
NONANALYTICITY IN TIME OF SOLUTIONS

TO THE KDV EQUATION

by Grzegorz  Lysik

Institute of Mathematics, Polish Academy of Sciences
P.O.Box 21, 00-956 Warszawa, Poland

E-mail: lysik@impan.gov.pl

Abstract. It is proved that the formal power series solutions to the initial value
problem ∂tu = ∂3

xu+ ∂x(u2), u(0, x) = ϕ(x), where ϕ is analytic belong to the Gevrey
class G2 in time. However, if ϕ(x) = 1/(1 + x2), the solution does not belong to the
Gevrey class Gs in time for 0 ≤ s < 2. The proof is based on the estimation of a double
sum of products of binomial coefficients.

1. Introduction. We consider the characteristic Cauchy problem for the Korteweg-
de Vries equation

(1)
∂tu = ∂3

xu+ ∂x(u2),
u(0, x) = ϕ(x).

The equation appears in the study of a number of different physical systems e.g. it describes
the long time evolution of small amplitude dispersive waves. Since its first derivation in
the paper by D. J. Korteweg and G. de Vries in 1895 [KdV] it was extensively studied
and numerous results has been obtained. The reader interested in different aspects of its
theory is referred to the papers by A. Jeffrey and T. Kakutani [JK], D. M. Kruskal [K],
P. D. Lax [L], R. M. Miura [M], J. Bourgain [Bou], C. E. Kenig, G. Ponce and L. Vega
[KPV], N. Hayashi [H], P. E. Zhidkov [Z] and the references given there.

Here we are interested in the analyticity properties of solutions to (1). The first result
in this direction was obtained by E. Trubowitz who showed that solutions with periodic
real analytic data remain spatially real analytic for all time ([T], Sec. 3, Amplification 2,
[Bou], Remark (iv)). Next, T. Kato and K. Masuda proved that if the initial data ϕ is
analytic and L2 in a strip along R then the solution u(t, ·) has the same property for all

2000 Mathematics Subject Classification: Primary 35A10, 35A20, 35K55; Secondary
05A10, A0519, 11B65.

Key words and phrases: KdV equation, nonanalyticity, Gevrey spaces, binomial coef-
ficients.

1



time ([KM], Remark 2.1). An analytic smoothing effect for Gevrey data was established
by A. De Bouard, N. Hayashi and K. Kato. If ϕ belongs to the Gevrey class of order
3 then there exists T > 0 such that for 0 < t < T the solution u(t, ·) has an analytic
continuation to the complex domain {z = x + iy ∈ C : |x| < R, |y| < At1/3} with some
A = A(R) > 0 ([DBHK], Theorem 1.1, Remark 1.1 (III)). The result was obtained by using
operators which commute or almost commute with the linear part of the KdV equation.
A remarkable result was obtained by K. Kato and T. Ogawa. Under the assumption that
ϕ ∈ Hs(R), s > −3/4, satisfy with some positive A

∞∑
k=0

Ak

(k!)3
‖(x∂x)kϕ‖Hs <∞

they proved analyticity of u(t, ·) for any 0 < t < T and Gevrey regularity of order 3 of
u(·, x) for any x ∈ R. Moreover, under a stronger condition

∞∑
k=0

Ak

k!
‖(x∂x)kϕ‖Hs <∞

(which implies analyticity except at the origin) the solution is analytic in both variables
at any point of (0, T )× R (see [KO], Theorem 1.1 and Corollary 1.2).

However, the above result does not guarantee analyticity of solution in time at t = 0
even if the initial data is analytic. Indeed, if ϕ is analytic then (1) has a unique formal
power series solution

(2) u(t, x) =
∞∑
n=0

ϕn(x)tn,

where ϕn are given by the recurrence relations

(3)


ϕ0 = ϕ,

ϕn+1 =
1

n+ 1

(
∂3
xϕn +

n∑
i=0

∂x(ϕiϕn−i)
)
, n ∈ N0.

We shall prove that this formal solution belongs to the Gevrey class G2 in time. (Our
definition of Gevrey order differs by one from that used in [DBHK] and [KO], but it is
consistent with the one used in the summability theory, see [Ba].) Next, we show that the
formal solution (2) is divergent if ϕ does not extend to an entire function of exponential
order 3/2 and has nonnegative Taylor coefficients. Note here that the condition that ϕ
is entire of exponential order at most 3/2 is necessary and sufficient for the existence of
analytic solutions to the linear counterpart of (1), ∂tu = ∂3

xu, u(0, x) = ϕ(x). Hence, one
could expect that the same holds for (1), but it appears that this condition is not necessary
since the soliton solutions of (1), u(t, x) = 6a2 cosh−2(ax + 4a2t), a 6= 0, are analytic in
both variables at the origin.

2



The main aim of our paper is to show the divergence of a formal solution in the case
of ϕ(x) = 1/(1 + x2). This function is analytic in a strip along R and it satisfies the
conditions of Kato and Ogawa with s = 0. Our main result reads as follows:

Theorem 1. Let ϕ(x) = c/(1 + x2) with c < 0 or 0 < c < 5 305
359 . Then the formal

solution (2) to the initial value problem (1) does not belong to the Gevrey class Gs in time
for 0 ≤ s < 2. Thus, the solution of (1) is not analytic in time at t = 0.

The elementary proof of Theorem 1 follows the method of the proof of an analogous
result for the u2-heat equation [ Ly]. In the case of positive c it is based on the following
lemma which combinatorial proof seems to be of independent interest.

The Main Lemma. For k, n ∈ N0 put

(4) C(k, n) =



n∑
i=0

k+1−imod 2∑
l=0

(
n

i

)(
2k + 2

2l + imod 2

)/(
2k + 3n+ 2

2l + 3i+ imod 2

)
if n is even,

n∑
i=0

k∑
l=0

(
n

i

)(
2k + 1

2l + imod 2

)/(
2k + 3n+ 1

2l + 3i+ imod 2

)
if n is odd.

Then

(5) C(k, n) ≤
{

2 9
70 for n ∈ N0 if k = 0,
k + 2 for n ∈ N0 if k ≥ 1.

In order to prove the Main Lemma we represent C(k, n) as a finite sum of sequences
of the form

(6) α
βD

γ
δ (n) =

n∑
l=0

(
2n+ α

2l + β

)/(
6n+ γ

6l + δ

)

with some α, β, γ, δ ∈ N0 and prove that for k ∈ N, sequences α
βD

γ
δ appearing in the sum

are decreasing. So, C(k, n) is bounded by C(k, 0) = k + 2.
Recently, we have learned that P. Byers and A. Himonas have constructed, by another

method, a nonanalytic solution to the KdV equation for a globally analytic initial data
([ByH]).

Acknowledgement. A part of the work was done during the author’s stay at the
University of Notre Dame, IN, during the academic year 2001/02. The problem of non-
analyticity in time of solutions to the KdV equation with initial data analytic on R was
brought to the author’s attention by Alex Himonas, and the author wishes to thank him
and Gerard Misio lek for hospitality and many valuable discussions.
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2. Gevrey estimates.

Definition 1. We say that the formal power series (2) is in the Gevrey class Gs(Ω)
in time, s ≥ 0,Ω ⊂ R, if for any compact set K ⊂⊂ Ω one can find L <∞ such that

(7) sup
n∈N0

sup
x∈K

|ϕn(x)|
Ln(n!)s

<∞.

In the proof of Theorem 2 we shall need

Lemma 1. Let ν, µ,m ∈ N0. Then

(8)
m∑
k=0

(k + ν)!
k!

(m− k + µ)!
(m− k)!

=
ν!µ!(m+ ν + µ+ 1)!

(ν + µ+ 1)! m!
.

Proof. The formula (8) is equivalent to

m∑
k=0

(
k + ν

ν

)(
m− k + µ

µ

)
=
(
m+ ν + µ+ 1
ν + µ+ 1

)
which can be proved by combinatorial methods (see [PBM], Form. 4.2.5.36).

Theorem 2. Let ϕ be analytic in Ω ⊂ R. Then the formal solution (2) to the initial
value problem (1) belongs to G2(Ω) in time.

Proof. Let K be compact in Ω. Since ϕ0 = ϕ is analytic in Ω we can find 1 ≤ D <∞
such that for m ∈ N0,

(9) sup
x∈K
|∂mϕ0(x)| ≤ Dm+1m! and sup

x∈K
|∂mϕ2

0(x)| ≤ Dm+2(m+ 1)!.

We shall prove that for n ∈ N,m ∈ N0

(10) sup
x∈K
|∂mϕn(x)| ≤ 4/3 ·Dm+3n+1 (m+ 3n)!

n!

which implies (7) with s = 2 and L = 8D3. For n = 1 we have ϕ1 = ∂3ϕ0 + ∂(ϕ2
0). Hence

by (9) we get supx∈K |∂mϕ1(x)| ≤ 4/3Dm+4(m + 3)!. To prove (10) for n ≥ 2 note that
the recurrence relations (3) imply

(11) ϕn =
1
n!

(
∂3nϕ0 +

n−1∑
j=0

j!∂3n−3j−2

j∑
i=0

ϕiϕj−i

)
, n ∈ N.

Next by the Leibniz rule, the inductive assumption and Lemma 1 we derive for j ≥ 1

sup
x∈K
|∂m

(
ϕ0ϕj

)
(x)| ≤

m∑
k=0

(
m

k

)
Dk+1k! · 4

3
Dm−k+3j+1 (m− k + 3j)!

j!

≤ 4
3

1
j!(3j + 1)

Dm+3j+2(m+ 3j + 1)!
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and for j ≥ 2, 1 ≤ i ≤ j − 1

sup
x∈K
|∂m

(
ϕiϕj−i

)
(x)| ≤

m∑
k=0

4
3

(
m

k

)
Dk+3i+1 (k + 3i)!

i!

× 4
3
Dm−k+3j−3i+1 (m− k + 3j − 3i)!

(j − i)!

≤ 16
9

1
i!(j − i)!

(3i)!(3j − 3i)!
(3j + 1)!

Dm+3j+2(m+ 3j + 1)!.

Hence, by (11) and (9) we get

sup
x∈K
|∂mϕn(x)| ≤ 1

n!
Dm+3n+1(m+ 3n)!

×
{

1 +
1

D(m+ 3n)

[
1 +

n−1∑
j=1

8
3

1
3j + 1

(
1 +

2
3

j−1∑
i=1

(
j

i

)/(
3j
3i

))]}
≤ 4

3
Dm+3n+1 (m+ 3n)!

n!

since D ≥ 1 and for m ≥ 0, n ≥ 1

1
m+ 3n

[
1 +

n−1∑
j=1

8
3

1
3j + 1

(
1 +

2
3

j−1∑
i=1

(
j

i

)/(
3j
3i

))]

≤ 1
3n

(
1 +

n−1∑
j=1

8
9

2j + 1
3j + 1

)
≤ 1

3n

(
1 +

8
9

(n− 1)
)

=
8n+ 1

27n
≤ 1

3
.

Theorem 3. Fix ρ ≥ 3/2. Let ϕ be analytic in Ω ⊂ R and assume that at a
point ◦x ∈ Ω the Taylor coefficients of ϕ are nonnegative. If ϕ does not extend to an entire
function of exponential order ρ then the formal solution (2) of (1) does not belong to Gs(Ω)
in time for any 0 ≤ s ≤ 2− 3/ρ. In particular, it is divergent.

Proof. Since ϕn are given by (11) the assumption about nonnegativity of Taylor
coefficients of ϕ imply

(12) ϕn(◦x) ≥ 1
n!
∂3nϕ(◦x).

Next the condition that ϕ is not an entire function of exponential order ρ is equivalent to
(see [Bo], Sec. 2.2)

lim n

√
∂3nϕ(◦x)

(
(3n)!

)1/ρ−1 =∞,

which together with (12) contradicts (7) for s ≤ 2− 3/ρ.
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3. Proof of Theorem 1. Assuming that (2) is a formal power series solution of (1)
we easily get the recurrence relations (3) for ϕn. Next note that ϕn can be written in the
form

(13) ϕn(x) =


1
n!
∞∑
k=0

(−1)k+n/2A(n, 2k)x2k, if n is even,

1
n!
∞∑
k=0

(−1)k+(n−1)/2A(n, 2k + 1)x2k+1, if n is odd,

where the coefficients A(n, 2k), A(n, 2k + 1) satisfy

(14)

A(0, 2k) = c,

A(n+ 1, 2k + 1) = (2k + 2)(2k + 3)(2k + 4)A(n, 2k + 4)

− (2k + 2)
n∑
i=0

(
n

i

)
B(i, n− i, 2k + 2) for n even,

A(n+ 1, 2k) = (2k + 1)(2k + 2)(2k + 3)A(n, 2k + 3)

− (2k + 1)
n∑
i=0

(
n

i

)
B(i, n− i, 2k + 1) for n odd,

where for n even, odd, respectively

(15)

B(i, n− i, 2k + 2) =


k+1∑
l=0

A(i, 2l)A(n− i, 2k + 2− 2l) if i is even,

k∑
l=0

A(i, 2l + 1)A(n− i, 2k + 1− 2l) if i is odd,

B(i, n− i, 2k + 1) =


k∑
l=0

A(i, 2l)A(n− i, 2k + 1− 2l) if i is even,

k∑
l=0

A(i, 2l + 1)A(n− i, 2k − 2l) if i is odd.

Indeed, ϕ0(x) =
∑∞
k=0(−1)kcx2k. Next assuming inductively (13), by (3) we get for n

even

ϕn+1(x) =
1

n+ 1

[
1
n!

∞∑
k=2

(−1)k+n/22k(2k − 1)(2k − 2)A(n, 2k)x2k−3

+
n∑

i=0,i−even

1
i!(n− i)!

∞∑
k=1

(−1)k+n/22k
k∑
l=0

A(i, 2l)A(n− i, 2k − 2l)x2k−1

+
n∑

i=0,i−odd

1
i!(n− i)!

∞∑
k=0

(−1)k+(n−1)/2(2k + 2)

×
k∑
l=0

A(i, 2l + 1)A(n− i, 2k + 1− 2l)x2k+1

]

=
1

(n+ 1)!

∞∑
k=0

(−1)k+n/2A(n+ 1, 2k + 1)x2k+1,
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where A(n+ 1, 2k + 1) is given by (14). Similarly we get (14) for n odd.
Now if c < 0 we easily get (since in (14) we subtract a positive term)

(16) A(n, 2k + nmod 2) ≤ (2k + 3n+ nmod 2)!
(2k + nmod 2)!

c.

So for n even

|ϕn(0)| = |A(n, 0)|
n!

≥ (3n)!
n!
|c|

and taking K = {0} in Definition 1 we see that the formal solution (2) does not belong to
Gs(R) in time for 0 ≤ s < 2.

For c > 0 the estimation (16) does not prove the theorem. Instead, by the Main
Lemma we show

Claim. Let 0 < c < 5 305
359 . Then

(17)
c
(2k + 3n+ nmod 2)!

(2k + nmod 2)!

(
1−

n∑
i=1

ε(i, 2k + 3n+ nmod 2− 3i)
)

≤A(n, 2k + nmod 2) ≤ c (2k + 3n+ nmod 2)!
(2k + nmod 2)!

with ε(i, l), i ∈ N, l ∈ N0, defined by

(18) (l + 3i− 1)(l + 3i)ε(i, l) =
{

2 9
70c if l = 0, i ≥ 1,(
(l − lmod 2)/2 + 2

)
c if l ≥ 1, i ≥ 1.

Furthermore,

(19)
n∑
i=1

ε(i, 2k + 3n+ nmod 2− 3i) ≤ 359
2100

c.

Proof. First of all we show (19). To this end we derive for n even, n ≥ 2 and k = 0

n∑
i=1

ε(i, 2k + 3n− 3i) =

∑n/2
j=1(3n− 6j + 5) + 9

70

3n(3n− 1)
c =

3n2 + 4n+ 18
35

12n(3n− 1)
c ≤ 359

2100
c;

for n even, n ≥ 2 and k ≥ 1

n∑
i=1

ε(i, 2k + 3n− 3i) =

∑n/2
j=1(3n− 6j + 5)

(3n+ 2k)(3n+ 2k − 1)
c =

3n2 + 4n
4(3n+ 2k)(3n+ 2k − 1)

c ≤ c

6
;
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finally, for n odd and k ∈ N0

n∑
i=1

ε(i, 2k + 3n+ 1− 3i) =
k + 2 +

∑(n−1)/2
j=1 (2k + 3n− 6j + 6)

(3n+ 2k)(3n+ 2k + 1)
c

=
3n2 + (4k + 6)n− 1

4(3n+ 2k)(3n+ 2k + 1)
c ≤ c

6
.

To prove (17) observe that it trivially holds for n = 0 since A(0, 2k) = c. Next, if
n = 1 then by (14)

A(1, 2k + 1) = (2k + 2)(2k + 3)(2k + 4)c− (2k + 2)(k + 2)c2

≤ c (2k + 4)!
(2k + 1)!

(
1− ε(1, 2k + 1)

)
with ε(1, 2k + 1) = c

k + 2
(2k + 3)(2k + 4)

.

Now fix m ∈ N and assume that (17) holds for n ≤ m and k ∈ N0. Since A(m + 1, 2k +
1−mmod 2) is given by (14) (with n = m) and by (19) we subtract a positive term (since
0 < c < 5 305

359 ), we easily get the estimation from above

A(m+ 1, 2k + 1−m2) = (2k + 2−m2)(2k + 3−m2)(2k + 4−m2)A(m, 2k + 4−m2)

≤ c (2k + 3(m+ 1) + 1−m2)!
(2k + 1−m2)!

, where m2 = mmod 2.

To estimate A(m+1, 2k+1−m2) from below we need to estimate the second term of (14)
from above. By the inductive assumption, (15) and (4) we derive for m even

m∑
i=0

(
m

i

)
B(i,m− i, 2k + 2) ≤

m∑
i=0,i−even

(
m

i

) k+1∑
l=0

c2
(2l + 3i)!

(2l)!
(2k + 2− 2l + 3m− 3i)!

(2k + 2− 2l)!

+
m∑

i=0,i−odd

(
m

i

) k∑
l=0

c2
(2l + 3i+ 1)!

(2l + 1)!
(2k − 2l + 3m− 3i+ 1)!

(2k − 2l + 1)!

= c2
(2k + 3m+ 2)!

(2k + 2)!
· C(k,m),

and for m odd

m∑
i=0

(
m

i

)
B(i,m− i, 2k + 1) ≤

m∑
i=0,i−even

(
m

i

) k∑
l=0

c2
(2l + 3i)!

(2l)!
(2k − 2l + 3m− 3i+ 1)!

(2k − 2l + 1)!

+
m∑

i=0,i−odd

(
m

i

) k∑
l=0

c2
(2l + 3i+ 1)!

(2l + 1)!
(2k − 2l + 3m− 3i)!

(2k − 2l)!

= c2
(2k + 3m+ 1)!

(2k + 1)!
· C(k,m).
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So, by the Main Lemma and (18) we get

A(m+ 1, 2k + 1−m2) ≥ c (2k + 3m+ 4−m2)!
(2k + 1−m2)!

(
1−

m∑
i=1

ε(i, 2k + 4−m2 + 3m− 3i)
)

− c (2k + 3m+ 4−m2)!
(2k + 1−m2)!

ε(m+ 1, 2k + 1−m2).

Hence (17) holds for n = m+ 1.

Returning to the proof of Theorem 1 take K = {0} in Definition 1. Since for n even
the Claim implies

|ϕn(0)| = A(n, 0)
n!

≥ c (3n)!
n!

(
1−

n∑
i=1

ε(i, 3n− 3i)
)
≥ c
(
1− 359

2100
c
) (3n)!
n!

the formal solution (2) does not belong to Gs(R) in time for 0 ≤ s < 2 if 0 < c < 5 305
359 .

4. The representation of C(k, n). The proof of the Main Lemma is based on the
inequality C(k, n) ≥ C(k, n+ 2). In order to prove it we represent C(k, n) as a finite sum
of sequences α

βD
γ
δ (n) given by (6) with some α, β, γ, δ ∈ N0. Next, we prove that the

sequences α
βD

γ
δ appearing in the sum are decreasing. The actual form of the sum depends

on kmod 3 and nmod 2.

Lemma 2. The C(k, n) given by (4) can be represented as follows
Case A. If k = 3k and n = 2n with k, n ∈ N0 then

(20A)

C(3k, 2n) = 2
bk/2c∑
i=0

a(3k, 6i) 0
0D

12i+2
6i (n+ k − 2i)

+ 2
b(k−1)/2c∑

i=0

a(3k, 6i+ 2) 1
0D

12i+8
6i+2 (n+ k − 2i− 1)

+ 2
b(k−1)/2c∑

i=0

a(3k, 6i+ 3) 2
1D

12i+14
6i+6 (n+ k − 2i− 2)

+ 2
bk/2−1c∑
i=0

a(3k, 6i+ 5) 1
0D

12i+14
6i+6 (n+ k − 2i− 2)

+
bk/2c∑
i=0

b(3k, 6i+ 1) 2
1D

12i+8
6i+4 (n+ k − 2i− 1)

+
b(k−1)/2c∑

i=0

b(3k, 6i+ 4) 0
0D

12i+8
6i+4 (n+ k − 2i− 1),
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where

(21A)

a(3k, 3l) = 33l

(
2k + l

3l

)
for 0 ≤ l ≤ k,

a(3k, 3l + 2) = 33l+2

(
2k + l + 1

3l + 2

)
for 0 ≤ l ≤ k − 1,

b(3k, 3l + 1) =
33l(6k + 2)

3l + 1

(
2k + l

3l

)
for 0 ≤ l ≤ k.

Case B. If k = 3k + 1 and n = 2n with k, n ∈ N0 then

(20B)

C(3k + 1, 2n) = 2
bk/2c∑
i=0

a(3k + 1, 6i) 1
0D

12i+4
6i (n+ k − 2i)

+ 2
bk/2c∑
i=0

a(3k + 1, 6i+ 1) 2
1D

12i+10
6i+4 (n+ k − 2i− 1)

+ 2
b(k−1)/2c∑

i=0

a(3k + 1, 6i+ 3) 1
0D

12i+10
6i+4 (n+ k − 2i− 1)

+ 2
b(k−1)/2c∑

i=0

a(3k + 1, 6i+ 4) 0
0D

12i+10
6i+4 (n+ k − 2i− 1)

+
bk/2c∑
i=0

b(3k + 1, 6i+ 2) 0
0D

12i+4
6i+2 (n+ k − 2i)

+
b(k−1)/2c∑

i=0

b(3k + 1, 6i+ 5) 2
1D

12i+16
6i+8 (n+ k − 2i− 2),

where

(21B)

a(3k + 1, 3l) = 33l

(
2k + l + 1

3l

)
for 0 ≤ l ≤ k,

a(3k + 1, 3l + 1) = 33l+1

(
2k + l + 1

3l + 1

)
for 0 ≤ l ≤ k,

b(3k + 1, 3l + 2) =
33l+1(6k + 4)

3l + 2

(
2k + l + 1

3l + 1

)
for 0 ≤ l ≤ k.

Case C. If k = 3k + 2 and n = 2n with k, n ∈ N0 then

C(3k + 2, 2n) =
b(k+1)/2c∑

i=0

b(3k + 2, 6i) 0
0D

12i
6i (n+ k − 2i+ 1)
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+
bk/2c∑
i=0

b(3k + 2, 6i+ 3) 2
1D

12i+12
6i+6 (n+ k − 2i− 1)

+ 2
bk/2c∑
i=0

a(3k + 2, 6i+ 1) 1
0D

12i+6
6i+2 (n+ k − 2i)(20C)

+ 2
bk/2c∑
i=0

a(3k + 2, 6i+ 2) 0
0D

12i+6
6i+2 (n+ k − 2i)

+ 2
b(k−1)/2c∑

i=0

a(3k + 2, 6i+ 4) 1
0D

12i+12
6i+4 (n+ k − 2i− 1)

+ 2
b(k−1)/2c∑

i=0

a(3k + 2, 6i+ 5) 2
1D

12i+18
6i+8 (n+ k − 2i− 2),

where

(21C)

a(3k + 2, 3l + 1) = 33l+1

(
2k + l + 2

3l + 1

)
for 0 ≤ l ≤ k,

a(3k + 2, 3l + 2) = 33l+2

(
2k + l + 2

3l + 2

)
for 0 ≤ l ≤ k,

b(3k + 2, 0) = 1,

b(3k + 2, 3l) =
33l−1(6k + 6)

3l

(
2k + l + 1

3l − 1

)
for 1 ≤ l ≤ k + 1.

Case D. If k = 3k and n = 2n+ 1 with k, n ∈ N0 then

C(3k, 2n+ 1) = 2
bk/2c∑
i=0

a(3k, 6i) 1
0D

12i+4
6i (n+ k − 2i)

+ 2
b(k−1)/2c∑

i=0

a(3k, 6i+ 1) 2
1D

12i+10
6i+4 (n+ k − 2i− 1)

+ 2
b(k−1)/2c∑

i=0

a(3k, 6i+ 3) 1
0D

12i+10
6i+4 (n+ k − 2i− 1)(20D)

+ 2
bk/2−1c∑
i=0

a(3k, 6i+ 4) 0
0D

12i+10
6i+4 (n+ k − 2i− 1)

+
b(k−1)/2c∑

i=0

b(3k, 6i+ 2) 0
0D

12i+4
6i+2 (n+ k − 2i)
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+
bk/2−1c∑
i=0

b(3k, 6i+ 5) 2
1D

12i+16
6i+8 (n+ k − 2i− 2),

where

(21D)

a(3k, 3l) = 33l

(
2k + l

3l

)
for 0 ≤ l ≤ k,

a(3k, 3l + 1) = 33l+1

(
2k + l

3l + 1

)
for 0 ≤ l ≤ k − 1,

b(3k, 3l + 2) =
33l+1(6k + 1)

3l + 2

(
2k + l

3l + 1

)
for 0 ≤ l ≤ k − 1.

Case E. If k = 3k + 1 and n = 2n+ 1 with k, n ∈ N0 then

(20E)

C(3k + 1, 2n+ 1) =
bk/2c∑
i=0

b(3k + 1, 6i) 1
0D

12i
6i (n+ k − 2i+ 1)

+
b(k−1)/2c∑

i=0

b(3k + 1, 6i+ 3) 2
1D

12i+12
6i+6 (n+ k − 2i− 1)

+ 2
bk/2c∑
i=0

a(3k + 1, 6i+ 1) 1
0D

12i+6
6i+2 (n+ k − 2i)

+ 2
b(k−1)/2c∑

i=0

a(3k + 1, 6i+ 2) 0
0D

12i+6
6i+2 (n+ k − 2i)

+ 2
b(k−1)/2c∑

i=0

a(3k + 1, 6i+ 4) 1
0D

12i+12
6i+4 (n+ k − 2i− 1)

+ 2
bk/2−1c∑
i=0

a(3k + 1, 6i+ 5) 2
1D

12i+18
6i+8 (n+ k − 2i− 2),

where

(21E)

a(3k + 1, 3l + 1) = 33l+1

(
2k + l + 1

3l + 1

)
for 0 ≤ l ≤ k,

a(3k + 1, 3l + 2) = 33l+2

(
2k + l + 1

3l + 2

)
for 0 ≤ l ≤ k − 1,

b(3k + 1, 0) = 1,

b(3k + 1, 3l) =
33l−1(6k + 3)

3l

(
2k + l

3l − 1

)
for 1 ≤ l ≤ k.

12



Case F. If k = 3k + 2 and n = 2n+ 1 with k, n ∈ N0 then

(20F )

C(3k + 2, 2n+ 1) = 2
bk/2c∑
i=0

a(3k + 2, 6i) 0
0D

12i+2
6i (n+ k − 2i+ 1)

+ 2
bk/2c∑
i=0

a(3k + 2, 6i+ 2) 1
0D

12i+8
6i+2 (n+ k − 2i)

+ 2
b(k−1)/2c∑

i=0

a(3k + 3, 6i+ 3) 2
1D

12i+14
6i+6 (n+ k − 2i− 1)

+ 2
b(k−1)/2c∑

i=0

a(3k + 2, 6i+ 5) 1
0D

12i+14
6i+6 (n+ k − 2i− 1)

+
bk/2c∑
i=0

b(3k + 2, 6i+ 1) 2
1D

12i+8
6i+4 (n+ k − 2i)

+
b(k−1)/2c∑

i=0

b(3k + 2, 6i+ 4) 0
0D

12i+8
6i+4 (n+ k − 2i),

where

(21F )

a(3k + 2, 3l) = 33l

(
2k + l + 1

3l

)
for 0 ≤ l ≤ k,

a(3k + 2, 3l + 2) = 33l+2

(
2k + l + 2

3l + 2

)
for 0 ≤ l ≤ k,

b(3k + 2, 3l + 1) =
33l(6k + 5)

3l + 1

(
2k + l + 1

3l

)
for 0 ≤ l ≤ k.

Proof. We shall prove Lemma 1 only in Case A, since the proofs of the other cases
are analogous. So let n = 2n be even. Assuming that

(
m
i

)
= 0 if |m − 2i| > m with

m ∈ N0, i ∈ Z, we get by (4)

C(k, 2n) =
n∑
i=0

k+1∑
l=0

(
2n
2i

)(
2k+2

2l

)(
2k+6n+2

2l+6i

) +
n−1∑
i=0

k∑
l=0

(
2n

2i+1

)(
2k+2
2l+1

)(
2k+6n+2
2l+6i+4

)
=
n+b(k+1)/3c∑

j=0

n∑
i=0

(
2n
2i

)(
2k+2
6j−6i

)
+
n−1∑
i=0

(
2n

2i+1

)(
2k+2

6j−6i−3

)
(

2k+6n+2
6j

)

+
n+bk/3c∑
j=0

n∑
i=0

(
2n
2i

)(
2k+2

6j−6i+2

)
+
n−1∑
i=0

(
2n

2i+1

)(
2k+2

6j−6i−1

)
(

2k+6n+2
6j+2

)
13



+
n+b(k−1)/3c∑

j=0

n∑
i=0

(
2n
2i

)(
2k+2

6j−6i+4

)
+
n−1∑
i=0

(
2n

2i+1

)(
2k+2

6j−6i+1

)
(

2k+6n+2
6j+4

)
=
n+b(k+1)/3c∑

j=0

1(
2k+6n+2

6j

) b(2k+2)/3c∑
l=0

(
2k + 2

3l

)(
2n

2j − l

)

+
n+bk/3c∑
j=0

1(
2k+6n+2

6j+2

) b2k/3c∑
l=0

(
2k + 2
3l + 2

)(
2n

2j − l

)

+
n+b(k−1)/3c∑

j=0

1(
2k+6n+2

6j+4

) b(2k+1)/3c∑
l=0

(
2k + 2
3l + 1

)(
2n

2j + 1− l

)
=: C1(k, 2n) + C2(k, 2n) + C3(k, 2n).

In Case A we have k = 3k. So

C1(3k, 2n) =
n+k∑
j=0

(
6k + 6n+ 2

6j

)−1 2k∑
l=0

(
6k + 2

3l

)(
2n

2j − l

)
.

Now we apply

2k−l2∑
l=l1

(
2k − l1 − l2

l − l1

)(
2n

2j − l

)
=
(

2n+ 2k − l1 − l2
2j − l1

)

with l1 = l2 = 0 and (6) with α = β = δ = 0, γ = 2, to get

C1(3k, 2n) = 0
0D

2
0(n+ k) +

n+k∑
j=1

(
6k + 6n+ 2

6j

)−1 2k∑
l=1

{(
6k + 2

3l

)
−
(

2k
l

)}(
2n

2j − l

)
.

Continuing the above procedure and noting that α
βD

γ
δ (n) = α

α−βD
γ
γ−δ(n) we prove induc-

tively that for m ∈ {0, 1, ..., bk/2c+ 1}

(22) C1(3k, 2n) =
m−1∑
i=0

A(i) +
n+k−m∑
j=m

B(j),

where

A(i) = a(3k, 6i) 0
0D

12i+2
6i (n+ k − 2i) + a(3k, 6i+ 2) 1

0D
12i+8
6i+2 (n+ k − 2i− 1)

+ a(3k, 6i+ 3) 2
1D

12i+14
6i+6 (n+ k − 2i− 2) + a(3k, 6i+ 5) 1

0D
12i+14
6i+6 (n+ k − 2i− 2),
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B(j) =
(

6n+ 6k + 2
6j

)−1

·
2k−2m∑
l=2m

(
2n

2j − l

){(
6k + 2

3l

)

−
m−1∑
i=0

[
a(3k, 6i)

(
2k − 4i
l − 2i

)
+ a(3k, 6i+ 2)

(
2k − 4i− 1
l − 2i− 1

)
+ a(3k, 6i+ 3)

(
2k − 4i− 2
l − 2i− 1

)
+ a(3k, 6i+ 5)

(
2k − 4i− 3
l − 2i− 2

)]}
and the coefficients a(3k, 3l), a(3k, 3l + 2), l ∈ N0, satisfy recurrence relations

a(3k, 3l) =
(

6k + 2
3l

)
−

l−1∑
j=0

[
a(3k, 3j)

(
2k − 2j
l − j

)
+ a(3k, 3j + 2)

(
2k − 2j − 1
l − j − 1

)]
,(23)

a(3k, 3l + 2) =
(

6k + 2
3l + 2

)
−

l−1∑
j=0

[
a(3k, 3j)

(
2k − 2j
l − j

)
+ a(3k, 3j + 2)

(
2k − 2j − 1

l − j

)]

− a(3k, 3l).

Next, by the symmetry of binomial coefficients we easily get

C2(3k, 2n) = C1(3k, 2n).

As about C3(3k, 2n) one can prove inductively that for m ∈ {0, 1, ..., bk/2c+ 1}

(24) C3(3k, 2n) =
m−1∑
i=0

A(i) +
n+k−m−1∑

j=m

B(j),

where

A(i) = b(3k, 6i+ 1) 2
1D

12i+8
6i+4 (n+ k − 2i− 1) + b(3k, 6i+ 4) 0

0D
12i+8
6i+4 (n+ k − 2i− 1),

B(j) =
(

6n+ 6k + 2
6j + 4

)−1

·
2k−2m∑
l=2m

(
2n

2j + 1− l

){(
6k + 2
3l + 1

)

−
m−1∑
i=0

[
b(3k, 6i+ 1)

(
2k − 4i
l − 2i

)
+ b(3k, 6i+ 4)

(
2k − 4i− 2
l − 2i− 1

)]}
and the coefficients b(3k, 3l + 1), l ∈ N0, satisfy a recurrence relation

(25) b(3k, 3l + 1) =
(

6k + 2
3l + 1

)
−

l−1∑
j=0

b(3k, 3j + 1)
(

2k − 2j
l − j

)
.

Finally, since for m = bk/2c + 1 the second summands in (22) and in (24) vanish, by
Lemma 3 (stated below) we get (20A) and (21A), proving Lemma 2 in Case A. The proofs
of Cases B – E are done in the same way.
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Lemma 3. Let a(3k, 3l), a(3k, 3l + 2) and b(3k, 3l + 1), k, l ∈ N0, satisfy recurrence
relations (23) and (25). Then (21A) holds.

Proof. For l = 0 we clearly have

a(3k, 0) = 1, a(3k, 2) =
(

6k + 2
2

)
− 1 = 32

(
2k + 1

2

)
, b(3k, 1) = 6k + 2.

To prove (21A) for l ≥ 1 put 2k = k̃ and note that it is sufficient to show that

(
3k̃ + 2

3l

)
=

l∑
j=0

33j

[(
k̃ + j

3j

)(
k̃ − 2j
l − j

)
+ 9
(
k̃ + j + 1

3j + 2

)(
k̃ − 2j − 1
l − j − 1

)]
,(26)

(
3k̃ + 2
3l + 2

)
=

l∑
j=0

33j

[(
k̃ + j

3j

)(
k̃ − 2j
l − j

)
+ 9
(
k̃ + j + 1

3j + 2

)(
k̃ − 2j − 1
l − j

)]
,(27)

(
3k̃ + 2
3l + 1

)
=

l∑
j=0

33j(3k̃ + 2)
3j + 1

(
k̃ + j

3j

)(
k̃ − 2j
l − j

)
.(28)

To show (26) for a fixed l ∈ N we observe that the left-hand side is a polynomial on
k̃ of degree 3l, with the leading coefficient 33l/(3l)!, vanishing at k̃ = 0, ..., l − 1 and at
k̃ = −1/3 +m, k̃ = −2/3 +m with m = 0, ..., l − 1. Clearly, the first two statements also
hold for the right-hand side of (27). So we only need to prove the third one. To this end
we compute for j = 0, ..., l

33j

[(
k̃ + j

3j

)(
k̃ − 2j
l − j

)
+ 9
(
k̃ + j + 1

3j + 2

)(
k̃ − 2j − 1
l − j − 1

)]
= (k̃ − l + 1) · . . . · k̃ ×

(
1 +

9(l − j)(k̃ + j + 1)
(3j + 1)(3j + 2)

)
× 33j(k̃ − l − j + 1) · . . . · (k̃ − l) · (k̃ + 1) · . . . · (k̃ + j)

(l − j)!(3j)!
.

So it is sufficient to show that the polynomial

Wl(k̃) = 1 +
9l(k̃ + 1)

2
+

l∑
j=1

l!
(l − j)!

(
1 +

9(l − j)(k̃ + j + 1)
(3j + 1)(3j + 2)

)

× 33j(k̃ − l − j + 1) · . . . · (k̃ − l) · (k̃ + 1) · . . . · (k̃ + j)
(3j)!

vanishes for k̃ = −1/3+m and k̃ = −2/3+m with m = 0, ..., l−1. But for m = 0, ..., l−1
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we derive

Wl(−1/3 +m) = 1 +
3l(3m+ 2)

2
+

l∑
j=1

(−1)j
l!

(l − j)!j!

(
1 +

3(l − j)(3m+ 3j + 2)
(3j + 1)(3j + 2)

)

×
j−1∏
i=0

(3l − 3m+ 3i+ 1)(3m+ 3i+ 2)
(3i+ 1)(3i+ 2)

=
l∑

j=0

(−1)j
(
l

j

)
Pl(j) = 0,

since for m = 0, 1, ..., l − 1

Pl(j) =
(9l − 9m+ 3)j + 9lm+ 6l + 2

(3j + 1)(3j + 2)

l−m−1∏
i=0

3j + 3i+ 1
3i+ 1

m−1∏
i=0

3j + 3i+ 2
3i+ 2

is a polynomial of degree l − 1 and for such a polynomial P ,
∑l
j=0(−1)j

(
l
j

)
P (j) = 0.

Analogously for m = 0, ..., l − 1

Wl(−2/3 +m) = 1 +
3l(3m+ 1)

2
+

l∑
j=1

(−1)j
l!

(l − j)!j!

(
1 +

3(l − j)(3m+ 3j + 2)
(3j + 1)(3j + 2)

)

×
j−1∏
i=0

(3m+ 3i+ 1)(3l − 3m+ 3i+ 2)
(3i+ 1)(3i+ 2)

=
l∑

j=0

(−1)j
(
l

j

)
Pl(j) = 0,

where

Pl(j) =
(9l − 9m+ 6)j + 9lm+ 3l + 2

(3j + 1)(3j + 2)

m−1∏
i=0

3j + 3i+ 1
3i+ 1

l−m−1∏
i=0

3j + 3i+ 2
3i+ 2

is a polynomial of degree l − 1. The proofs of (27) and (28) go along the same lines.

5. An auxiliary lemma. In the proof of the Main Lemma we shall also need

Lemma 4. Let α
βD

γ
δ be given by (6). Assume one of the cases

Case 1◦. α = 0, β = 0, δ ≥ 0, γ = 2δ + η with η = 0, 2;
Case 2◦. α = 1, β = 0, δ ≥ 0, γ = 2δ + η with η = 2, 4;
Case 3◦. α = 2, β = 1, δ ≥ 2, γ = 2δ + η with η = 0, 2;
Then for n ≥ 2

(29) α
βD

γ
δ (n) ≥ α

βD
γ
δ (n+ 1).

Furthermore, (29) holds for n = 0 if δ ≥ 1, and for n = 1 except Case 1◦ with δ = γ = 0.

Proof. For n, l ∈ N0 put

α
βD

γ
δ (n, l) =

(
2n+ α

2l + β

)/(
6n+ γ

6l + δ

)
Note that it is sufficient to show that for n even the following inequalities hold

(IN1)
α
βD

γ
δ (n, l) ≥ α

βD
γ
δ (n+ 1, l) ≥ α

βD
γ
δ (n+ 2, l)

for l = 0, ..., n/2− 1, n ≥ 2;
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(IN2)
α
βD

γ
δ (n, l) ≥ α

βD
γ
δ (n+ 1, l + 1) ≥ α

βD
γ
δ (n+ 2, l + 2)

for l = n/2 + 1, ..., n, n ≥ 2;

(IN3)
α
βD

γ
δ (n, n/2) ≥ α

βD
γ
δ (n+ 1, n/2) + α

βD
γ
δ (n+ 1, n/2 + 1)

for n ≥ 2 and for n = 0 if δ ≥ 1;

(IN4)

α
βD

γ
δ (n+ 1, n/2) + α

βD
γ
δ (n+ 1, n/2 + 1)

≥ α
βD

γ
δ (n+ 2, n/2) + α

βD
γ
δ (n+ 2, n/2 + 1) + α

βD
γ
δ (n+ 2, n/2 + 2)

for n ≥ 2 and for n = 0 except Case 1 with γ = δ = 0.

Proof of (IN1). Using the definition of α
βD

γ
δ (n, l), expanding the binomial coefficients

and cancelling similar factors we see that the first inequality in (IN1) is equivalent to

(30)
2∏
i=1

2n+ α+ i

2n− 2l + α− β + i

6∏
j=1

6n− 6l + γ − δ + j

6n+ γ + j
≤ 1.

which in tern is implied by (since δ ≥ 0)

(
1− 6l + δ

6n+ γ + 5

)3

≤ 1− 2l + β

2n+ α+ 1
,(30a) (

1− 6l + δ

6n+ γ + 6

)3

≤ 1− 2l + β

2n+ α+ 2
.(30b)

To show (30a) we fix l ∈ N0 and put n = 2l + 2m+ 2 with some m ∈ N0,

x =
6l + δ

12l + 12m+ γ + 17
, y =

2l + β

4l + 4m+ α+ 5
.

Next note that since x ≥ 0 it is sufficient to show that 3x− 3x2 ≥ y. But γ = 2δ + η with
η ≥ −17 implies that x ≤ 1/2 and so 3x− 3x2 ≥ 3

2x. Now, 3
2x ≥ y is equivalent to

(31a)
24l2 + (24m+ 12δ − 4γ + 18α− 24β + 22)l

+ (12δ − 24β)m+ 3δ(α+ 5)− (2γ + 34)β ≥ 0

which in Cases 1◦, 2◦, 3◦ holds for any l ∈ N,m ∈ N0 and for l = 0,m ∈ N0 except Case
3◦ with δ = η = 2. (30b) we treat in the same way with

x =
6l + δ

12l + 12m+ γ + 18
, y =

2l + β

4l + 4m+ α+ 6
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and (31a) replaced by

(31b)
24l2 + (24m+ 12δ − 4γ + 18α− 24β + 36)l

+ (12δ − 24β)m+ 3δ(α+ 6)− (2γ + 36)β ≥ 0.

Finally, we directly show (30) for l = 0 in the exceptional Case 3◦ with δ = 2, γ = 6.
The second inequality in (IN1) is equivalent to

(32)
4∏
i=3

2n+ α+ i

2n− 2l + α− β + i

12∏
j=7

6n− 6l + γ − δ + j

6n+ γ + j
≤ 1.

which in tern is implied by (since δ ≥ 0)(
1− 6l + δ

6n+ γ + 11

)3

≤ 1− 2l + β

2n+ α+ 3
,(32a) (

1− 6l + δ

6n+ γ + 12

)3

≤ 1− 2l + β

2n+ α+ 4
.(32b)

To show (32a) we follow the proof of (30a) with

x =
6l + δ

12l + 12m+ γ + 23
, y =

2l + β

4l + 4m+ α+ 7
.

and (31a) replaced by

(33a)
24l2 + (24m+ 12δ − 4γ + 18α− 24β + 34)l

+ (12δ − 24β)m+ 3δ(α+ 7)− (2γ + 46)β ≥ 0

which in Cases 1◦, 2◦, 3◦ holds for any l ∈ N,m ∈ N0 and for l = 0,m ∈ N0 except Case
3◦ with δ = η = 2. (32b) we treat in the same way with

x =
6l + δ

12l + 12m+ γ + 24
, y =

2l + β

4l + 4m+ α+ 8

and (33a) replaced by

(33b)
24l2 + (24m+ 12δ − 4γ + 18α− 24β + 48)l

+ (12δ − 24β)m+ 3δ(α+ 8)− (2γ + 48)β ≥ 0.

Finally, we directly show (32) for l = 0 in the exceptional Case 3◦ with δ = 2, γ = 6.

Proof of (IN2). Note that (IN2) is equivalent to
α

α−βD
γ
γ−δ(n, l) ≥

α
α−βD

γ
γ−δ(n+ 1, l) ≥ α

α−βD
γ
γ−δ(n+ 2, l)

for l′ = 0, ..., n/2− 1. Hence, we have to show (IN1) in the cases
Case 1′. α = 0, β = 0, δ ≥ 0, γ = 2δ + η with η = 0,−2;
Case 2′. α = 1, β = 1, δ ≥ 2, γ = 2δ + η with η = −2,−4;
Case 3′. α = 2, β = 1, δ ≥ 2, γ = 2δ + η with η = 0,−2;
In these cases (31a), (31b), (33a) and (33b) hold for any l,m ∈ N0 except Case 2′ with
δ = 2, γ = 2 and l = 0. In this exceptional case we directly check (30) and (32).
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Proof of (IN3). Expanding the binomial coefficients and cancelling the similar factors
we see that (IN3) is equivalent to

(34)
2∏
i=1

2n+ α+ i

n+ α− β + i

6∏
j=1

3n+ γ − δ + j

6n+ γ + j
+

2∏
i=1

2n+ α+ i

n+ β + i

6∏
j=1

3n+ δ + j

6n+ γ + j
≤ 1.

Case 1◦. Then (34) is implied by

4 · 2n+ 1
n+ 2

6∏
j=1

3n+ δ + η + j

6n+ 2δ + η + j
≤ 1

which holds for n ≥ 2, and for n = 0 if δ ≥ 1.
Case 2◦. Then (34) takes the form

2n+ 2
n+ 2

· 2n+ 3
n+ 3

6∏
j=1

3n+ δ + η + j

6n+ 2δ + η + j
+ 2 · 2n+ 3

n+ 1

6∏
j=1

3n+ δ + j

6n+ 2δ + η + j
≤ 1

which holds for n ≥ 2, and for n = 0 if δ ≥ 1.
Case 3◦. Then (34) takes the form

2 · 2n+ 3
n+ 3

( 6∏
j=1

3n+ δ + η + j

6n+ 2δ + η + j
+

6∏
j=1

3n+ δ + j

6n+ 2δ + η + j

)
≤ 1

which holds for n ≥ 2, and for n = 0 if δ ≥ 1.

Proof of (IN4). Expanding the binomial coefficients and cancelling the similar factors
we see that (IN4) is equivalent to

(35)

4∏
i=1

2n+ α+ i

n+ α− β + i

12∏
j=1

3n+ γ − δ + j

6n+ γ + j
+

4∏
i=1

2n+ α+ i

n+ β + i

12∏
j=1

3n+ δ + j

6n+ γ + j

+
2∏
i=1

2n+ α+ i

n+ α− β + i

2∏
i=1

2n+ α+ i+ 2
n+ β + i

6∏
j=1

3n+ γ − δ + j

6n+ γ + j

6∏
j=1

3n+ δ + j

6n+ γ + j + 6

≤
2∏
i=1

2n+ α+ i

n+ α− β + i

6∏
j=1

3n+ γ − δ + j

6n+ γ + j
+

2∏
i=1

2n+ α+ i

n+ β + i

6∏
j=1

3n+ δ + j

6n+ γ + j
.

Note that for γ = 2δ + η with 0 ≤ η ≤ 6

2
6∏
j=1

3n+ γ − δ + j

6n+ γ + j

6∏
j=1

3n+ δ + j

6n+ γ + j + 6
≤

12∏
j=1

3n+ γ − δ + j

6n+ γ + j
+

12∏
j=1

3n+ δ + j

6n+ γ + j
.
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Hence, (35) is implied by( 4∏
i=3

2n+ α+ i

n+ α− β + i
+

1
2

2∏
i=1

2n+ α+ i+ 2
n+ β + i

) 12∏
j=7

3n+ γ − δ + j

6n+ γ + j
≤ 1,(35a)

( 4∏
i=3

2n+ α+ i

n+ β + i
+

1
2

2∏
i=1

2n+ α+ i+ 2
n+ α− β + i

) 12∏
j=7

3n+ δ + j

6n+ γ + j
≤ 1.(35b)

Case 1◦. Then (35b) is weaker then (3a) which takes the form(
2n+ 3
n+ 3

· 2n+ 4
n+ 4

+
2n+ 3
n+ 1

) 12∏
j=7

3n+ δ + η + j

6n+ 2δ + η + j
≤ 1

and it clearly holds for n ≥ 2, and for n = 0 if δ ≥ 4. If n = 0 we directly check (35) for
δ = 1, 2, 3, η = 0 and for δ = 0, 1, 2, 3, η = 2.
Case 2◦. Then (35a) and (35b) take the form(

2n+ 4
n+ 4

· 2n+ 5
n+ 5

+
2n+ 5
n+ 1

) 12∏
j=7

3n+ δ + η + j

6n+ 2δ + η + j
≤ 1,

(
2n+ 4
n+ 3

· 2n+ 5
n+ 4

+
2n+ 5
n+ 3

) 12∏
j=7

3n+ δ + j

6n+ 2δ + η + j
≤ 1.

Clearly, both inequalities hold for n ≥ 2, and for n = 0 if δ ≥ 8. If n = 0 we directly check
(35) for δ = 0, ..., 7, η = 2, 4.
Case 3◦. Then (35b) is weaker then (3a) which takes the form(

2n+ 5
n+ 4

· 2n+ 6
n+ 5

+
2n+ 5
n+ 2

) 12∏
j=7

3n+ δ + η + j

6n+ 2δ + η + j
≤ 1

and it clearly holds for n ≥ 2, and for n = 0 if δ ≥ 4. If n = 0 we directly check (35) for
δ = 1, 2, 3, η = 0, 2.

6. Proof of the Main Lemma. First of all observe that all sequences α
βD

γ
δ

appearing in the representation of C(k, n) given by (20A) − (20F ) fall within one of the
cases of Lemma 4. Next, the coefficients a(k, l), b(k, l) in (20A)−(20F ) are given by (21A)−
(21F ), and so they are nonnegative. Hence, by Lemma 4 we get C(k, n) ≥ C(k, n + 2)
for n ≥ 2, for n ≥ 1 if k ≥ 2 and for n ≥ 0 if k ≥ 3. But C(1, 0) = 3 > C(1, 2) = 2 37

105 ,
C(1, 1) = 2 2

5 > C(1, 3) = 2 103
770 and C(2, 0) = 4 > C(2, 2) = 2 67

110 . So,

C(k, n) ≥ C(k, n+ 2) for n ≥ 2 if k = 0 and for n ≥ 0 if k ≥ 1.

Now, if n = 0 we easily get C(k, 0) = k+ 2 for k ∈ N0. Next, if n = 1 we derive for k ∈ N0

C(k, 1) = 2
k∑
l=0

(2l + 2)(2l + 3)(2l + 4)
(2k + 2)(2k + 3)(2k + 4)

=
(k + 2)(k + 3)

2k + 3
≤ k + 2.

Hence, C(k, n) ≤ C(k, 0) = k + 2 for n ∈ N0 if k ≥ 1. To finish the proof we compute
C(0, 2) = 2 9

70 > C(0, 3) = 2 2
70 .
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