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Abstract

HJM model driven by Lévy process is considered. Necessary and sufficient
conditions for the market prices of bonds being local martingales are given. HIM
type conditions are derived as well.

0.1 Introduction

Let P(¢,0),0 < t < 0 be the market price at momenbof a bond payind at the
maturity timef. The forward rate curve is a functigf{¢, 6) defined ford > ¢ and
such that
P(t,0) = e J 7o) )
Heath, Jarrow and Morton [6] proposed to model the forward curves as Ité pro-
cesses
df(t,0) = a(t,0)dt + < o(t,0), dW(t) >, 0<t<o, 2

with W d-dimensional standard Wiener process. For éhch 0 the processes
a(t,0),0(t,0),t < 0, are assumed to be adapted processes with respect to a given
filtration (). We consider a generalization of this model by taking, instead of the
processV a Lévy procesZ with values in a separable Hilbert spdce.e.

df (t,0) = a(t,0)dt+ < o(t,0), dZ(t) > . ©)

In books by Bertoin [1] and Sato [9] one can find excellent discussions of Lévy
processes ifR?. Models of similar types have already been studied (see [2], [5]).
It is of special interest to find conditions on the forward rate process under
which the discounted bond price procesB¥s 6), 6 € [0, T] are local martingales
(see [4] or [8]).
The aim of our paper is to giveecessary and sufficienbnditions, in terms
of characteristics of the Lévy procés implying thatP is a local martingale and



to derive the HIM type condition. It will turn out that model implies existence of
exponential moments of the noise processes and this is one of our main contribu-
tions.

In a similar way, see [7], we can obtain conditions on existence of exponential
moments for models

df(t,0) = a(t,0)dt + o(t,0) dW (t)+

[ oot.0.0)utde.dy) — dwtay) + [ or(e,6.)utde,dy)
lyl<1 [y|>1
with . a Poissonian random measure with intensity
In [2] sufficient, but not necessary, conditions are given and for models with
the compensated jumps part only (Proposition 5.3 and Assumption 5.1). Eberlein
and Raible [5] postulate a very specific form of the forward curve, see section 2,
aJ Jdo do
df(t79) - %(U(tv 9))%@70)6# - %(Le)dztv (4)
whereo is a smooth, bounded and deterministic function diid), x € R, is the
Lévy exponent of al-dimensional Lévy proceg with Lévy measures having
exponential moments:

/ e“v(dy) < oo (5)
ly|>1

for ¢ € (—,7), v is a positive number. We derive formula (4) without requiring
thato is deterministic and witl-dimensional Lévy proceg (see Theorem 5) and
show that (5) is, to some extent, necessary.

0.2 Forward rate function

We assume that the basic probability spé@eF, P ) is complete. LetZ be a
Lévy process in a separable Hilbert spdée.e. cadlag process with stationary
independent increments having valuedin Let 7{ = o(Z(s);s < t) beo-
fields generated bg (t),t > 0 and.F; be the completion o by all sets ofP
probability zero. It is known that this filtration is right continuous, so it satisfies
the "usual conditions”. By, we denote the measure associated to jumps bé
forT € B(U), T c U~ {0}

u([0,2],T) = Z 1r(AZ(s)).

0<s<t

A measure such that
E(u((0,t],1)) = tv(I')
is called a Lévy measure of the procegss
Through the paper we denote the inner produéfiby < - ,- > and the norm
inU by -|.



The characteristic function df(¢) has a form (Lévy-Khintchine formula)
EeM W) _ (N

where

1 e
YN =i<ad> -5 <QAA> +/ (&M 1—i < Nz > 1qpp1<1y)v(da),

U

anda € U, Q is a symmetric non negative nuclear operaton is a measure
onU with v({0}) = 0 and

/ (|z|> A1) v(de) < oo. (6)
U
MoreoverZ has a decomposition

Z(t) =at + W (t) +/0 / - y(u(ds, dy) — dsv(dy))+ @

t
// yu(ds, dy),
0 Jly[>1

whereW is a Wiener process having valuedinwith covariance operatdp.
Letr(¢), t > 0 be the short rate process: if at momeémmne puts into the bank
accountl then at moment one has

Bt _ 6[(; 'r(o')da'

It is convenient to assume that once a bond has matured its money equivalent goes
to the bank account. Thug(¢, 8), the market price at momenbf a bond paying
1 at the maturity time, is defined also fot > 6 by the formula

P(t,0) = eld (@) ®)

The forward rate curve functiofi(¢, 6) defined by (1) is usually interpreted as the
anticipated short rate at tinteas seen by the market at time

We consider a generalized Heath, Jarrow and Morton model (2) taking a Lévy
procesZ in U instead ofW = (Wy,..., Wy) i.e.

df(t,0) = a(t,0)di+ < o(t,0), dZ(t) > . 9)
For simplicity of notation we sometimes used another form of equation (9), namely
df (t) = a(t)dt + o (t)dZ(¢), (10)
whereg(t) : U — L?[0,T] is such that

G(t)u)(0) =< o(t,0),u > .



For eachy the processes(t,0), o(t,0), t < 6 are assumed to be adapted pro-
cesses with respect to a given filtratigf: ) and such that integrals in (9), therefore

also in (10), are well defined.
For6 < t we put

a(t,0) =o(t,0) =0. (12)
It follows from (9) that fort < 6,

f(t,0) = £(0,6) +/Ota(s,9)ds+/0t < o(s,0), dZ(s) >

and by (11) that for > 6

0 0
f(t,0) = £(0,0) —|—/O oz(s,@)ds—}—/0 < o(s,0), dZ(s) > .

Consequently for each > 0, f(¢,0),t > 0, is a process constantirand should
be identified with the short rate:

0 0
r(0) = £(0,0) +/0 a(s,@)ds—i—/o < o(s,0), dZ(s) > . (12)

From now on we assume (9) and (11) and that the short rate is given by (12).
Let us recall thaHJM postulate is the requirement that the discounted bond

price processe® (-, 6), 6 € [0, T):

P(t,0) = P(t,0)/B; = e ¥ 1t:9)ds = J§ ()5 _ = J§ f(t,)ds

are local martingales.

We are looking for conditions on the forward rate process defined by (9) under
which the HIM postulate is satisfied.

We will assume that for giveff’, the integrals in the definition of exist in
the sense of the Hilbert spadé = L?(0,T). Denote the scalar product H
by (-, -) and the characteristic function of the inter{@|#] by 1}, ¢;. One should
distinguish between the scalar productlindenoted by< -,- > and the scalar
product inL? denoted by(-, ).

If

Fl(z) =e ™00V ze H=L*0,T),
then

P(t,0) = e W00 — FO(f(t)), t>0

so the procesa/?(t) = P(t,0), t > 0 is a semi-martingale and one can find its
decomposition using Ité’s formula (see e.g. [3]).
Denotegs = 1[0,¢). Then we have

MO(t) = e~ D 20.)) — =4 (D:0)



Since the dynamics of forward rate is given by (10) we see that
d{ge, f(t)) = (g0, a(t))dt+ < " (t)go, dZ(t) > . (13)
The following assumptions are used through this paper:

(H1) For eachfd € [0,7] the processe&*(t)ge, t € [0,T7], are locally
bounded.

(H2) for some# and somes there exists- > 0 such thatB(0, r), the ball
with center in zero and radius is contained insupp (¢ (s)gs),

By supp (X) we denote the support of the distribution of the random variable
X.

Theorem 1 a) Assume (H2). If HIM postulate is satisfied, then
P(s) = / eV u(dy) < oo (14)
ly|>1

for cin dense subset @ (0, r). Moreovery) is lower semicontinuous.
b) If HIM postulate is satisfied, then for eacland 6
(g0 a($))+ < 7 (g, @ > +3 < Q5" ()90, 5" ()9 > +
/U [6_6*(3)“’” — 1= 1y <13 (y) <37 (s)90,y > ]V(dy) =0. (15)
Proof. Using (7) we see thaX ® (t) = (ge, f(t)) satisfies

dX°(t) = (go, a(t))dt+ < 5" (t)ge, dZ(t) >

= (g, a(t))dt+ < *(t)ge, adt +dW (t) +

/Ul{\y\gl}(y)y(u(dt,dy)—dtV(dy))+/Ul{|y|>1}(y) yu(dt, dy) >

SinceM?(t) = (X¥(t)), applying 1td’s formula to functiorpo(x) = e~ and
processX ? we obtain

M) = N0 + [ pu(X" (2o a())ds + (16)
+/O (X% (s=)) < 5" (s)go,a > ds
[ [ X D1 ) <7 (o > s, dy) +
1 t

3 [ enlX(5m) < QF (). 7 (s)ao > dst



+/0 /U [sa(XG(S*)Jr <" (s)ge,y > )—
(X (57)) = (X (s7)) < & ()g0,y > | ulds, dy)
= N0+ [ e (X, als)dst
/0 02 (X%(s=)) < 5" (s)go,a > ds
3 [ oK) < Q7 ()07 (s)aw > ds +
[ [ e et <3 Gany >) — (x5
Ly () 9o (X7 (5-)) < 5" ()90, > | n(ds, dy),
whereN? is a local martingale.

Now we give the proof of part a). I#/¢ is a local martingale with localizing
sequence of stopping timés,, then

// 0.001(9) [ (X (s)4 < 7 (s)ao.y > )~
X (52)) = Lyt (0) @a(X°(5-)) < T ()90, > | (s, dy)

is well defined and

E/ / 10,9, X% (s=)+ < 5"(s)go,y > )— (17)
P(X(s=)) = 11y 1<13 (v) ¢u (X7 (5=)) <57 (s)go,y > }u(ds,dy) <00
Since the process under integral in (17) is predictable, then

B[ [ t0a @] (62 +7 (o > ) 1)

P(X°(5=)) = Ly <) 9o (X7 (s-)) < & (s)go,y > |dsv(dy) < o
Sincep(z) = e~ %, we obtain

// (0,01 (8)1(y1>13 (¥ )so —)+ <5 (s)ge,y > )—

(X (=) |dsv(ay)]

t ~ %
= E[/ l[oﬂgn](s)efxs(sf)(/ ‘67<0 (#)go.v> _ l‘l/(dy))ds] < 00
0 {ly|>1}



Hence forP-almost allw €
1977, ~%
/ / e <° (S’“’>g"‘y>u(dy)ds < 00. (19)
0 {ly|>1}
Sinced,, T oo asn — oo for almost alls and P-almost allw,
/ =<7 S9)90:0> () < oo,
{ly|>1}

which together with assumption (H2) implies (14).
To prove lower semi-continuity af we use Fatou lemma. Let
liminfe, .4 (cn) = 7. If v < 00, then

liminf/ eV y(dy) > / liminf e<“*YZu(dy) = ¢(c). (20)
ly[>1

cnp—cC ly|>1 cnp—cC

If v = oo, then (20) is obvious. Thereforg,is lower semi-continuous.
The equation (15) (i.e. point b) of Theorem 1) is a simple consequence of (16),

because\!’ is a local martingale ang(z) = —p, () = @ze(z) = e . N

Theorem 2 Assumg15). Ifforall c € U
/ <Y u(dy) < oo, (21)
ly|>1

then HIM postulate is satisfied.

Proof. We have
/U [(e_d*(s)”’w — 1+ 1y <1y (y) <T(s)g0,y > ]V(dy) =0+,
(22)

where

L= / (=7 @00> — 14 <5 (s)ga,y > )w(dy),
{lyl<1}

B[ @ )
{ly|>1}

In the neighborhood of zero

eSO 1 < x> (< e x >),

so by (6)

L < const/ ly|*v(dy) < oo.
{lyl<1}



I, < oo by assumption (21) and (6). Therefore

t ~ %
[ [l Om -1 a0 ) <5 (S)any > |vldyas
0 U
is well defined. This, assumptions (15) and equation (16) imply that
t
M°(t) = N°(t) +/ / [cp(Xe(s—)—&— <" (s)ge,y > )—
0 U

P(X"(57)) = Ly (W9 (X (s7)) < T (s)g0,y > ] (n(ds, dy) — dsv(dy)) =

= N(t) + NI (1),

whereN? is a local martingale, s8/¢ is a local martingale. li

Remark 1 a) If M? = =" isalocal martingale, then (14) implies existence of
Laplace transform of driven Lévy procegsn some neighborhood of zero. ifis
a Lévy measure of the stable symmetric process then

v(dy) = cly|' " %dy and Yu #0 / e~V y| T T dy = oo.
{lyl>1}

Therefore, as a consequence of Theorem 1 we obtaimthtble symmetric pro-
cessZ can not be used for modelling forward rate.

b) If U = R?, then in Theorem 1a we prove in fact that (14) is satisfied for

ce U U supp (7 (s)ge)-

0€[0,7] s€[0,T]

c) If the processeg™(s)gy are bounded (e.gz is deterministic and bounded
as in [5]), so there exists a constdkis such thaio™(s)ge| < Ko < oo, then we
can weaken assumptions of Theorem 2. It is enough to assume that (21) is satisfied
for |¢|] < K, whereK = sup, Ky instead of assumption that (21) is satisfied for
all c.

Proposition 3 LetU = R%.
a) lf

/ e W (dy) < oo (23)
ly|>1
for v € R, |y| < r, then(14) s satisfied forc € B(0, r).

b) If the condition(14) is satisfied forc € B(0, ), then the conditiorf23) is
satisfied fory| < T



Proof. a) Since< ¢,y > < | < ¢,y > | < || - |y| the condition (23) fotvy| < r
implies (14) forc € B(0,r).

b) Fix |y| < %.
Since

d d
D lusl = yisgny;,
j=1 j=1

so for arbitrary orthantd, = {sgn y1 = ei,...,sgn ya = eq} for h =
(e1,...,eq), e; € {—1,1}, takingcp, = vh we obtain by (14)

/ ety < [ <My (dy) <
Apn{ly[>1} Apn{ly[>1}
/ e<c’“y>1/(dy) < 00

{ly[>1}

becausey|y| < < ¢p,y > and|ci| < r. Hence

/ e’ Vly(dy) < Z/ eV u(dy) < oo.
ly|>1 n JAlyl>1}

It is convenient to present HIM condition in terms of the function
1 N
J(u):—<u7a>+§<Qu7u> + J(u), (24)
where

J(u) :/ (e_<u’y> — 14 < u,y >)v(dy) (25)
{lyl<1}
+ TSRV Dw(dy).
G (dy)

Theorem 4 Under the assumptions (H1):

a) If the discounted bond price processes, ), 6 € [0, T satisfy HIM postulate,
then HIM type condition

/09 at,v)dv = J(/OG o(t, v)dv) (26)

holds.

b) The HIM type conditio(26) and (H2) implies HIM postulate.

Proof. a) By Theorem 1b) HIM postulate implies (15), all factors are well defined
and by definition of/ we obtain (26).

b) The HIM type condition (26) gives (15), so applying Theorem 2 completes
the proof. W

In the next theorem we find the dynamicsjoin the casé/ = R.



Theorem 5 LetU = R?. Assume that exists a deterministic const&nsuch that
d
Zg,aj <K <oo t,0el0,T),

and moreover for some > 0
/ eSOV u(dy) < 0o for|c] < K(1+¢). 27)
ly|>1

Then the HIM type conditiof26) implies that the dynamics gfhas a form

t&:ia‘](/ tv)dv)aj(tGdtJrEUJté)dZ() 28)

Jj=1

Proof. Using assumption (27) one can check differentiability/oSo, by (26) we
have

a(t,§) = Zd: %Jj(/: olt, v)dv)aj(t, 9).

and (28) follows. W
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