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ABSTRACT

Weak laws of large numbers (WLLN), strong laws of large numbers
(SLLN), and central limit theorems (CLT ) in statistical models
differ from those in probability theory in that they should hold uni-
formly in the family of distributions specified by the model. If a
limit law states that for every ε > 0 there exists N such that for
all n > N the inequalities |ξn| < ε are satisfied and N = N(ε) is
explicitly given than we call the law effective. It is trivial to obtain
the effective statistical version of WLLN in the Bernoulli scheme,
to get SLLN takes a little while, but CLT does not hold uniformly.
Other statistical schemes are also considered.
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1. THE BERNOULLI SCHEME

Let X, X1, X2, . . . , Xn, . . . be iid random variables with

Pθ{X = 1} = Pθ{X = 0} = θ, θ ∈ (0, 1)

and let Sn =
∑n

i=1 Xi.

WLLN states that, under every fixed θ ∈ (0, 1), Sn/n → θ in probability,

which can be written in the form

∀θ∈(0, 1) ∀ε>0 ∀η>0 ∃N ∀n≥N Pθ{|
Sn

n
− θ| > ε} < η.

An appropriate N is given by the formula N = θ(1− θ)/ηε2.

In the related statistical model all what we know about θ is that

θ ∈ (0, 1) so that the above result is of no use: the statistical version may

be formulated as follows:

proposition 1.

(A) ∀ε>0 ∀η>0 ∃N ∀n≥N ∀θ∈(0, 1) Pθ{|
Sn

n
− θ| > ε} < η.

(B) the appropriate N = N(ε, η) =
1

4ηε2 .

The formula is useful for example for constructing the confidence interval

for an unknown θ, with an a priori postulated accuracy and confidence
level. Here and further on Part (A) states the uniform convergence and

Part (B) makes the law effective. Part (B) may be improved by the argu-

ment used in the proof of Proposition 2 below (Bernstein inequality)

SLLN states that, under every fixed θ ∈ (0, 1), Sn/n → θ a.s. Using
the fact that ξn → 0 a.s. iff ∀ε > 0 limN→∞P{

⋃∞
n=N{|Xn| > ε}} = 0

iff ∀ε > 0 ∀η > 0∃N P{
⋃∞

n=N{|Xn| > ε}} < η, an appropriate effective

statistical version of the law takes on the form
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proposition 2.

(A) ∀ε>0 ∀η>0 ∃N ∀θ∈(0, 1) Pθ

{ ∞
⋃

n=N

{|Sn

n
− θ| > ε}

}

< η;

(B)

the appropriate N =N(ε, η)=min
{

− 4
ε2 log

(η
2

(

1−e−ε2/4
))

,
1

4ηε2

}

.

proof.

By a rather crude estimation one obtains

Pθ

{ ∞
⋃

n=N

{|Sn

n
− θ| > ε}

}

<
∞
∑

n=N

Pθ{|
Sn

n
− θ| > ε}

and then by the Bernstein inequality for the Bernoulli scheme (Serfling

1980, Jakubowski et al. 2001) in the form

Pθ{|
Sn

n
− θ| > ε} ≤ 2e−nε2/4

the following estimation holds

Pθ

{ ∞
⋃

n=N

{|Sn

n
− θ| > ε}

}

<
2e−Nε2/4

1− e−ε2/4

which enables us to explicitly fix N as any integer such that

N > − 4
ε2 log

(η
2

(

1− e−ε2/4
))

.

Table 1 (first line) exhibits N = N(ε, η) for some ε and η.

Another formula for N may be constructed as follows (Weso lowski

2002). Define Yi = Xi − θ, Tk =
1
k

∑k
i=1 Yi, and Gk = σ(Tk, Tk+1, . . .).

Then (Tk,Gk+1)k=1,2,... is an inverse martingale:

E(Tk|Gk+1) = E(Tk|Tk+1) =
1
k

k
∑

i=1

E(Yi|Tk+1) = Tk+1, k = 1, 2, . . .

The maximal inequality for inverse martingales gives us

P
{

max
N≤k≤m

|Tk| ≥ a
}

≤ V ar(TN )
a2 =

θ(1− θ)
Na2 ≤ 1

4Na2
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and in consequence

Pθ

{ ∞
⋃

n=N

{|Sn

n
− θ| > ε}

}

= P
{

sup
k≥N

|Tk| ≥ ε
}

= lim
m→∞

P
{

max
N≤k≤m

|Tk| ≥ ε
}

≤ lim
m→∞

1
4Nε2 =

1
4Nε2

Now proposition 2(A) holds for any N ≥ 1
4ε2η

(second line in Table 1).

Table 1. N(ε, η)

η
ε

0.1 0.01 0.001

0.1 3,596 4,517 5,438

250 2,500 25,000

0.01 543,695 635,799 727,902

25,000 250,000 2,500,000

0.001 7.28 ∗ 107 8.20 ∗ 107 9.12 ∗ 107

0.25 ∗ 107 2.50 ∗ 107 25 ∗ 107

CLT for the Bernoulli scheme holds for every θ ∈ (0, 1) separately, even

in a stronger version (”uniformly in x”):

∀θ ∈ (0, 1) sup
x

∣

∣

∣Pθ{Sn ≤ x} − Φ

(

x− nθ
√

nθ(1− θ)

)

∣

∣

∣ → 0, as n →∞.

The classical CLT for the Bernoulli scheme may be written in the form

∀θ ∀x ∀ε ∃N = N(θ, x, ε) ∀n ≥ N
∣

∣

∣Pθ

{

Sn − nθ
√

nθ(1− θ)
≤ x

}

− Φ(x)
∣

∣

∣ ≤ ε.

4



What statisticians need is

∀x ∀ε ∃N = N(x, ε) ∀n ≥ N ∀θ
∣

∣

∣Pθ

{

Sn − nθ
√

nθ(1− θ)
≤ x

}

− Φ(x)
∣

∣

∣ ≤ ε

or even in a stronger form: ”uniformly in x”.

The latter is however not true. To see that one should prove that

∃x ∃ε ∀N ∃n ≥ N ∃θ
∣

∣

∣Pθ

{

Sn − nθ
√

nθ(1− θ)
≤ x

}

− Φ(x)
∣

∣

∣ > ε.

It is sufficient to prove that

∃x ∃ε ∀n ∃θ
∣

∣

∣Pθ

{

Sn − nθ
√

nθ(1− θ)
≤ x

}

− Φ(x)
∣

∣

∣ > ε.

To this end take x = 0 and ε = 1/4. Then LHS = |Pθ {Sn ≤ nθ} − 1/2|.
If for any fixed n one takes θ such that nθ < 1 and (1 − θ)n > 3/4, then

Pθ{Sn ≤ nθ} = Pθ{Sn = 0} = (1 − θ)n > 3/4 and LHS > ε. It follows

that CLT does not hold uniformly in the statistical model with θ ∈ (0, 1).

It is interesting to observe that similar result holds in the inverse
Binomial scheme (negative Binomial distribution). Let Y be the number

of experiments needed to observe first success:

Pθ{Y = y} = (1− θ)y−1θ, EθY =
1
θ
, V arθY =

1− θ
θ2 .

If Y, Y1, Y2, . . . are iid and Tn =
∑n

i=1 Yi then

Pθ















Tn −
n
θ

√

n
1− θ
θ2

≤ x















− Φ(x)

∣

∣

∣

∣

∣

x=0

= Pθ

{

Tn ≤
n
θ

}

− Φ(0)

> Pθ {Tn ≤ n} − Φ(0)

= θn − 1
2

which tends to 1/2 as θ → 1.

One may conclude that typical difficulties in constructing confidence

intervals for θ (e.g. Brown et al. 2001), based on normal approximation,
arises from the fact that CLT does not hold uniformly.
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2. EXPONENTIAL DISTRIBUTION

If X1, X2, . . . are iid random variables with probability density func-
tion λ−1e−x/λ, x > 0, λ > 0, and Sn =

∑n
i=1 Xi then the SLLN

Sn/n → λ a.s.

does not hold uniformly in λ > 0 and the CLT

∀x
∣

∣

∣Pλ











Sn

n
− λ

λ
√

n ≤ x











− Φ(x)
∣

∣

∣ → 0

holds uniformly.

To prove the former it is enough to observe that for some fixed ε > 0,

η > 0, and for each n, one can find λ > 0 such that

Pλ

{

∣

∣

∣

Sn

n
− λ

∣

∣

∣ < ε
}

< η

which, by the fact that Sn/n has gamma distribution Γ(n,
λ
n

) with the
shape parameter n and the scale parameter λ/n, easily follows from the

following estimation

Pλ

{

∣

∣

∣

Sn

n
− λ

∣

∣

∣ < ε
}

=
1

Γ(n)

n(1+ε/λ)
∫

n(1−ε/λ)

tn−1e−t dt <
2nε
λ

1√
2πn

.

A stronger version of the second statement may be formulated as the
following effective proposition 3.
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Before stating the theorem let us define

R(x, n) =











1
Γ(n)

n+x
√

n
∫

0
tn−1e−t dt− Φ(x) if x > −

√
n

0 elsewhere

proposition 3. If X1, X2, . . . are iid random variables with probability
distribution function λ−1e−x/λ and Sn =

∑n
i=1 Xi then

(A) ∀ε > 0 ∃N = N(ε) ∀λ > 0 sup
x

∣

∣

∣Pλ











Sn

n
− λ

λ
√

n ≤ x











− Φ(x)
∣

∣

∣ < ε

and

(B)
an appropriate N = N(ε) is given numerically as an N

such that max
x
|R(x, n)| ≤ ε

proof. To prove part (A) of the proposition it is enough to observe that

Pλ











Sn

n
− λ

λ
√

n ≤ x











= Pλ

{

1
λ

Sn

n
≤ 1 +

x√
n

}

which, due to the fact that (1/λ)(Sn/n) is distributed as Γ(n, 1/n), does
not depend on λ:

Pλ











Sn

n
− λ

λ
√

n ≤ x











=
1

Γ(n)

n+x
√

n
∫

0

tn−1e−t dt.

To prove part (B) observe that

R(x, n) = Pλ











Sn

n
− λ

λ
√

n ≤ x











− Φ(x)

Function R(x, n) is continuous and bounded; two examples are exhibited

in Fig. 1.
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Fig.1. Function R(x,n)

Some values of R(x, n) presented in Tab. 2 below enable us to choose a

proper N for typical values of ε; here xn = arg minx R(x, n).

Tab. 2. R(x, n)

n R(xn, n) xn

7 0.050,363 -0.931,299
8 0.047,100 -0.029,303

176 0.010,025 -0.006,282
177 0.009,996 -0.006,265
707 0.005.001 -0.003,135
708 0.004,998 -0.003,132

17,683 0.001,000 -0.000,540
70,735 0.000,500 -0.000,224

Explicite formulas neither for xn nor for R(xn, n) are known to the author.
.
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3. QUANTILES

It is well known (e.g. Serfling 1980) that if xq = xq(F ) is the
unique quantile of order q of the distribution F and k(n)/n → q, then
Xk(n):n → xq a.s. Here Xk:n is the k-th order statistic from the sample

X1, X2, . . . , Xn. The convergence is however not uniform: for each ε, for

each η, and for every n one can find a distribution F with the unique
quantile xq such that

PF

{∣

∣

∣Xk(n):n − xq

∣

∣

∣ > ε
}

≥ 1− η.

A necessary and sufficient condition for uniform convergence has been
given in Zieliński (1998). An effective uniform asymptotic theorem for a

smaller class of model distributions may be stated as follows. For a fixed

q ∈ (0, 1), consider the class F(q, ϑ) of all distributions F such that the

densities f at the qth quantile xq exist and they satisfy f(xq) ≥ ϑ > 0.

proposition 4.

(A)

∀ε > 0 ∀η > 0 ∃N = N(ε, η) ∀F ∈ F(q, ϑ)

PF

{

sup
n≥N

∣

∣Xk(n):n − xq
∣

∣ > ε
}

< η

and

(B) N(ϑ, ε, η) ≥ −
8 log

(

1
2

(

1− exp
{

− 1
8
ϑ2ε2

})

η
)

ϑ2ε2 .

proof. If

δ = inf
F∈F

min{q − F (xq − ε), F (xq + ε)− q}

for a class F of distributions, then for every F ∈ F

PF

{

sup
n≥N

∣

∣Xk(n):n − xq
∣

∣ > ε
}

<
2τN

1− τ

with τ = exp{−δ2/2} (Serfling 1980). In the class F(q, ϑ) we have

lim
0<t→0

F (xq + t)− q
t

= lim
0<t→0

q − F (xq − t)
t

= ϑ
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so that there exists t0 > 0 such that for all t < t0

F (xq + t)− q ≥ 1
2

ϑt and q − F (xq − t) ≥ 1
2

ϑt

and in consequence, for all sufficiently small ε (for ε < t0)

δ = min{q − F (xq − ε), F (xq + ε)− q} ≥ 1
2

ϑε.

Now

τ = exp{−δ2/2} ≤ exp{−1
8
ϑ2ε2}.

Solving, with respect to N , the equation

2τN

1− τ
= η

we obtain the result.

Table 3 below gives us an insight in how large samples are needed to

get the prescribed accuracy of the asymptotic.

Table 3. N(ϑ, ε, η)

ε
η ϑ 0.05 0.10

0.1 0.5 159,398 35, 414
1.0 35,414 7, 745
2.0 7,745 1, 660

0.01 0.5 188,871 42, 782
1.0 42,782 9, 587
2.0 9,587 2, 120

4. SOME NON EFFECTIVE UNIFORM ASYMPTOTIC RESULTS

Consider the problem as in the previous Section. As an non effec-

tive asymptotic theorem we have the following Corollary (Zieliński 1998):
if F is a continuous and strictly increasing distribution function and
k(n)/n → q then Xk(n):n → xq a.s. uniformly in the family of distribu-

tions {Fθ(x) = F (x− θ),−∞ < θ < ∞}.
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Two more general theorems concerning the convergence of

sn(θ) =
∑

a(Xi, θ)

where a(X, θ) =
(

a1(X, θ), . . . , am(X, θ)
)

is a given vector-valued func-
tion, are taken from Borovkov (1998). To state the theorems recall that

an integral
∫

ψ(x, θ)Pθ(dx) is said to be convergent in Θ uniformly with

respect to θ if

sup
θ∈Θ

∫

|ψ(x,θ)|>N
|ψ(x, θ)|Pθ(dx) → 0, as N →∞.

theorem 1 (uniform law of large numbers). If a(θ) =
∫

a(x, θ)Pθ(dx)

converges uniformly in θ ∈ Θ, then

Pθ

{

∣

∣

∣

sn(θ)
n

− a(θ)
∣

∣

∣ > ε
}

→ 0 as n →∞

uniformly in θ.

To state the central limit theorem assume that a(θ) = 0 (or take
a′(X, θ) = a(X, θ)− a(θ) instead of a(X, θ)).

theorem 2 (uniform central limit theorem). If
∫

a2
j (x, θ)Pθ(dx), j =

1, . . . , m, converge uniformly in θ, then sn(θ)/
√

n converges to a normal

random variable N
(

0, σ2(θ)
)

uniformly with respect to θ, where σ2(θ) =

Eθ
(

aT (X, θ)a(X, θ)
)

.

5. COMMENTS

Though of great importance for statistical inference, the literature

on uniform asymptotic theorems in statistical models, and especially on
effective limit laws, is extremely scarce. Perhaps the only two examples

of specific theorems for statistical models are the above result on sample
quantiles and a general result on uniform consistency of maximum likeli-

hood estimators (Borovkow 1998, Ibragimov et al. 1981). Other uniform

versions of asymptotic theorems are mostly constructed as follows: take a

probability asymptotic theorem which states that if a distribution under
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consideration satisfies a condition C then WLLN (or SLLN , or CLT )

holds. Then formulate the statistical theorem: if the condition C is satis-

fied uniformly in a given statistical model then WLLN (or, respectively,
SLLN , or CLT ) holds uniformly (Ibragimov et al. 1981).

If a distribution-free statistic in a model under consideration is avail-
able, the problem of uniform limit laws is automatically solved, but con-

structing an effective limit law may be difficult. As an example consider
the Kolmogov statistic Dn = supx |Fn(x) − F (x)| in a statistical model

with F continuous; here Fn(x) is the empirical distribution function. It
is well known that the distribution of Dn does not depend on the spe-

cific distribution F so that the stochastic convergence P{Dn > ε} → 0

for every ε > 0 holds uniformly. That means that for every ε > 0 and

for every η > 0 there exists N = N(ε, η) such that for all F continuous

and for all n > N , P{Dn > ε} < η. In Birnbaum (1952) one reads that

N(0.15, 0.1) = 65 and N(0.05, 0.01) = 1, 060. The values were obtained

numerically and no explicite formula for N(ε, η) is known.
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