : n 1
a+anlvv+aoa+nVn+a+n(pg(a)—pg(a+n))Vn+fr+fg,

U|t:0 = Up.

— VUV
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In this paper the following barotropic motions are considered
(1.11) p=Ao”*, »>1, A — const.

We need an equation for V7. To derive it we multiply (1.7) by £, apply
operator V to (1.9) and sum up the results. Then we have

Vi + %Vn ==V(v-Vn) = V(nAy) — %(Qvt + ov- Vo)
a a a
(1.12) + 280+ 2 (py(a) = pyla+ )V + o,
Nli=0 = 1No.

The aim of this paper is to prove existence of global regular periodic so-
lutions to problem (1.7)-(1.9). To show existence of such solutions we as-
sume that the initial density is close to a constant assuming that the norms
17(0) || 2(02), [|7:(0)| a2 () are sufficiently small.

Moreover, we assume that the second viscosity coefficient v is sufficiently
large. This implies that velocity v must be considered in form (1.6) because
divergence free and potential parts have to be treated differently. Therefore
we are looking for such solutions that V¢ in some norms is small but rot ¢
in these norms not.

The natural way to derive necessary estimates is the energy method. The
method was first applied to equations of viscous compressible heat-conduc-
ting fluids by Matsumura and Nishida in [MN1, MN2, MN3]. Next by
Valli and Zajaczkowski in [V, VZ]|. The free boundary barotropic case was
considered in [Z1, Z2]. Finally, a free boundary viscous compressible heat-
conducting case was considered by Zadrzynska [Za]. The method is natural
in the problem because v is considered in form (1.6) and the second viscosity
v is very large comparing to p so the anisotropic approach to velocity is
necessary.

Since ||7(0) || g2(q) and [|1¢(0)|| g1 () are small we denote the motion a weakly
compressible. However, we consider the periodic problem the proof can be
extended to motions with different boundary conditions.

In Section 2 some preliminary results are formulated and proved. In Sec-
tion 3 the main estimates for large v and time are shown. The estimates
are of an a priori type. However, for the local solutions they are real esti-
mates. The estimates are made without smallness assumptions on norms
of rot 1. This is possible thanks to the following two estimates: |[v||z, (ot
(see Lemma 2.2, Remark 2.3 and Remark 2.4) and ||v||z, (o) (see Lemma
2.9). These estimates are crucial for proofs of Lemma 4.1, Corollary 4.2,
Theorem 4.3 and Theorem 5.7.
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In Section 4 we prove existence of long time solutions, where the existence
time T is proportional to v. The existence is proved in the following way.
Having long time esimate proved in Corollary 4.2 we have existence by time
extension of local solutions.

The proof of Theorem 4.3 is based on the time extension of a local solution
and the derived long time estimate. The proof is understandable but not
explicit. To have an explicit proof we have to use the method of successive
approximations in the time interval [0,7]. But looking for considerations
in Section 3 such proof will be very complicated.

However, the long time solutions are not global. Therefore in Section 5 we
prove existence of global regular solutions. For this we need some decay
estimates (see (5.51), (5.52))which imply smallness of data at time 7" (see
(5.53)). Then considering problem (1.7)—(1.9) with small initial data at
time 7" (see (5.53)) we use the technique from [BSZ, VZ, Z1, Z2] to prove
existence of global regular solutions (see Theorem 5.7).

Now, we formulate the main results of this paper

Theorem A (local existence). Let v > 0 be given sufficiently large. Let
v = Vy +roty, o = a+n, a-positive constant. Let 1n(0) € Ly (),
1(0), Vp(0), 1ot 1(0) € T3(Q), f € L2(0,T5T1(RQ)), IVe(0)llrze) < 5.
[rot p(0)[Ir2) < ¢ [MO0)Ir2) < §5 [folorszor < 5, f € La(0, T3 T1(Q)),
f € Lg(0,T; L3(Q)) N L1(0,T; Loo(S2)).  Assume that there exist positive
constants g, and ¢ such that cv* < @, < ¢(0), where » € (1/2,1). Then
there exists a reqular long time solution to problem (1.1) expressed in the
form (1.6)-(1.9) such that /N ¢,rot ) € Lo, (0,T;T2(Q))NLy(0,T;T3()),
vV € Ly(0,T;T3(Q)), vn € Loo(0,T;T3()), and v € M(Q), t < T < v,
where T is the time of local existence and

[ollory < d@InO) ez, v IVe(0)lIrz0),
(113) ot (0)llez), VIOl vifolossagr I1flraoari@),
1 1

[ £1] £6(0.6:L5(2))NL1 (0.6:Loo (€2)))

where t < T, ¢ is an increasing positive function of its arquments and the
space N(Q) is defined by

1/2HV<,0HLOO(0,1&;F§(Q)) + lrot ¢l o.ur3c))

+ [[rot ¥l L, 0,603 + VIVOll Ly,6r30))-

[vllnen = v

For T > v we have a global existence of such solutions that.
To prove global existence of solutions to problem (1.1) we use the step by
step in time extension.
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The existence for t < T < v is shown in Section 4 but for ¢t > T > v in
Section 5.
Therefore, we have

Theorem B (Global existence). Let the assumptions of the Theorem A
hold. Let ||f,(t)||1 < ce™®, a > 0. Let f € Lyo(kT, (k + 1)T;T3(Q)) N
Le(KT, (k + 1)T’; L3(Q)) O Ly (KT, (k + 1)T’; Lo ().

Thenv € W(Qx (KT, (k+1)T)), k € Ng and (1.13) holds with interval (0,T)
replaced by (KT, (k+1)T), k € Ny = NU {0}.

Now we describe the idea of proofs of Theorems A and B.

Our aim is to derive a global estimate for regular solutions to (1.3),
(1.4) using presentation (1.9), (1.10). By the regular velocity we mean such
velocity that v € Ly(0,T;T3(Q)). Then we have a corresponding regularity
for n € Loo(0,T;T%(2)). This kind of regularity is necessary to estimate
nonlinear terms.

First we derive the inequality for v € L (0,7T; Lg(2)). Multiplying
(1.3); by v|v|"2, integrating over Q' we get (see Lemma 2.2)

: 1/r
r/2|2 /
(1.14) o)) + (/|V\v| | dxdt) < el s pr + VAP
0

+ C|f‘%,r,ﬂt + ool & [vol

where r < 6.
The second term on the r.h.s. of (1.14) is not controlled for large v. Hence
to control it we use the interpolation in the case r = 6

(1.15) |Aplig/76.00 < C|VA80’§,/30,Qt’V90|§,/£t7

where the mean values of Ay, VAyp, Vg are zero in view of periodic bound-
ary conditions. To estimate the last factor we derive the equation obtained
from (1.3); by applying the div operator
alp; — (1 +v)A%0 + agAn = —adiv (v - Vo) + div [—nu;

— v - Vo + (poa) = pola+n))Vn + (a +n)f].
Applying operator A™! to (1.16) yields

(1.17)
ap; — (L +v)Ap = —aA’lﬁxﬁxj (viv;) + aA’l&,;i(Agovi)

+ A7div [—nuy — v - Vo + (pla) — po(a+ 1))V + af,

+77f]—(77—7[77dx)—|—a7[g0td:c5D1+D2+F—ﬁ+a7[g0td:c,
Q Q Q

(1.16)
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where f = ﬁfﬁ’ n=n—fndc.
Q Q

The aim of this paper is to show that the quantity ¥ = v|Vp|s 120t is
bounded for any ¢t € Ry. Then we see that [VAp|s o ar < c||Acp||W22,1(Qt) <

c|V|3120:. Hence we have to derive that 1/1/3|V90];/St < 22 a, 8 positive

constant numbers. This is the aim of Lemmas 2.3, 2.4 and Remark 2.2.
First we show the idea of the proof of Lemma 2.3. Multiplying (1.17) by ¢
and integrating over €2 yields

O Lo+ (u+ )Vl = / Dygde + / Dpir + [ Fods
(1.18) o

—/ﬁgoda:%—a][gotd:c/gpd:c.

Q Q Q

We need to obtain such estimate for |Vo|s o that
c

(119) |V()0|27Qt S —, a > ].,
VOC

where ¢ depends on such norms of v, Vo, n that Vi, v € Ly(0,T;T3(22)) N
Loo(0,T5 1)), 0 € Loo(0, T;TH)).

The dependence can be strongly nonlinear because small parameter 1/ (v
is assumed to be large) helps to get an estimate by a perturbation argument.
But the first and the last terms from the r.h.s. od (1.18) will not imply
estimate (1.19). They must be treated in the following different way

Dily/r-
’/Dlgpdx _/I e 4 < | 1|;/(p 2|2

’Dlyléél—%))
p/(p—2 2
<M+y)’v30|2 [(,U‘f'V)%CP*]l/(l_%) 90|27 » € (1/271>

afgpgix/cpdx =0,

Q Q

l\i)lr—A

and

because we assume that ¢ = ¢’ + L, [¢'dz = 0 and L is some arbitrary
constant, where 0 < ¢, = ming ¢. ¢ can be chosen positive because it is
determined up to an arbitrary positive constant L.

Using that f = div I’ we get

‘/F(pda: :‘/F'Vgpdx
Q Q

< e[Vly + c/e|F'];.
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Since |D;| < c|v|? we derive (2.31) in the form
2p/p 2 ),2/(1—5),Qt
(1 + vt/ )

Al + (1 + 1) Vollar < exp ( [

(1.20) u+u{|A<’0|3/2ooQtA2+ [9[6 0,00 [V ]3,
+ ’77|6,oo,9t‘7)’§7oo,9“4% + ’77|37oo,Qt‘V77’§7Qt + |77‘§,oo,ﬂt|f‘g,9t

1B+ I} + a|¢<o>|g] .

Lemma 2.4 implies the bound for ¢.
Let k = o ne Lo(0,T; H*(Q)), v € Loo(QT), f € L3(QF). Then

) ) (2/0)(1+1/)

|Plooiar < 2k |1+ ct(H”)/”Omeas(H")/pOQ(

(1.21) ptv

(7l [0]oo \f|3,m>} _—

where t < T, » € (0,4/3), 3/po+2/ro = 3/2 and ¢ is an increasing positive
function. Next Remark 2.2 gives

(1.22) = =, <o,

where ¢ is defined up to an arbitrary constant L but =, not because 7,
depends on k = max{|3(0)|, 1} which is independent of L.

Finally we have to estimate the second term on the r.h.s. of (1.14). In
view of (1.15) we have

(1.23) V| Aplig/rear < CV2/3|VAQO|§/030 Qtyl/3|Vg0|;,/£t = 1.

Recall that U(t) = v|Vpl31.20:t. Our aim is to show that there exist positive
constants oy, B, k =1,2,..., such that

Yo
(1.24) I < Zk: -
By imbedding we already have that
(1.25) I < OBVl o,

Hence, we have to use (1.20). First we have to estimate the argument of
exp function. We assume that

(1.26) a1 < (+v)%p,.
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Then the term under exp in (1.20) is bounded by
c|v|§,/£3;), »=3/2-3/pe (0,1) for pe (3,6).
Assuming that
(1.27) O] < = ol < =
we obtain (see (2.62) and (2.64))

c
(128) |77‘r,oo,Qt S ;(\Ij + C)
Then (1.20) implies

[Velaar < (|vl6ccqrs [vel20rs [VNlaar, [ fla0r)-
(1.29) 1 c
2T )+ sle(0)]z]
Assuming additionally that

C
(1.30) (O < =, x> 172

and using (1.30) in (1.29) and the result in (1.23) yields

I < ¢(Jvls.co0ts |Vel2.0t5 | VD208, | fl2ar)-
(1.31) SRR

1/3 + 173 + y=/3-1/6

Then from (1.14) for r = 6 we get (see (2.82))

¢ 1/6
[v(t)]6 + (/ ‘V|U|3|2d$dt/> < c|nlisg/m6,00
(1.32) i
+ O([v]s00.0ts [Vel20rs VN2, | flaoe) (¥ /03 + W23 /13
+ 2B J Y el fligraar + cleol i lvols = Di.

Finally, Lemma 2.9 implies
0i(t)]3 + 1l Vo300 + VIAG5 00 < exp(|n]3 200

+ (Inl300.00 + DY + DAT) - [Inef2.00 + 1017 o e (DYA]

+ IVl 100 AT+ [l 00) + [fils.0r + oo ve(0)[3]
= D%.

(1.33)
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Let us introduce the quantities

U(t) = v|Vols12.0t,

1(t) = VIVels 1 s + 10t 5 o 0.
(t) V|v90|§,1,2,9t + |1"0t¢|§,1,2,9t7
() ’/(\V@g,l,oo,ﬂt + ‘V(P‘il,zﬂt)a

(t)

t) = |rot ¢|§,1,oo,9t + [rot ¢|§,1,2,Qt-

X1
X
o]
o3

From (4.2) we have inequality

v o, v
X%(t) +X§<t) + \IJQ(t> S ¢(D17D27A17 ;7 \/_1;7 ;7(1)2’
(1.34) ;

+ 310 (140

1,1,2,0t, |n|271,oo,Qt7 |77|2,1,2,Qt>

g,l,oo,Qt)\II2 + V|90(0)|§,1 + [rot ¢(O)’§1

Hence for v sufficiently large there exists a constant A such that
(1.35) X(t) = xat) + xo(t) + ¥(t) < A

there is such restriction on time that ¢ is proportional to some positive
increasing function of v. But large time is not convenient because strong
restrictions on v, f follow from time-integrals norms. Therefore to derive
estimate (1.35) for all ¢ € R, we perform the procedure step by step in time.
In Theorem 5.7 we prove that

(1.36)  X(t)< A, tel[kT,(k+1T], keny=]|uU{o}

where A does not depend on k.

The derivation of such estimate is possible thanks to sufficiently large v, T
and sufficiently small [V (0)|2.1], [17(0)2,1-

In the proof is used natural dissipation mechanism in the compressible
Navier-Stokes equations connected with viscosity coefficients p and v.
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2 Notation and auxiliary results
We use the simplified notation

lullzy) = lulp,  [lullms@ = llulls, [[ullwg@) = llullsp,

l t 1/r
= 3 0l _ ( / |u<t’>|z,ldt') |
7=0 0

/ /g
s = ([ o)
0

lullzeems@) = lullsron l[ullz,ouws@) = llullsprar

Introduce the spaces
F(Q) = {u: |ulp; <00}, 1<k, [ k€EN,.

By ¢, ¢, ¢o, 0 € N, we denote always increasing positive functions of their
arguments.

First we obtain the energy type estimate for solutions to problem (1.1).

Lemma 2.1. Assume that (o,v) is a solution to problem (1.1). Assume
that p = p(0) = Ap*, » > 1. Assume the periodic boundary conditions and
that f € Looo(2 x (KT, (k+1)T)), k € No, a/2 < o < 3a/2, 0o € Ly(Q),

f € Lo () and p/ > 0. Let sup,ey, [, kH In(t)|adt < uT/2 and
(k+1)T
B =cswesp [ [ 0] Ul oonoram + sl
0
kT

+leoli 115 1,00 + loollvol3].
fQ ( QOUO %él Qat)dx < o0
0o € LQ(Q), Vo € LQ(Q)

Then there exist positive numbers p', u” less than u such that

t

t
1 A
[ (et + 270 Jawwst [l + [ vty
0 0

(2.1)
< ce!'T (1Bi + a(o)) = A2,
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Proof. Multiplying (1.1); by v, integrating over {2 and using the periodic
boundary conditions, we obtain

1
) /(QatUQ + ov - Vo?)dz + p|Vol; + v|divol;
(2.2) ¢
—|—/Vp(g) ~vdr = /gf-vdx
Q Q

Adding the identity

1
3 /[Qt + div (ov)]v*dr =0
Q

we derive from (2.2) the equality

1d
(2.3) 5@/Qv2d$+u|V1}‘g+I/|diVU|§—|—/Vp(Q)'de:/gf-vdx.
0 0 0

Using that p = Ap*, » > 1, the last term on the Lh.s. of (2.3) equals

(2.4) Q/V}D(g) ~vdx = Aﬂ/v -Vo*dx.

To use (2.4) in (2.3) we multiply (1.1)2 by ¢*~!. Then we get
0" Moy +v- Vo) + o*dive = 0.

Continuing, we have
1 1 .

(2.5) —010” + —v - Vo* + o*dive = 0.
V4 V1

Adding =1v - Vo~ to both sides of (2.5) yields

10 B . B _%—1
;&Q + div (vo”) = >

v-Vo™.

Integrating the equality over (2 and using boundary conditions gives

A A(e—1
Ad odx = L/U - Vo*dx.
w dt »

Q Q
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Hence

(2.6)

A
—1

Q.l&

ya

t/g”dx:A/v-Vg”dx.
Q Q

In view of (2.4) and (2.6) equality (2.3) takes the form

d 1

A
(2.7) %/ (591}2 + :g") dx + p|Vol5 + v|divo]; = /Qf -vdz.
Q Q

Using that f vde = G, where G is defined between (1.6) and (1.7), and
Q
applying the Poincaré inequality we get

d 1 A .
— —ov? + ———0" |dx + pfv|3 + 1 ||v]|? + v|dive|d < [ of - vdx

dt 2 x—1
Q Q
2>

2
—l—‘/govod:v
Q

Exploiting that a/2 < p < %a and introducing the quantity

+dGP < [ of vda+ C<|n|§|v|§ " ’/@fdxdt’
Q Ot

and using that

'Q/Qfmdx

-| [ varvae

C
<< [ oo+ SloBIfE
Q

we obtain

d / " 2 : 2 2
(2.8) Fetpatp [v]l7 + v|divel; < enlsa+¢f,
where

B = looli|f15 + leolil 1% 1.0 + leollvolz + pa™.

Looking for the energy estimate with the bound independent of time we
use the step by step in time argument. Then we consider (2.8) in the time
interval [kT, (k+ 1)T), k € N.
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From (2.8) we have

o (t)eXp(ut—C/\n )|

+exp <u’t . / |n<t'>|§dt') (" |[0]2 + pldiv of2)

t
< Bexp <u’t —cf |n<t’>|§dt').
kT

Integrating with respect to time we finally get
(2.9)

t

alt) + e (H) / (0|2 + vldiv of2)de’
kT

t t t
< exp ( e / |n<t’>\§dt') / Bexp (u’t’ e / \n<t">r§dt") at
kT kT kT
t
a(kT) exp ( — ' (t—KkT)+ c/ |77(t')|§dt’).
kT

Omitting the second integral on the Lh.s. of (2.9) and performing integra-
tion with respect to time we obtain the inequality

a(t) < exp {C/t In(t) gdt'} (cfo)
kT

a(k:T)eXp( '(t — kT) + /|n |2dt>

where By = |ool7| f 12 2.0x ez T 1@+ |eol7] 12 1,00 + 10ol3]vol3-

(2.10)
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Setting ¢t = (k + 1)T yields

(k+1)T

a(k+ 0D <eple [ ki)
KT
(k+1)T
+ a(kT) exp ( —u'T+c / \n(t)\%dt)
kT
(k+1)T
< B(T) + a(kT) exp ( —uT+ec / ]n(t)|§dt>,
R
where
(k+1)T
B = swesp e [ o)l
kENg
kT
(k+1)T 4

Assuming that supycy, (t)dt < p/T/2. We have by iteration

kT n

B(T)

1—eHT/2

a(kT) < + a(0)e T2 | e N,.

Using the estimate in (2.10) yields
2B(T)
(2.11) a(t) < Tt + a(0), te kT, (k+1)T).

From (2.9) for ¢t € (KT, (k + 1)T], k € Ny, and (2.11) we obtain

t t
1 A
/ <§Qv2+—1@%)d$+l// [+ v [ o) ar
=
Q kT kT
/ B(T /
< [ceu T/25, 4 1# + a(())] Tt e KT, (k +1)T).

- — e HT/2

The above inequality implies (2.1). This concludes the proof. O
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Lemma 2.2. Assume that r > 2, of € LQ%(Q), p(o) —pla) € L (),

r+1
2
dive € L%, vV =uy+ sy, ”71 sufficiently small. Then

1 d
g\vrm— / V[0 Pda + & / o |V

+ 2 [ div oo %de < ——|p(0) — p(a)[s. + clp(o)
2 VT/ r+1
Q
—p(a) — vodivol’s. +clof[ s+ clofy,
1 2r+1

(2.12)

where ko = ko(p, V—j), c=c(r, ko).
Proof. We express (1.1); in the form
(2.13)  ov + ov - Vv — pAv — 1 Vdive + V(p — p(a) — nedive) = of,

where v = vy 414, v; > 0,4 = 1,2. Multiplying (2.13) by v|v|" "2, integrating
over €2, using (1.1)s and boundary conditions yields

1d
dt olv|"dx + u/Vv V(v dx + 1, /div vdiv (v]v|""?)dx
Q Q
(2.14) — /(p — pla) — rdive)div (v|v]"?)dr = /va|v|r_2da:.
Q Q

First, we consider

/vu (o]0 ~2)d

= u/ |Vl lv|~2dx + ,u/kavk (r—=2)|v["*V|vldr = I, + L.
Q

Using that v, Vv, = £ V|v|* = [v|V]v| we have
(r—2) /|vr 2|V |v||Pdz = (r —2) /||v|2_1V|v||2da:

r/2| dr.
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To examine I; we use the formula

(2.15) Vul? = |[u*|V

e
i / |v
Q/ |v
/

U
Jul

2
+ |V|u|‘2

Then I; takes the form

—l— ‘V|U||2)|U|T2d$

—|— |U|T2‘V|U||2:| dx

Ju

—|— “U’glv‘ﬂﬂ dx

=pu | [o]"|V

‘ dx+—/\vy /2| da.

Hence

4(r — 1
TS = B g
Q Q

Next, we consider

Jy = yl/divvdiv (vv|""?)dx

Q
=1 / |div o] |v]""?dx + 1, /divvv Vo[ 2dr = I3 + 1,
Q
where
Iy =uv(r—2) /div vv - V| [v] " dr.
Q
Then

|1I4] < vi(r—2) / |div v] ]v]T_QIV\Ude.
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Employing the above expressions in (2.14) one gets
(2.16)

1d
syl 4L de+ /|V\v|7"/2\ dx—i—,u/|v|
Q

+V1/ydiw|2;v|r2dxg Vl(r—2)/|divvl|v|r2‘V|v\|d:€

Q Q
+ /[p(g) — pla) — rpdivol[div o] 2 + (r — 2)|v|"3v - V|v|]dx
Q
+ /Qf”U‘UlTQdCE :
Q

The first term on the r.h.s. of (2.16) is bounded by

1
—V1/|d1VU| lv|"™ 2d:13+—yl r—2) /|v|r 2}V|v|| dz,

where the second integral equals

T 4
D=2 [ ol Ve = A2 / Vlol 2

281
Q

The second term on the r.h.s. of (2.16) can be expressed in the form

/(p(g) — p(a))div v|v|r_2dx — Uy / |div U|2|U|T_2dl’
Q Q
+ /[p(g) — pla) — vadivol(r — 2)|v|" v - V|v|de = J, + Jo + Js,
Q

where

| < _/|dmy ol 2d:1:+—/|p o) 2o 2dz

and

Tyl < (r —2) / 1p(0) — pla) — vadiv o] [o] [V |v]|dz

< 2= [l VP

Q

/ Ip(0) — p(a) — vadivojo] " ?dz = K;.
0

r—2

+
283
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Hence we have

K1 = 263

r-2 / ‘V|U|T/2|2dl‘

-2
4! /|p — vodiv v |v| " 2da.
263

Employing the above estimates in (2.16) yields

(2.17)
1d Alr —Dp 4wy (r — 2)° 263 r/2
dt olv|"dx + { = R /}V| | ! dx

—I—,u/|v d$+|:l/—@——:| /|d1vv| lv|"2dx
/ ple) — pla)Plopde + >
ple 253

+/Qf-v|v|r2dx.

Q

(0) — pla) — vadiv ||| 2dz

We set

(218) &1 = —, &=

then coefficient near the second term on the L.h.s. of (2.17) equals

Ar—1)p 41/12(7’ — 2)2 2 2u(2r — 3) 4yf(7“ — 2)2

2 vr? r2 r? vr?
(2.19) | > 9
_ 4 2r—=3)u 1 o Vi
) B A i

which is positive for r > 2 and v?/v small.
Coefficients near the third and fourth terms are equal, respectively,
v
@ and —

To have ky > 0 we obtain the restriction on 14

2
vi _ w2r=3) _
_y<—2(r—2)2_d’ so v < dyv
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Then
vy > v —d\/v.

Hence for v large vy is close to v

Then (2.17) takes the form

(2.20)
1 d
r dt

2

olv|” dx+k0/{V|v T/2‘ d:p—f—,u/|v| dx

/\dlvv| lo|"2dx < ~ /]p a)|?|v|"2dx

—2
(r /| a) — vadiv v u|™ 2dx+/|gf vl |v|""2dz.

Consider the second term on the Lh.s. of (2.20). We use the Poincaré
inequality
)

91728 = (ol - | f 101200
Q

and the estimate
IV[o]"?[3 + [v]} > clvs,.

Then the second term is bounded from below by

v coko .
kol V1025 > cloly + == \ 5 + IVIU "2~

/|U|T/2dl’ :

Finally, we use the interpolation

‘/\v[’”ﬂd:v

1 B 1 .
5 [ ()~ p@Ple e < Jlple) = pla) ol
14 1% r+1

2
<elv|. + ¢/elvls.

Next, we have
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CZ2 (o) = pla) = v ol

21
Q
_9)2
G = L () — pla) - vadiv ol fols;?
r — 2)2 sm ) 1 | r
< (2— [ 5L |v]5, + /2 Ip(0) — pla) — vedivo|"s. | = Lo,
K r—2 555 o
’/Qf.v\vlrmx §/|Qf| |U‘r71dx§ ’Qf|%|v|§;1
@ Q
r/(r—1)
o 1
= " r = L
— 74/( )|U|3T €E|Qf|2;3+l
We set
52/(T_2) L _ Foco (r—2)° 52/(T 2 koo 52/(7" 1) ~ koco
T‘/(T—Q)V_ 6 ’ 2# T/(T—Q)_ G ' T‘/(’r—l)_ 5
Then

ko c(r, k
L < ool + L0 pg) — pla)

s
3Ty
r+1

Ly < CO ‘/U‘Sr + c(r, ko) |p(0) — pla) — vodivol’s,

r4+1

L < CO ‘/U‘i%r + ¢(r, ko)‘@f’ 3

Employing the estimates in (2.20) implies

1 d /2|2 ?

olv|” dx—i— — [ [V]v]"?| dx—i—u [v|” dx
9221 s )
(221) +§/@wa WSVWW@—M@gE

Q

+clp(o) — pla) — vadivo|’s +clof| s+ [v]3.
r+1 2r+1

This inequality implies (2.12) and concludes the proof. ]
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Remark 2.1. We integrate (2.12) with respect to time. Then we get

1
/Q|v| dx+—/‘V| |r/2| dxdt’ +,u ‘ da:dt
/lleU| lv|"2dxdt’ < T/2/|p 3r dt’
(2.22)
—|—c/\p a) — vadiv v|’s, £ dt’ —l—c/|gf| s _dt!
+ = /go|vo| dx + cAj
Q
= A5, (1)

Since ¢ = a + n, we obtain from (2.22) for n so small that |n| < a/2 the
inequality

(2.23) (1)), < cAg, (L),

Since p is bounded from below and above and since v, is close to v we obtain
from (2.22) the inequality

1 k

L —°/|V|v|r/2|2dxdt' < c/|n|zr dt’+cu’“/|Ago|T3T dat

r 2 r+1 r+1
(2.24) t

1
+ C/ | f1 50 dt' + =] 00|s|vo]l + cAj.
2r+1 T

Simplifying, we get

(2.25)
1 - Ko /2|2 / v
%Ivlw o | [ VIl Fdedt < elnl s o + V]Ap| s g
Qt
el far = ool o), + cA
TSR \7‘/,,_’. 0 o0 0 r ].'

Since Ap € W' (Q) then Ay € L%J(Qt) with arbitrary r, because

3 3
i 2 r

< 2 which holds for any 7.
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To derive a global estimate for solutions to problem (1.1) we need that the
first two terms on the r.h.s. of (2.25) are estimated by quantities multiplied
by the small parameter (1), o > 0.

However, the second term on the r.h.s. of (2.25) contains the coefficient
v. This means that we need more delicate estimate to get the factor (%)a,
a > 0.

For this purpose we consider the interpolation
(2.26) Al s < e[ VAQ[| Vel ™,
where 0 is a solution to the equation

3(7’—1—1)_1:%_29‘
3r 2

Then 6 = 3 —1/2r, 1 — 60 = {1 + 5-. Therefore

T4

(2.27) |Agp|

3r_
r4+1

2—1/2r / 1/441/2 Yr
o < VAL ( / (V|41 ’“”‘dt) ,
0

where (1/4+ 1/2r)r < 2 for r < 6. For r = 6, (2.27) takes the form
2/3 1/3
(2.28) Aplis/rar < VAR 0 Vel

To estimate the last factor on the r.h.s. of (2.28) we need the following
equation derived from (1.1); by applying the div operator
(2.29)

alp, — (g + V) A% + agAn = —adiv (v - Vo) 4 div [-nv, — qu - Vv

+ (po(a) = pola+n)Vn + (a+n)f].
Applying operator A™! to (2.29) yields

ap; — (n+v)Ap = —aA_lﬁxi(?m].(vivj) + aA_lf)xi(Agavi)
+ ATV [ — v - Vo + (p(a) — pela + 1))V + (a +n) f]

(230) (- ][ndx) + a][gotdx

Q Q

=D+ Dy + F— (n—j[ndx) +a7[gotd:z:,
Q Q

Wheref:@f.
Q
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Integrating (2.30) over {2 we obtain identity in view of the periodic
boundary conditions.
To obtain an estimate of the term V\A(p[ Bt which appears on the

r.hs. of (2.24), in terms of the function \I/a/uﬁ, where o > 0, § > 0,
U = v|Vy|s120t, we need the result

Lemma 2.3. Let the assumptions of Lemma 2.1 hold. Let A, be de-
fined in Lemma 2.1. Let |n| < a/2. Let 0 < ¢, = mingp. Let v €
Lgp/(p_g)g/(l_x)(Qt), A(p c Lg/gyoo(Qt), n e L67oo(Qt>, Vn € LQ(Qt), Uy €
LQ(Q;), 1136 Lo (), fg € Leys2(Q), f € Lao(QF), p(0) € Lyo(Q), p € (2,6),

= 3 7 5
Then
2 2 clv @1/)(/119 %2) ),:2/(1=3) .2
alp(t)lz + (1 +v)[Vlyor < exp ( (1 + v)=p.] /0=
fg \fgotdﬂdt’
3+ ) |8 A+ i i

+ ‘n’g,oo,ﬂtw’g,oo,ﬂtA% + \W’g,oo,m’vn’%,m + ’fg’g/s,znt + W%,m

0 el F ) + al@(O)@] .

Proof. Multiplying (2.30) by ¢ and integrating over 2 yields

O Ll + (e + ) Vel = / Digds + / Dagds

+/F<pdx—/ﬁ<pdw+a7[<ptdx/gpdx,
Q Q

Q Q

(2.32)

where 7 = 1 — f ndzx.
0

Now we estimate the particular terms from the r.h.s. of (2.32). The first
term is bounded by

*

D
(2.33) ‘/chpdx /' e, <| ) Dl = 1,

where 2 < p < 6. Let a = wl";ﬂ. Then we use the interpolation

L2 = a'|gl, < a2V Vply + =7 gla),

24 ?Z123B” 28—-1-2020



where » = 3/2 —3/p.

Settlng 81/%0[1/2 — (M+ l/)l/2 we have e = (,U«TW)%/Q
Then 1/201
/2o 1/ (=) _ al/20—)
(Iu_+_ V)%/Q(l—%)
Therefore
1 , col/1=22) )
L < i(ﬂ +v)|Veols + (1 + v)/0=) |l
(2.34) 1/(1=5)
L O L= S
5 M Pl2 (1 + )=, ) /(=) Plas

where | Dy, < CZ?,j:l |uvj, for any ¢ € (1, 00).

Consider the second term on the r.h.s. of (2.32). Integration by parts yields
/Dggpdx =— / A Y Apv) - Vdr = 1.
Q Q

Hence

|| < e1| V|3 + c/er| A7 (Apv) 5 < &1 Vl5 + c/er] Apuld 5

(2.35)
< e1|Vyls + c/e1| g3 plvfs.

dr < &3|Vp|3 + c/es| F'|3,

Consider the third term on the r.h.s. of (2.32). Using that F' = div F” we
where

get
‘/F-gpdm :’/F'~ch
Q Q

(2.36)

[F')3 = AT vy — v - Vo + (py(a) — pola +0)) Vi +afy +nfll3
< c(lnvt|§/5 + [nv - Vv|§/5 + |77V77|§/5 + |fg|§/5 + |77f|625/5)
< c(Inl3lvels + [nlglolg Vo ls + [nlgIVals +1£4l55 + Inl31£15).

We express the fourth term on the r.h.s. of (2.32) in the form

/ﬁgpdm = /ﬁ@dx = Is.

Q Q

Hence
|13] < e3|Vl3 + ¢/es]nif; < es| V|3 + ¢/es|nl3.
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Finally, the last term on the r.h.s. of (2.32) is bounded by

|f wrdz|

*

|0]3.

Using the above estimates in (2.32) and assuming that £; —e3 are sufficiently
small we derive the inequality

1/(1—%)
c| D1l -2y | | edal

d, o 2 2
— <
adt‘gob + (u+v)|Veply < (1 + )=, ] 1/0=) o ol
(237) +L A 2 2+ F12+ 2
LL—i—I/H 80‘3/2‘7}‘6 [F']3 + [nl3]
— od? 2+C Aol 2 4 FY2 4 (2]
cd”[pl5 —M+V“ ‘P|3/2|U|6 [F']5 + [nl3]
From (2.37) we have
(2.38)
p t t
aa(|g0|§exp {—c/d%t’)dt’}) + (1 + v)|Vol3 exp {—c/dQ(t’)dt’}
0 0
t
c
Apl3plvls + |F')5 + nl3le {— /d%’dt/].
_,u—I—I/H ¢’3/2‘U|6 |[F']3 + [nl3] exp c (t)

0

Integrating (2.38) with respect to time implies

t

OB + (-4 1)Vl <o o [ )ar]|

(2.39)
c
18P s A2+ 1F B+t ) + al OB
This inequality implies (2.31) and concludes the proof. ]

Now we obtain bounds of ¢ from below and from above. We follow consid-
erations from [LSU, Ch. 2, Sections 5, 6].

Lemma 2.4. Let ¢ be solution to (2.30). Let p(0) € Loo(€2). Assume that
k=2 and |p(0)|e < L. Assume that n € Lo(Q"), Vi € Le(Q'), v €

P P

L3o/(22-9. ("), v € Lagja—3.:)(2") N Leos17-9:0) ("), fgs [ € Laoj22-9. (),
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€(0,4/3),t <T. Then

|30|oo,§2t < 2]%[1 + 22/%+1/){2 (57)1+1/”t(1+")/mmeas(H”)/pO (Q)]

=7, t<T,
(240) 3,2 3 5, ¢ 3,2 9
po ro 2 (ntw)te’ p o q 2
Y= (MJF—CV)l/q(’UBO/(z;_?,K),Qt + G, 1)) = WGO(% t),
where G is defined in (2.50).
Proof. From (2.30) we have
apr — (p+v)Ap
(2.41) = —aA7'0,,0,, (vv;) + aAT 0, (Apv) + F — 1 + ajigotdx
0

Let o = max{o® (z,t) —k,0}. Multiply (2.41) by ¢®) and integrate over
2. Then we have

thlso 54+ (n+v) |V 3

= _/A_laxia%‘ (Uivj)w( )
Q
(2.42)

—I—a/A_18 NUANGOR I (k)dx—i—/Fgo(k)dx—/n(p(k)dx
Q Q

—|—a/7[got Yda' o®) (z)dzx.

k< k.

Assume that

Integrating (2.42) with respect to time and using k& > k gives
(2.43)

1™y = ale®@ @13 + (1 + ) IVeM[5 a0 < clvv]y g ar 0™ [pgsr
+ C<|A¢U|p gLAL () T C|F|p AL (¢ )|<P |p,q,ﬂt + |7_7|p’7q’,AZ(t)|90(k)|p7q79t

+Sup/|<pt(:13,t)|dx//|g0(k)(m,t)|da:dt,
‘ Q 0 O
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where %—i—%:%and %+§:1,%+%—1and‘4k( )={ze€Q:p(x,t) >k}
Then J; + 2 =7/2.
Now we have to estimate |¢*)|,, o by the norm on the Lh.s. of (2.43),

where we have to take under account the coefficient u+ v which is assumed
to be large. From [LSU, Ch. 2, Sect. 3] we have

(2.44) el < o™l 2 Ve®
Let /8 be a power function of (p + v). Then we have
BloW e VP < 87200 o + el e
Comparing this with the norm from the Lh.s. of (2.43) we have
B2 = (u+ )" so B=(u+v)0

Then, (2.43) takes the form
(2.45)
c
o™ () la,00.00 + (1 + 1)V 00 < g o e A

1 1
—|\F|y o +
(ILL + V)l/q‘ |p »q ’Az(t) (

p+ v)t/a
1 / L \VE
+m|@0t|1,oo,m(/|Ak(t/)|q/pdt,) ~
0

Now, we examine the terms from the r.h.s. of (2.45). Examine the first
term. Let h = v -v. Then we have

c 7/ 1/q
= /
(n+ y)l/q‘hb’vq’,fli(t) = (M (AL < ( |h|P d:c> dt)

+ (’A90U|p AL (¢ + |77|p 4 AL( ))

Ag(t)
. t 1/xp’ . 1/p'Nq4d 1/¢
< / / ldx / |n|P> dt’
(1 +w)H/e
0 A (t") A (t")

A
m(/lfl ()7 |nJg, /th’>
c o 1/vq 1/~'¢
< ]Ak(t’)ﬁq P dt! | N =1
+ v)l/a (/ * ’
(h+v) /
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where 1/X\ + 1//\' 1, 1/7—1— 1/ =1, |Ak(t)] = measA(t), u(k,t) =

iAo, 2+ 2 2

Let 2o = }Z,, 1/fyq = ”" , where 5 > 0. Then v¢' = 1%, \p/ = 2.
Since p’ = @ +%) 5. 4 = (1+TO) we have the following two equations for pg, o,
3 2 3 31 A 201 7
(2.46) 3,2 3 AL 2y T
Po To 2 Po T'o 2
Hence, we obtain
2 7 3
—(14+2)(y=A) == —=(14 »)A,
To 2 2
(2.47) 3 - 3
“ 1 A—q)==—-(1
po( +tr)A=7) =5 - 51+
Consider the case v = X\. Then' =X, A = 30 + 3 and N = . Therefore

t A
C 145 N 3 /g’
I o) / B2 dt 1,
0

Since 3/p’ + 2/¢' = 7/2 we have that 3/p'X + 2/¢N = ;5 = 2= Let
=p'N, q. = ¢N. Then

3 2 4-3x

De Qs 2

where 0 < s < 4/3. For p, = ¢, we have that p, = 2o—. But A ~ v? so to
have I; bounded we need that

Y

C
(248) v € Lapja-3(Q), so I < TE)Ia ik, t) o 10130/ (a-30).01

Looking for solutions such that v € L, (0,¢; H*(2)) we see that (2.48) may
hold.

Looking for the second term on the r.h.s. of (2.45) and using the above
considerations we have to find an estimate for

| F|10/(4-3.0),0t
Using the form of F' we calculate
| Fli0/(a—3:0),0t = </ |A div [—nv, — v - Vo
2.4
(249) (4-350)/10
+ (pola) — pola+n))Vn + af, + nf]|** (4_3”)dxdt’) ,
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Now, we examine the particular terms from (2.49)

|A™ div () [10/(a-350),00 < N30/ (22-95) 10/ (4—3:) 0t
< 0 oo,0t [Ve]30/(22—9:0), 10/ (4—3:),02¢»
|A™div (v - V) |i0/(a-3:),0t < |A_15xiamj (n305) |10/ (4—3:),0t
+ AT 00, (1APU;)10/(1-3.). 01
+ [AT1 0y, (0, m0:0;) 10/ (4—800) 20
< C|77’OO,Qt|/U2|10/(4—3M),Qt + C|7]|oo,Qt|A§0U|10/(4—3u),ﬂ’5
+ | VIo?[30/(22-9.0,10/ (430,00 < €l oot [V]50(4—3.0) 0
+ €|N]oo,t | AP|20/ (4—350),0t [V] 20/ (4—3) ¢

+ c‘vn’30)\1/(2279z),§2t‘1}2‘30)\2/(2279%),Qt = Ji + Jo,

where 1/A\; + 1/ = 1.

Since 30\ 229
22_;%:6 we have that \; = 3 *
_22-9s
S0 Ay = 2.
Therefore )
Jo < €| VN6 00,0t |07 |30/ (17-95),10/ (4—3:0), 02t
< ¢|Vnle .00 |U‘go/(1779%),20/(473%),9t-
Continuing,

| A~ div (Po(@) = pola—+m))Vnlio/(a-s3.).0t < c[nVn30/(22-9:),10/(4-3:0) 02
< C|77|oo,ﬂt’V77|30/(2279%),10/(473%),Qta

where 223_09;{ <6505 < 22— 95 Hence, » < 1797. Finally, we have

ATV fyl10/a-32).0t < €| fol30/(22-950),10/ (4350 02t
and

|A~tdiv () h0/a=3:,00 < €|Nloo,at| fl30/(22-95),10/(4—3:) 02t -
Using the above estimates in (2.49) yields

| Fl10/(4=35),0¢ < ¢[|0]oo.0t|V¢]30/(22—95),10/ (4=3) ¢
+ |77’00,Qt|v|§0/(4—3%),§2t
+ 000,00 | A@l20/ (4—3),0t [V |20/ (4-35) 02t
(2.50) + V600,00 |U|%0/(17—9;:),20/(473%),@
+ |77|oo,Qt|Vn|30/(22—9;4),10/(4—3%),Qt + |fg|30/(22—9%),10/(4—3%),Qt

+ 100,01 f130/(22-9:),10/ (4—3),0¢]
=Gy (%7 t)
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In view of (2.50) the second term on the r.h.s. of (2.45) is bounded by

1 c
(b +w)la (1 +v)t/a
(2.51) |AQU|10/(a—35),0t < |AQ|20/(4—3:),0t [V|20/ (435,00 = G2,

10/ (1-3:0),0t = G,
G = Gl -+ G2 -+ Gg.

145
|Fly g < p(k,t) 7 Gy (1),

Considering the last term on the r.h.s. of (2.45) we have 3/p' + 2/¢ =
7/2, ¢/ = ro/po, 1/d" = (1 + =)/rg so ¢’ = ro/(1 + =), p' = po/(1 +
»). Then equation 3/py +2/q0 = 3/2, (3/po + 2/q0)(1 + ) = 7/2 imply
that » = 4/3. Hence the last term on the r.h.s. of (2.45) is bounded by
mwthm,ﬂtﬂ(k,t)%, where s = 4/3.

Employing estimates (2.48) and (2.51) in (2.45) implies the inequality

[ a0 + (1 + 1)V ()] 0
(2.52) c Lix
= (1 + y)l/qu(k’t) v (‘U’%O/(ZL—S%),W + G0 t) + [otle00t),

where we used that u(k,t) is finite, ¢ and rq follow from the relations

2 2
S 28 3 25 L 0<x<4)3
P q 2 po ro 2
We apply Lemma 6.1 from [LSU, Ch. 2, Sect. 6]. Then for k& > k we obtain
from (2.52) the inequality

145
(2:53) I ™ vy < v o (k),
where the norm of V' (QF) is determined by the Lh.s. of (2.52) and

c

Y= ( (”U|§O/(473%),Qt + G(%a t) + |90t’1,oo,Qt)7 t<T.

p+ v)t/a

Moreover, (2.44) is used in the form
1-2 2
(254)  1eWlpgar < B+ 1) e 28 Ve < BleW v,

where 3 = ¢/(u + v)/? appears in formula (3.2) from [LSU, Ch. 2, Sect.
3]. The g appears also in Theorem 6.1 from [LSU, Ch. 2, Sect. 6]. Then
Theorem 6.1 yields the estimate for ¢ > 0

143 1435«

(2.55) esssup o < 2k[1 + 2271/ (By) 141/ %770 meas o Q).
Ot
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Next we consider (2.41) in the form
a(—) — (n+v)A(—p) = aAilamiaxj (vivy)

—aA 0, (Apv) — F 417 — ay[gptdm.
Q

Repeating the considerations leading to (2.55) we derive the estimate for
p <0

(2.56) esssup(—p) < 7,
(913
From (2.55) and (2.56) we obtain (2.40) and conclude the proof. O

Remark 2.2. Since (2.41) is invariant with respect to the translation ¢ —
¢+ L, L = const, we can consider the function

L+o=L—(—p)2L—7=¢p.
We assume that L = 22 and we have that v, = ©2. So we take such ¢y that

Co — Co Cy
QO*ZL—’}/*: - :;, ¢, > 0.

Hence ¢, is used in the proof of Lemma 2.3.

The fact that ¢ is defined up to an arbitrary constant, say L, is connected
with the considered periodic boundary conditions. Therefore, we have some
freedom with determining the magnitude of .

Remark 2.3. To estimate the second term on the r.h.s. of (2.25) we need
(2.28). Then we examine

(2.57) V| Aplig/re0r < Cl/2/3|VAQ0’§7/§)O7QJ/1/3|V(,O|;/£,§ =1

Our aim is the following estimate for

«

v
(2.58) I<e—s,

where «, 8 are positive numbers and ¥ = v|V|31 20t

Hence

(2.59) I< 0\112/3u1/3|Vg0|1/3 = 1.

2,0t
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To derive the bound (2.58) for I; in the case of large v we need to estimate
|Vplaqr. For this purpose we use (2.31). To derive bound (2.58) from (2.31)
we need to know that the coefficient with exponent is independent of v.

For this purpose we assume that there exist positive constants cy, ¢z, ¢; < ¢o
such that

(2.60) ar < (u+v) 0. < oy

where 5 =3/2—-3/p,2 < p<6.
The second term under the exponent in the r.h.s. of (2.31) equals is bounded

by
1 t
——/'%gptdx dt
©x
0 0

Vi Vv
<—/|g0t/ ()0 |12Qz<

Pu v’

Then (2.39), which is a simpler version of (2.31), takes the form
(2.61)

2 1 P
al ()3 + (1 + )| Vo < coxplelvlyit 7D o/0mmar + cVEY fp.0):

| AR e + 1P B+ 11 )

+alg(O)]
From the problem for n

m+v-Vn=—aldg—nAp,  nli—o = n(0),

we have

t

In(t)], < exp(clApleo )| [ [Ap|-dt’ + n(0)]
(2.62) (0/ )

Y s
<exp (@22) (225 4 )L ), <o

(2.63) o)l < 2

Assuming that
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we obtain that
t
(2.64) 0l < P 1 ey)

In view of the assumptions of Lemma 2.4 we have

(2.65) |F'p e < i}f)(qf +ey).

Then (2.61) implies

c(t)(1+t)1/?

2.66 \Y% t <
( ) ’ 90|2,Q = (;U/_'_V)V

(U +c3) + ¢ )1/2|90(o)\2.

(n+v
Inserting estimate (2.66) in (2.57) yields

1/3
[<cw?? [1/1/3 {(1 +1)1/? (% + 9)}

V2
1 1/3
(2.67) + e (0)] ]

v, w2/3c4/3
/3 173

< C(1+t)1/6[ } + W38 o(0) |57,

We see that (2.67) does not have from (2.58).
In view of restriction (2.60) we can assume that

(2.68) v (0)|2 < cq.

The restriction is compatible with (2.60).
In view of (2.68) the last element on the r.h.s. of (2.67) is estimated in the
following way

C\P2/3Cé/3

1/3 — P
(2:69)  WPURO)y < WO p(0)]) P =

To have estimate (2.58) we need

» 1 1
——==—(x—1/2)>0.
3 g3 1/2)
Hence
3 3 _ 1. :
(2.70) x>1/2 so 5——>§1mphesthat p> 3.
p

Therefore, we can formulate the corollary.
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Corollary 2.5. Assume that there exist positive constants ¢, — ¢4 such that

1 < (4 v)*p. < e,

(2.71) c c

where s =3/2—3/p>1/2,3 < p <6.
Assume that

v € Lop/p-2)2/1- (), F' € Ly(),

c c
[F'o00 < (¥ +c), @) < —(W + c3).
Then
] \112/3 \112/3
(2.72) V| Apl|is/7e0r < C(V1/3 + YV + V"/?’—l/ﬁ)'

Lemma 2.6. Let n be a solution to (1.4). Assume also that n(0) € L.(9),
dive € L.(2) N Lo (), 7 € [1,00]. Then

t t
1
(2.73) [n(t)], < exp {(1 - —) /|divv(t’)|mdt'] {/a|divv|rdt'+ |77(0)|r}.
r
0 0
Proof. Multiplying (1.4); by n|n|"2 and integrating over  yields

1d 1

——|nlr + - /v -V|n|"dx + / In|"div vdx + /an|n|r_2div vdzr = 0.

r r
Q Q Q

Integrating by parts we have
1d 1 ‘ . B
iUl (1 - ;) /dlvv!nlidw + a/dwvn\n!’” 2dx = 0.
Q Q

Continuing,

1d 1
sl < (1= 2 v ollal + aldiv ol ol

Simplifying,
d
g < (1= 1/r)ldivolec|n]r + aldiv vl

Integrating with respect to time yields (2.73). This concludes the proof. [
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