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1. Introduction

For the Bernoulli scheme with a probability of success θ, the central limit
theorem (CLT) does not hold uniformly in θ ∈]0, 1[: for any fixed n (the
number of trials), the normal approximation fails and its error is close
to 1/2 if θ is close to 0 (Zieliński 2004). CLT does not hold also for the
negative Bernoulli scheme (ibid.). In our paper we show that CLT holds
if n is an appropriate random variable. A sequence of stopping times and
estimators are effectively constructed.

2. Main Results

Let Z1, . . . , Zn, . . . be a sequence of random variables defined on a statis-
tical space with a family of distributions {Pθ : θ ∈ Θ}.

2.1. Definition. The sequence Zn is uniformly asymptotically normal

(UAN) if for some functions µ(θ) and σ2(θ),

∀ε∃n0∀n≥n0∀θ sup
−∞<x<∞

∣∣∣∣Pθ

( √
n

σ(θ)
[Zn − µ(θ)] ≤ x

)
− Φ(x)

∣∣∣∣ < ε,

where Φ is the c.d.f. of the standard normal distribution N(0, 1). We will

then write √
n

σ(θ)
[Zn − µ(θ)] ⇒ N(0, 1).

Uniform convergence in distribution is considered e.g. in Zieliński 2004,
Salibian-Barrera and Zamar (2004), and Borovkov (1998). The definition
above may be considered as a special case of that in Borovkov 1998.

2.2. Theorem.Let X = X1, . . . , Xn, . . . be i.i.d. with Pθ(X = 1) = θ =
1− Pθ(X = 0). The parameter space is Θ =]0, 1[.

(i) There is no sequence of estimators θ̂n = θ̂n(X1, . . . , Xn) such that

√
n

σ(θ)
[θ̂n − θ] ⇒ N(0, 1).

(ii) There is a sequence of stopping rules Tr (r = 1, 2, . . .) and a sequence

of estimators θ̂r = θ̂r(X1, . . . , XTr ) such that
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√
r

σ(θ)
[θ̂r − θ] ⇒ N(0, 1).

Proof of part (i). For every n there exists θ such that Pθ(X1 = · · · = Xn =
0) > 1/2. For such θ the probability distribution of the random variable
(
√

n/σ(θ))[θ̂n − θ] has an atom which contains more than 1/2 of the total
probability mass. It follows that

sup
−∞<x<∞

∣∣∣Pθ[(
√

n/σ(θ))[θ̂n − θ] ≤ x]− Φ(x)
∣∣∣ ≥ 1/4.

The proof of part (ii) requires some auxiliary lemmas and will be presented
in details in next sections.

3. Proofs

3.1. Lemma (A uniform version of the δ-method). Let h be a function

differentiable at µ. Assume that h and µ do not depend on θ. If

Vn =
√

n

σ(θ)
[Zn − µ] ⇒ N(0, 1),

h′(µ) 6= 0 and σ(θ) ≤ b for some b < ∞ and for all θ ∈ (0, 1) then

√
n

σ(θ)h′(µ)
[h(Zn)− h(µ)] ⇒ N(0, 1).

Proof. Obviously h(z)−h(µ) = h′(µ)(z−µ)+r(z)(z−µ), where r(z) → 0
as z → µ, and in consequence

√
n

σ(θ)h′(µ)
[h(Zn)− h(µ)] = Vn + Rn

where

3



Rn =
r(Zn)
h′(µ)

√
n

σ(θ)
[Zn − µ].

We will show that Rn tends to zero uniformly in probability Pθ, i.e. that
for every δ > 0,

(3.2) sup
0<θ<1

Pθ(|Rn| > δ) → 0.

To this end fix δ > 0 and ε > 0 and choose a such that 1−Φ(a)+Φ(−a) < ε.
For sufficiently large n we have

sup
|z−µ|≤ab/

√
n

∣∣∣∣
r(z)
h′(µ)

∣∣∣∣ <
δ

a
.

If the inequality holds then on the event {|Vn| ≤ a} we have |Zn − µ| =
|Vn|σ(θ)/

√
n ≤ ab/

√
n and consequently |Rn| = |r(Zn)/h′(µ)| · |Vn| < δ.

For sufficiently large n we also have supθ supx |Pθ(Vn ≤ x)−Φ(x)| < ε and
therefore

sup
θ

Pθ(|Rn| > δ) ≤ sup
θ

Pθ(|Vn| > a)

≤ 1− Φ(a) + Φ(−a) + 2ε < 3ε,

which ends the proof of (3.2). We end the proof of Lemma 3.1 using the
following inequalities

Pθ (Vn + Rn ≤ x) ≤ Pθ (Vn ≤ x + δ) + Pθ (|Rn| > δ) ,

Pθ (Vn + Rn ≤ x) ≥ Pθ (Vn ≤ x− δ)− Pθ (|Rn| > δ) ,

and the uniform continuity of Φ.

3.3. Berry-Esséen Theorem. By the standard Berry-Esséen Theo-
rem for i.i.d. random variables Y1, . . . , Yn, . . ., Sn =

∑n
1 Yi, and Fn(x) =

P (n−1/2σ−1[Sn − nµ] ≤ x) we have

|Fn(x)− Φ(x)| ≤ C
m3

σ3
√

n
,

where m3 = E|Y − µ|3 and C is an absolute constant.
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By the following sequence of inequalities m
1/3
3 ≤ m

1/4
4 , σ = m

1/2
2 ≤ m

1/4
4 ,

and
m3

σ3
≤ m

3/4
4

σ3
=

m
3/4
4

σ4
σ ≤ m

3/4
4

σ4
m

1/4
4 =

m4

σ4

we obtain

3.4. Corollary

|Fn(x)− Φ(x)| ≤ C
m4

σ4
√

n
,

where m4 = E(Y − µ)4.

Let us now consider the negative binomial scheme, that is an i.i.d. se-
quence of random variables geometrically distributed with the parameter
θ. The central limit theorem for this scheme does not hold uniformly in
θ ∈]0, 1[ (Zieliński 2004): the normal approximation breaks down for θ

approaching 1. In the following lemma we assume θ to be bounded away
from 1.

3.5. Lemma [Central Limit Theorem for the negative binomial scheme].
Let Y = Y1, . . . , Yr, . . . be i.i.d. and let Pθ(Y = k) = θ(1 − θ)k−1 for

k = 1, 2, . . .. Let Tr =
∑r

1 Yi. Assume that θ ≤ 1 − κ: the parameter

space is Θ =]0, 1− κ] for some κ > 0. Then

√
r√

1− θ

(
θTr

r
− 1

)
⇒ N(0, 1).

We will use following elementary facts about the geometric distribution

Eθ(Y ) =
1
θ
, σ2(θ) = V arθ(Y ) =

1− θ

θ2
,

and

m4(θ) = Eθ(Y − µ(θ))4 =
(1− θ)(θ2 − 9θ + 9)

θ4
.

Consequently, for θ ≤ 1− κ,

m4(θ)
σ4(θ)

=
θ2 − 9θ + 9

1− θ
=

θ2

1− θ
+ 9 ≤ 1

κ
+ 9.
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From Corollary 3.4 it follows that

√
r

θ√
1− θ

(
Tr

r
− 1

θ

)
⇒ N(0, 1) uniformly in θ ∈]1, 1− κ].

3.6. Lemma. Under the assumptions of the previous lemma,

√
r√

1− θ

(
r

θTr
− 1

)
⇒ N(0, 1).

Proof. It is enough to combine Lemma 3.6 with Lemma 3.1 (δ-method)
applied to the function h(x) = 1/x at µ = 1.

3.7. Lemma. Let X1, . . . , Xn, . . . be the Bernoulli scheme with a prob-

ability of success θ. Define the sequence of stopping rules T ′r = min{n :
Sn ≥ r}, where Sn =

∑n
1 Xi. The sequence θ̂′r = r/T ′r is UAN in θ ≤ 1−κ,

i.e. for the parameter space Θ =]0, 1− κ].

Proof. This is a simple reformulation of Lemma 3.6. Indeed, it is easy to
see that T ′r is a sum of i.i.d.geometrically distributed random variables.

Proof of Theorem 2.2(ii). The sequence of stopping times Tr, r =
1, 2, . . . , will be constructed as follows. Define T ′r = min{n : Sn ≥ r},
T ′′r = min{n : n− Sn ≥ r},

T̃r = min{n : Sn ≥ r, n− Sn ≥ r} = max(T ′r, T
′′
r ),

and
Tr = T̃r + r.

The sequence of estimators θ̂r will be constructed as follows. Define two
auxiliary estimators θ̂′r = r/T ′r and θ̂′′r = 1− r/T ′′r , a random event

Ar =

{
1
r

r∑

i=1

XT̃r+i <
1
2

}
,

and finally
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θ̂r =
{

θ̂′r on Ar

θ̂′′r on Ac
r.

We claim that θ̂r is UAN on ]0, 1[ with the asymptotic variance σ2(θ) given
by the formula:

σ2(θ) =
{

(1− θ)θ2 for θ < 1/2,
(1− θ)2θ for θ ≥ 1/2.

To prove that fix ε > 0 and choose δ > 0 such that

sup
1/2−δ<θ<1/2+δ

sup
x

∣∣∣∣Φ
(

x

θ
√

1− θ

)
− Φ

(
x√

θ(1− θ)

)∣∣∣∣ < ε.

Obviously δ < 1/2.

Choose r1 such that for r ≥ r1 the inequality Pθ(Ac
r) < ε holds for all

θ < 1/2− δ and Pθ(Ar) < ε holds for all θ > 1/2 + δ.

From Lemma 3.7 we conclude that

√
r

θ
√

1− θ

(
θ̂′r − θ

)
⇒ N (0, 1) on ]0, 1/2 + δ]

and √
r√

θ(1− θ)

(
θ̂′′r − θ

)
⇒ N (0, 1) on [1/2− δ, 1[.

Choose r2 such that for r ≥ r2 and for all θ ≤ 1/2 + δ,

sup
x

∣∣∣∣∣Pθ

(
√

r
θ̂′r − θ

θ
√

1− θ
≤ x

)
− Φ(x)

∣∣∣∣∣

= sup
x

∣∣∣∣Pθ

(√
r(θ̂′r − θ) ≤ x

)
− Φ

(
x

θ
√

1− θ

)∣∣∣∣ < ε.

Then for r ≥ r2 and for all θ ≥ 1/2− δ we also have

sup
x

∣∣∣∣∣Pθ

(
√

r
θ̂′′r − θ√
θ(1− θ)

≤ x

)
−Φ(x)

∣∣∣∣∣

= sup
x

∣∣∣∣Pθ

(√
r(θ̂′′r − θ) ≤ x

)
−Φ

(
x√

θ(1− θ)

)∣∣∣∣ < ε.
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Define r0 = max(r1, r2).

For the estimator θ̂r we obtain

sup
x

∣∣∣∣Pθ

(√
r(θ̂r − θ) ≤ x

)
− Φ

(
x

σ(θ)

)∣∣∣∣

≤ sup
x

∣∣∣∣Pθ

(√
r(θ̂r − θ) ≤ x,Ar

)
− Pθ(Ar)Φ

(
x

σ(θ)

)∣∣∣∣

+ sup
x

∣∣∣∣Pθ

(√
r(θ̂r − θ) ≤ x,Ac

r

)
− Pθ(Ac

r)Φ
(

x

σ(θ)

)∣∣∣∣ .

Due to the facts that θ̂r = θ̂′r on Ar and θ̂′r and Ar are independent, and
similarly θ̂r = θ̂′′r on Ac

r and θ̂′′r and Ac
r are independent, the Right Hand

Side of the latter formula is equal to

Pθ(Ar) · sup
x

∣∣∣∣Pθ

(√
r(θ̂′r − θ) ≤ x

)
− Φ

(
x

σ(θ)

)∣∣∣∣

+ Pθ(Ac
r) · sup

x

∣∣∣∣Pθ

(√
r(θ̂′′r − θ) ≤ x

)
− Φ

(
x

σ(θ)

)∣∣∣∣ .

For θ < 1/2− δ < 1/2 we have Pθ(Ac
r) < ε, σ2(θ) = (1− θ)θ2, and

∣∣∣∣Pθ

(√
r(θ̂′r − θ)≤x

)
−Φ

(
x

θ
√

1−θ

)∣∣∣∣<ε.

For θ > 1/2 + δ > 1/2 we have Pθ(Ar) < ε, σ2(θ) = (1− θ)2θ, and

∣∣∣∣Pθ

(√
r(θ̂′′r − θ) ≤ x

)
− Φ

(
x√

θ(1− θ)

)∣∣∣∣ < ε.

For 1/2− δ < θ < 1/2 + δ

∣∣∣∣Pθ

(√
r(θ̂′r−θ)≤x

)
−Φ

(
x

σ(θ)

)∣∣∣∣

<

∣∣∣∣Pθ

(√
r(θ̂′r−θ) ≤x

)
−Φ

(
x

θ
√

1−θ

)∣∣∣∣+
∣∣∣∣Φ

(
x

θ
√

1−θ

)
−Φ

(
x

σ(θ)

)∣∣∣∣
< 2ε
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and similarly
∣∣∣∣Pθ

(√
r(θ̂′′r−θ) ≤x

)
−Φ

(
x

σ(θ)

)∣∣∣∣

<

∣∣∣∣Pθ

(√
r(θ̂′′r−θ) ≤ x

)
−Φ

(
x√

θ(1−θ)

)∣∣∣∣+
∣∣∣∣Φ

(
x√

θ(1−θ)

)
−Φ

(
x

σ(θ)

)∣∣∣∣
< 2ε.

Eventually we obtain

sup
x

∣∣∣∣Pθ

(√
r(θ̂r − θ) ≤ x

)
− Φ

(
x

σ(θ)

)∣∣∣∣ < 4ε

which ends the proof.
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