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Abstract

We show a construction of a symplectic packing of a four-dimensional
ball into a torus.

0 Introduction

A symplectic manifold is a real C∞-manifold of dimension 2n with a nonde-
generate, closed differential 2-form ω. The simplest example is R2n with the
form ω0 =

∑n
i=1 dxi∧dyi. Another examples are given by smooth, complex,

projective algebraic surfaces. If S is any such a surface, embedded by an
ample line bundle L, the form ω = ωL is given by the first Chern class of L,
after the identification of H2(S,Z) with H2

DR(S).
One of the classical problems in symplectic geometry is a problem of sym-
plectic embedding of a ball (or a disjoint sum of balls) into a symplectic
manifold. Let (B(a), ω0) ⊂ R2n be a ball of the volume (!) a and let (M,ω)
be any symplectic manifold. If φ :

⊔s
i=1 B(ai) −→ M is a diffeomorphism

on the image, then φ is a symplectic embedding if φ∗ω = ω0.
The famous problem: how big a ball can be symplectically embedded into
the set ({x2

1 + y2
1 ≤ ε}×R2n−2, ω0) was solved by Gromov in [5]. He proved

that the radius of the ball must be less than ε. In the same paper, Gromov
proved that only a half of a 4-dimensional ball can be symplectically packed
by two equal balls.
Let us now consider the case when our symplectic manifold S is a smooth
projective algebraic surface with an ample line bundle L. The problem of
symplectic packing of such a manifold with a disjoint sum of equal balls
has a connection with the problem of finding Seshadri constants of the line
bundle L. Let us remind that a Seshadri constant of L in the points x1, ..., xr

of S is defined as

ε(S, L, x1, ..., xr) := infC{ LC∑r
i=1 multxiC

},

where C is a (reduced and irreducible) curve on S (cf [4]). We will write
ε(L, r) for ε(S, L, x1, ..., xr) with x1, ..., xr generic on a given S.
Let us also recall the definition of a packing number.
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vr := sup
volφa(

⊔r
i=1 B(a), ω0)

vol(M, ωL)
,

where supremum is taken over all such a that φa is a symplectic embedding.
When vr = 1 we say that there exists a full packing of the manifold with r
balls.
Analogously, we may define a ‘holomorphic packing number’

vhol
r := sup

volφa(
⊔r

i=1 B(a), ω0)
vol(M,ωL)

,

where supremum is taken over all such a that φa is a symplectic and holo-
morphic embedding.
The connection between the Seshadri constants and symplectic packing was
first stated in [10] and then in [1], [2], [8] and others.

Lazarsfeld in [8] proved that ε(L, 1) ≥
√

vhol
1 L2. In a similar way one can

prove that ε(L, r) ≥
√

vhol
r

L2

r .
On the other hand, Biran and Cieliebak in [3] [Theorem G], proved (as
a corollary to the construction of symplectic blowing down, see [10]) that√

vr
L2

r ≥ ε(L, r).
The problem arises when the above inequalities are equalities. Take the
case of P2 with L = OP2(1), for example. For r = 1, ..., 9 we have ε(L, r) =
1, 1

2 , 1
2 , 1

2 , 2
5 , 2

5 , 3
8 , 6

17 , 1
3 respectively. In the same range of r, we have (cf [2]):

vr = 1, 1
2 , 3

4 , 1, 20
25 , 24

25 , 63
64 , 288

289 , 1, so ε(L, r) = vr here. For r ≥ 10 we know
by the results of Biran, [2, 1], that vr = 1, whereas ε(L, r) is still unknown
(unless r is a square of a natural number, when ε(L, r) = 1√

r
, cf eg [7]).

Nagata’s conjecture says that ε(L, r) = 1√
r

for all r > 9, (cf eg [7, 12, 15]),

so conjecturally ε(L, r) =
√

vr
L2

r for P2 with L = OP2(1).

However, it may happen that ε <
√

vr
L2

r . This fact is already stated (not
explicitly) in [1]. Namely, let S be any abelian surface with the polar-
ization of type (1, 1), ie ωL = dx1 ∧ dy1 + dx2 ∧ dy2. Such surfaces are
all symplectomorphic. In case S = E × E where E is an elliptic curve,
ε(S,L, 1) = 1 = L.E

multxE
.

In case S is generic (NumS ∼= Z), ε(S, L, 1) = 4
3 (cf [16]). Thus, for all S

as above, v1 ≥ 8
9 , as they are all symplectomorphic. This means that for

S = E × E we have 1 = ε(S, L, 1) <
√

v1L2 =
√

28
9 = 4

3 .
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The problem of its own is to find explicit constructions of the symplectic em-
beddings. Such construction are given for example in the papers of Karshon,
[6], Traynor, [17, 9] and Schlenk, [13, 14].
In this paper we present an explicit construction of a packing of one four-
dimensional ball into a torus.
First, we show the details of the construction of the full packing of the ball
B(2 − 4ε) into the torus E × E with the polarization of type (1, 2) (here
v1 = 1).
Then, we sketch an analogous construction for the embedding of the ball
(slightly less than) B(8

9) into E × E with (1, 1) polarization.
The ideas of the construction are based mainly on the paper [13] of Schlenk.
For the convenience of the reader and to keep the homogeneity of the nota-
tion, we write down here some paragraphs, instead of sending the reader to
[13].

1 Notation and basic facts

We work in R4 with the symplectic coordinates denoted by (x1, y1, x2, y2).
The standard symplectic form in R4 is ω0 := dx1∧dy1 +dx2∧dy2. The pair
(xi, yi) may be also denoted by zi, i = 1, 2.
Following [13], for a set U in the z1-plane and for a positive, continuous
function h : U 3 z1 −→ R+ denote by F(U, h) the set

F(U, h) := {(z1, z2) | π|z2|2 < h(z1), z1 ∈ U}.

Let R(a) be a rectangle (−γ, a − γ) × [0, 1]. For N ∈ N, let RN be a set
([0, a − γ) ∪ (N + a − γ, N + a]) × [0, 1] with the points with coordinates
(0, y1) and (N + a, y1) identified. For the simplicity of the notation, let us
write Rl := [0, a− γ)× [0, 1] and Rr := (N + a− γ, N + a]× [0, 1]. By D(a)
we denote the disc

{(x1, y1) | π(x2
1 + y2

1) < a}.
For a set U ⊂ R2, |U | denotes the area of U .

In [13] Schlenk introduced the following notion:

Definition 1 A family of loops L in a simply connected domain U ⊂ R2 is
called admissible if there is a diffeomorphism β : D(|U |) \ {0} −→ U \ {p},
for a point p ∈ U , such that
1. concentric circles are mapped to elements of L
2. in a neighbourhood of 0, β is a translation.
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Our main tool will be the fact, proved in [13] (Lemma 2.5).

Lemma 2 Let U and V be bounded and simply connected diffeomorphic
domains in R2 and let LU ,LV be admissible families of loops in U and V
respectively. Then there is a symplectomorphism U −→ V , mapping loops
to loops.

2 The elements of the construction

Our goal is to construct a symplectic embedding of the ball B(2− 4ε) into
the torus T2 := ([0, 1]× [0, 1]× [0, 1]× [0, 2], ω0).
The idea of the construction is to map symplectically a ‘long trapezoid’
(defined below) into the torus. Then we embed the ball into this ‘long
trapezoid’. The map of the trapezoid restricted to the image of the ball
gives the required symplectic embedding.
Throughout we assume that ε << 1.

2.1 Element 1: Long trapezoid

We define the ‘long trapezoid’ T as F(U, h), where U := (0, 1− ε)× [0, 1] ∪
[1− ε, 1 + ε + N ]× [0, ε′] ∪ (1 + ε + N, 2 + N)× [0, 1], and

h(z1) = h(x1) =





−x1 + 2− 3ε if x1 ≤ 1− 2ε

δ if x1 ∈ (1− ε,N + 1 + ε + δ)
x1 −N − 1− ε if x1 ≥ N + 1 + ε + δ,

and is continuous and goes linearly on the interval (1− 2ε, 1− ε).
For our construction we assume that δ < ε

7 and that N =
⌈

ε
6

⌉
.

As for ε′, we will say precisely how small it must be in Element 6 of the
construction.

2.2 Element 2: The fibers of the trapezoid

We need to change the shape of the fibers of T . We must change the circles
into rectangles with smooth corners, of width (almost) one, ie x2 ∈ (0, 1).
Moreover, we require that (0, 0) ∈ D(2 − 4ε) goes to the point (1

2 , 1 − ε).
Such a construction is described in [13] [Lemma 2.8]. We provide a detailed
description of this construction in Element 6 below. Thus, here we skip the
details, but just draw a picture, see Figure 4.
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2.3 Element 3: The cut off function and the lifting of fibers

Let us describe the procedure of lifting the fibres, following [13]. Let cj :
R −→ [0, 1− 2ε′], j = 0...N − 1 be smooth functions as in the Figure 5. We
assume that cj is nonzero on the interval (j − ε

2 , j + ε
2). Define Ij(t) :=∫ t

j cj(s)ds. Assume moreover that Ij(j + ε) = ε
6 . Then define a symplectic

mapping:

φj(x1, y1, x2, y2) := (x1, y1 + cj(x1)x2, x2, y2 + Ij(x1)).

The maps φj are symplectic as their derivatives satisfy dφT
j J0dφj = J0 (cf

[11], Chapter I).
If x1 ≤ j − ε

2 then φj = Id, if x1 ≥ j + ε
2 then φj(x1, y1, x2, y2) :=

(x1, y1, x2, y2 + ε
6). Thus, applying φj results in lifting the fibres by ε

6 along
y2-axis.
Observe, that the projection of φj(T ) to the (x1, y1)-plane is the union of
U with the set Aj := {(x1, y1) : 0 ≤ y1 ≤ cj(x1)}. Important for our
construction is the fact that Aj ⊂ [j − ε, j + ε]× [0, 1].
Consider now the set φN−1(...(φ1(T )...)) =: T̃ . Observe, that φj lifts only
the fibres over the points with x1 > j − ε

2 . Each φj lifts the fibres by ε
6 and

we do it N − 1 times, (ie j = 1...N − 1). This means that finally we have
the fibres moved up along y2 by more than 1− ε

6 .

2.4 Element 4: T̃ into T2.

We map T̃ into T2 by dividing T̃ modulo Z4 (ie by gluing the points with
integer x1-coordinates). This map is not injective, but we will see below,
that it will be injective, when restricted to the image of the ball in T .

The next two elements present the construction of the embedding of the ball
into T .

2.5 Element 5: A rectangle R(2− 4ε) into RN .

The rectangle R(2 − 4ε) := (−1 + 2ε, 1 − 2ε) × [0, 1] and the set RN =
([0, 1−2ε)∪(N +1+2ε,N +2])× [0, 1] with the points (0, y1) and (N +2, y1)
identified, are symplectomorphic. Indeed, define γ : R(2− 4ε) −→ RN such
that

γ(x1, y1) =

{
(x1, y1) if x1 ≥ 0
(x1 + N + 2, y1) if x1 ≤ 0.

Then γ is an area and orientation preserving diffeomorphism.
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2.6 Element 6: A disc into RN

We follow closely the idea of Lemma 2.8 from [13]. If you are familiar with
the paper, you may skip reading this section.
We will construct a symplectomorphism α of D(2 − 4ε) into R(2 − 4ε).
Having α, we define a symplectomorphism

Γ : D(2− 4ε) −→ RN

as γ ◦ α = Γ.
Moreover, we require that Γ (so α) satisfies some additional conditions. Let
x1 := x1(Γ(z1)) denote the real part of the image of z1 ∈ D(2 − 4ε) by Γ.
We want that

x1 ≤ π|z1|2 + ε

if x1 ∈ Rl and that
N − x1 ≤ π|z1|2 − 3 + 3ε

if x1 ∈ Rr.
α is constructed as follows:
Step I. A translation of a small disc.
We translate the disc of the radius ε

8 to point ( ε
4 , 1

2) ∈ RN .
Step II. Rectangular loops filling (almost all) the rectangle Rl.
We define rectangular loops by giving the coordinates of the lower-left and
upper-right corners. We define a first part of a family of rectangular loops
starting from L0 with the corners ( ε

4 , ε
8) and (3ε

4 , 1 − ε
8). The last of these

loops, L1, has coordinates (ε2 + ε3, ε2 + ε3) and (1− ε− ε2− ε3, 1− ε2− ε3),
where ε2, ε3 are such, that the area enclosed by L1 is bigger than 1− 2.5ε.
The coordinates of the corners within this family change linearly.
Step III. Rectangular loops filling Rl and then Rr.
Let us now define the next part of our family of loops. The first loop, L2,
has corners (ε2− ε3, ε2− ε3) and (1− ε− ε2 + ε3, 1− ε2 + ε3), the last is the
whole RN . Again we assume that the coordinates of the corners within the
family change linearly. More precisely, the lower-left corner moves linearly
from (ε2 − ε3, ε2 − ε3) to the point (0, s0(ε2 − ε3), where s0 = ε2−ε3

1−2ε+ε2−ε3

and then from the point (N + 2, s0(ε2 − ε3) to (N − 1 + 2ε, 0).
Step IV. Smooth loops.
We change rectangular loops into smooth ones, by smoothing the corners
in such the way that the area enclosed by the smooth loop differs from the
area enclosed by the rectangular one by less than ε

4 .
Step V. Complete.
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We complete the loops to an admissible family between the circle and L0

and between L1 and L2.
Step VI. The bounds x1 ≤ π|z1|2 + ε and 3 − 3ε − x1 ≤ π|z1|2 + N are
obtained by calculating the area bounded by the loops. Indeed, suppose
that x1 ∈ Pl. If moreover π|z1|2 > 1− 3ε, then immediately x1 ≤ π|z1|2 + ε.
If π|z1|2 ≤ 1 − 3ε, then from our construction it follows, that x1 is either
on one of the loops (say Lt) enclosed by L0 and L1, or x1 lies inside L0. In
the latter case x1 ≤ 3

4ε ≤ ε + π|z1|2. In the former case the area enclosed
by Lt (which equals π|z1|2) is greater than − ε

4 + (x1 − (1 − s) ε1
4 + sε2 +

sε3)(1− ε
4) > x1 − ε

2 . This gives the required inequality. If π|z1|2 > 1− 3ε
and x1 ∈ Pr, then x1 lies on the loop of the area (= π|z1|2) greater than
− ε

4 + 1 − 2.5ε + (N + 2 − x1)(1 − ε
4) > 3 − 3ε + N − x1, (remember, that

N + 2− x1 < 1).
(Look at the pictures. Figure 1 goes to Figure 2 by α and then goes by γ
to Figure 3).
We may now define ε′. We choose ε′ such, that for y1 ∈ (0, ε′) and any
x1 ∈ (0, 1− 2ε) we have π|α−1(x1, y1)|2 = π|z1|2 > 2− 4ε− ε

5 . If for this z1

the pair (z1, z2) ∈ B(2− 4ε), then π|z2|2 < ε
5 .

2.7 Element 7: A ball into T
Define a symplectic embedding β from a ball B(2− 4ε) to T by

β(z1, z2) = (Γ(z1), z2).

The map is symplectic, but we have to check that it embeds the ball into
T . If (z1, z2) ∈ B(2− 4ε), then Γ(z1) ∈ R and

π|z2|2 < 2− 4ε− π|z1|2 < h(z1)

because such is the construction in Element 6.

2.8 B into T2

To pack T2 with one ball of the volume 2 − 4ε, first pack the ball into the
long trapezoid, T , (Elements 6 and 7), then apply Elements 1,2,3 and 4 to
the image of the ball in T .

3 B into T1

In this section we sketch the idea how to pack a ball of the volume slightly
less than 8

9 into T1. As we do not give the details, we also skip, for simplicity
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of notation, the ε-argument. Thus, we work with B(8
9) instead of B(8

9 − ε)
etc.

3.1 Long trapezoids

Let us define the trapezoid T1 as F(U, h), where U is a subset of z1-plane,
U := [0, 1]2 ∪ [0, N ] × [0, ε′] ∪ [N − 1

3 , N ] × [0, 1], for suitable N and ε′.
The function h(z1) = h(x1) is given in the Figure 6. Let us also define
an analogous trapezoid, T2, with the base in z2-plane and the fibres in z1-
plane. The base U and the function h are here like the ones for T1, the only
difference is that we change z1 with z2 and, in the definition of h, y2 replaces
x1. The fibres of T2 are now the rectangles in z1-plane, with y1 ∈ [0, 1] and
with the area depending on x1.

3.2 Fibres

We modify the fibres of the trapezoid to get, instead of discs, the rectangles
looking as in the Figure 7.

3.3 Reversing the roles

Observe, that after the above changing the fibres, we may look at our ball
B(8

9) as packed into the trapezoid T2.
Let us denote by P1 the set {(z1, z2) ∈ T1|z1 ∈ (N − 1

3 , N)} and by P2 the
set {(z1, z2) ∈ T2|z2 ∈ (N − 1

3 , N)}.

3.4 Moving up fibres

Now, we move the fibres of T1 up along y2 by 2
3 , analogously as we did it in

Element 3.
Then, we move the fibres of T2 up along x1 (!) by 2

3 .

3.5 Gluing

After lifting the fibres, we glue the points with integer coordinates.

3.6 Result

After the lifting and gluing procedures, we see that P1 goes to the set
{(z1, z2)|x1 ∈ (2

3 , 1), y1 ∈ (0, 1), x2 ∈ (0, 1), y2 ∈ (2
3 , 1) and x1 > y2}, where

the last condition is given by the fact that the area of the fibre is less than
h(x1). Analogously, P2 goes to the set {(z1, z2)|x1 ∈ (2

3 , 1), y1 ∈ (0, 1), x2 ∈
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(0, 1), y2 ∈ (2
3 , 1) and x1 < y2}. Now this last condition follows from the

fact that the area of the fibre (ie almost x1) must be less than h(y2).
The two sets are disjoint.
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