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Abstract

We give a sufficient condition for the existence of an invariant measure for Heath-
Jarrow-Morton model of forward rate function driven by a Lévy process. We also
prove that there exists an invariant measure for the model, if noise is small enough.

1 Introduction

Stochastic process has mean reversion property if it moves towards its average value.
Since mean reversion may not reveal itself over short horizon, it is worthwhile to exam-
ine long-time behaviour. Whenever process converges in law, it also moves towards a
long-run equilibrium level. It is believed that interest rates have mean reversion prop-
erty as practitioners use to say: rates drop when they are high and rise when they are low.

We consider the existence of an invariant measure for Heath-Jarrow-Morton model of
forward rate function in Musiela parametrization. If P (t, θ) denotes price at time t of
bond paying 1 at moment θ ≥ t, then forward rate function ft is given by

ft(x) = − ∂

∂x
lnP (t, t+ x).

Heath, Jarrow and Morton [6] assumed that for fixed θ > 0, (ft(θ − t))0≤t≤θ is an Itô
process with d-dimensional Wiener noise. We work with parametrization proposed by
Musiela [8]. Forward rate HJM model in Musiela parametrization with Lévy noise on
separable Hilbert space H of real functions defined on [0,+∞) is given by equation

ft = S(t)f0 +

t∫
0

S(t− s)α(fs)ds+

t∫
0

S(t− s)σ(fs)dZ(s),

where S(t)t≥0 is the semigroup of shift operators, Z(t)t≥0 is a Lévy process. We consider
one-dimensional noise, so the coefficient σ (the volatility) is a mapping from H into H.
We assume that σ is bounded and Lipschitz mapping. We make no assumption about
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α : H → H, because no-arbitrage implies that α is given, once we have σ. More precisely,
it was proved in Jakubowski and Zabczyk [7] that

α(f)(x) = J ′

 x∫
0

σ(f)(s)ds

σ(f)(x),

where function J : R → (−∞,+∞], which we will call Laplace exponent of Lévy process,
is connected to Z(t)t≥0 by

E e−zZ(1) = eJ(z).

The main result of this paper is Theorem 4.1, which gives a sufficient condition for the
existence of an invariant measure for HJM model on extended weighted L2 space. We will
also present condition (4.6) - more restrictive, but simpler - that also implies the existence
of an invariant measure. Proposition 5.1 ensures the existence of an invariant measure for
the model, if noise is small enough.
In conditions for the existence of an invariant measure appear expressions of the form

sup
∣∣J (k)(z)

∣∣, where J (k) denotes derivative of J of order k. In Proposition 2.1 we prove
that

sup
z∈A

∣∣J (k)(z)
∣∣ = max

{∣∣J (k)(infA)
∣∣ , ∣∣J (k)(supA)

∣∣} ,
where A is a subset of the domain of function J .

Invariant measures for HJM model with Hilbert space valued Wiener noise are considered
by Tehranchi in [11]. He gives a sufficient condition for the existence of an invariant
measure for HJM model on weighted Sobolev space Hw, proposed as appropriate state
space in Filipovic [3]. In Tehranchi [11] the condition is derived from a known theorem on
invariant measures for stochastic evolution equations with Wiener noise (Da Prato and
Zabczyk [1], Theorem 6.3.2).
We derive our condition from general theorem on invariant measures for stochastic evo-

lution equations with Lévy noise (Rusinek [10], Theorem 4.1).

In Filipovic and Tappe [4] it is shown that HJM function T

T (f)(x) = J ′

 x∫
0

f(s)ds

 f(x),

is locally Lipschitz mapping on H0
w = Hw ∩ {f : f(∞) = 0}.

We consider HJM model on a different space. Computing Lipschitz constant of α, we
prove that HJM function T is locally Lipschitz mapping on weighted L2 space.
In Filipovic and Tappe [4] the existence of solutions is considered, but not the existence
of invariant measures. For the existence of solutions it suffices to know that α is Lipschitz
mapping. For the existence of invariant measures it is worthwhile to examine its Lipschitz
constant. It makes difference if it is large or small. In Proposition 2.1 we obtain results
on expressions appearing in Lipschitz constant of α.
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In Section 2 results on Laplace exponent are stated. Section 3 presents forward rate
HJM model in Musiela parametrization. In Section 4 we define space chosen as a state
space and formulate the main theorem. In Section 5 we give a few examples. Section 6
contains the proof of the main theorem and Section 7 is devoted to the study of Laplace
exponent.

2 Properties of Laplace exponent

Let Z(t)t≥0 be a one-dimensional Lévy process, i.e. a process with independent and
stationary increments taking values in R. Its Laplace exponent J : R → (−∞,+∞] is
given by

E e−zZ(1) = eJ(z). (2.1)

Let DJ = {z ∈ R : J(z) < +∞}. By Lemma 8.1 and Lemma 8.2 from Appendix for
every k derivative of J of order k, denoted by J (k), is well-defined on interior of DJ . The
following result will be proved in Section 7.

Proposition 2.1. Suppose that A ⊂ DJ . Then sup
z∈A

∣∣J (k)(z)
∣∣ < +∞ if and only if

J (k) (infA), J (k) (supA) are well-defined. For every k ≥ 1

sup
z∈A

∣∣J (k)(z)
∣∣ = max

{∣∣J (k) (infA)
∣∣ , ∣∣J (k) (supA)

∣∣} . (2.2)

If Z has only negative jumps, then for k ≥ 2

sup
z∈A

∣∣J (k)(z)
∣∣ = J (k) (supA) . (2.3)

If Z has only positive jumps, then for k ≥ 2

sup
z∈A

∣∣J (k)(z)
∣∣ =

∣∣J (k) (infA)
∣∣ . (2.4)

We abbreviate J (1) to J ′ and J (2) to J ′′. Since J ′′ is always positive, as a corollary from
Proposition 2.1 we obtain the following result.

Proposition 2.2. Suppose that 0 ∈ A ⊂ DJ and J ′(0) = 0. Then

sup
z∈A

|J ′(z)| = max {−J ′ (infA) , J ′ (supA)} , (2.5)

sup
z∈A

|J ′′(z)| = max {J ′′ (infA) , J ′′ (supA)} . (2.6)

If Z has only negative jumps, then

sup
z∈A

|J ′′(z)| = J ′′ (supA) . (2.7)

If Z has only positive jumps, then

sup
z∈A

|J ′′(z)| = J ′′ (infA) . (2.8)
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3 HJM model

Let H be a separable Hilbert space of real functions defined on [0,+∞). Forward rate
HJM model on H driven by a Lévy process Z is given by equation

ft = S(t)f0 +

t∫
0

S(t− s)α(fs)ds+

t∫
0

S(t− s)σ(fs)dZ(s), (3.1)

where f0 ∈ H and

- S(t)t≥0 is the semigroup of shift operators, i.e. (S(t)f) (x) = f(x+ t).

- σ is a mapping from H into H such that J ′ is well-defined on set

O =


x∫

0

σ(f)(s)ds : x ≥ 0, f ∈ H

 .

- α : H → H is given by

α(f)(x) = J ′

 x∫
0

σ(f)(s)ds

σ(f)(x).

Let Z(t)t≥0, Zm(t)t≥0 be two Lévy processes with Laplace exponents J , Jm given by

E e−zZ(1) = eJ(z), E e−zZm(1) = eJm(z),

such that Zm(t) = Z(t) +mt. Then EZ(1) = 0 if and only if EZm(1) = m. For mapping
σ : H → H coefficients α, αm are given by

α(f)(x) = J ′

 x∫
0

σ(f)(s)ds

σ(f)(x),

αm(f)(x) = J ′m

 x∫
0

σ(f)(s)ds

σ(f)(x).

The following proposition shows that without any loss of generality one can restrict con-
siderations to HJM equations (3.1) driven by Lévy processes with mean zero.

Proposition 3.1. Process (ft)t≥0 satisfies equation

ft = S(t)f0 +

t∫
0

S(t− s)αm(fs)ds+

t∫
0

S(t− s)σ(fs)dZm(s),

if and only if it satisfies equation

ft = S(t)f0 +

t∫
0

S(t− s)α(fs)ds+

t∫
0

S(t− s)σ(fs)dZ(s).
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Proof of Proposition 3.1. Since −zZm(1) = −z (Z(1) +m), we have

Jm(z) = J(z)−mz,

from which

αm(f) = α(f)−mσ(f).

Therefore

ft = S(t)f0 +

t∫
0

S(t− s)αm(fs)ds+

t∫
0

S(t− s)σ(fs)dZm(s)

= S(t)f0 +

t∫
0

S(t− s) (α(fs)−mσ(fs)) ds+

t∫
0

S(t− s)σ(fs) (dZ(s) +mds)

= S(t)f0 +

t∫
0

S(t− s)α(fs)ds+

t∫
0

S(t− s)σ(fs)dZ(s).

From now on we assume that EZ(1) = 0 and denote

λ = VarZ(1).

Set O is an interval containing 0. From (2.1)

J ′(0) = −EZ(1) = 0,

therefore we can apply Proposition 2.2 to expressions sup
z∈O

|J ′(z)|, sup
z∈O

|J ′′(z)|. Those ex-

pressions appear in conditions for the existence of an invariant measure for HJM model.
From now on we make the assumption:

J ′′ (infO) < +∞, J ′′ (supO) < +∞.

Example Suppose that function σ(f) ∈ H is positive for every f ∈ H and Z has only
positive jumps. We claim that

sup
z∈O

|J ′′(z)| = λ. (3.2)

Indeed, to obtain (3.2) from (2.8), see that infO = 0 and J ′′(0) = λ.

4 The main theorem

We will denote by L1 the space of all functions f : R+ → R such that

‖f‖L1 =

+∞∫
0

|f(x)|dx < +∞.
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For γ > 0, let L2
γ denote the space of all functions f : R+ → R such that

+∞∫
0

|f(x)|2eγxdx <

+∞, with inner product

〈f, g〉L2
γ

=

+∞∫
0

f(x)g(x)eγxdx.

By Hölder inequality

+∞∫
0

|f(x)|dx ≤

 +∞∫
0

|f(x)|2eγxdx

 1
2
 +∞∫

0

e−γxdx

 1
2

,

so L2
γ ⊂ L1 and

‖f‖L1 ≤ γ−
1
2 ‖f‖L2

γ
. (4.1)

We define L̂2
γ to be the space of all functions f : R+ → R for which there exists ϕ(f) ∈ R

such that f − ϕ(f)1 ∈ L2
γ, with inner product

〈f, g〉
L̂2

γ
= ϕ(f)ϕ(g) + 〈f − ϕ(f)1, g − ϕ(g)1〉L2

γ
.

The following theorem will be proved in Section 6.

Theorem 4.1. Assume that σ : L̂2
γ → L2

γ ⊂ L̂2
γ and there exist Kγ,Mγ > 0 such that for

every f, g ∈ L̂2
γ

‖σ(f)− σ(g)‖
L̂2

γ
≤ Kγ ‖f − g‖

L̂2
γ
, (4.2)

‖σ(f)‖
L̂2

γ
≤Mγ. (4.3)

Let

Oγ =


x∫

0

σ(f)(s)ds : x ≥ 0, f ∈ L̂2
γ

 . (4.4)

If

−γ
3
2 +

(
λKγ

2 + 2Kγ sup
z∈Oγ

|J ′(z)|

)
γ

1
2 + 2KγMγ sup

z∈Oγ

|J ′′(z)| < 0, (4.5)

then there exists an invariant measure for HJM model (3.1) on L̂2
γ.

For σ : L̂2
γ → L2

γ ⊂ L̂2
γ we will always define Kγ, Mγ and Oγ by (4.2),(4.3) and (4.4). We

also define
rγ = sup

f∈L̂2
γ

‖σ(f)‖L1 .

From (4.1)

Oγ ⊂ [−rγ, rγ] ⊂
[
−γ−

1
2Mγ, γ

− 1
2Mγ

]
.
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Remark The following easier to check condition

sup
z∈Oγ

|J ′′(z)| < γ
3
2

(
Kγ

2γ
1
2 + 4KγMγ

)−1

, (4.6)

also implies the existence of an invariant measure. In fact, it is stronger then condition
(4.5).
Indeed, Oγ is a convex set containing 0, so for z ∈ Oγ, by Lagrange theorem, J ′(z) =
J ′(z)− J ′(0) = J ′′(ξ)z, where ξ ∈ Oγ. We get

sup
z∈Oγ

|J ′(z)|γ
1
2 ≤ sup

z∈Oγ

|J ′′(z)|Mγ, (4.7)

since for z ∈ Oγ, we have |z| ≤ γ−
1
2Mγ. Assume that (4.6) is fulfilled. Then

γ
3
2 > sup

z∈Oγ

|J ′′(z)|Kγ
2γ

1
2 + 2 sup

z∈Oγ

|J ′′(z)|KγMγ + 2 sup
z∈Oγ

|J ′′(z)|KγMγ

≥ λKγ
2γ

1
2 + 2 sup

z∈Oγ

|J ′′(z)|KγMγ + 2 sup
z∈Oγ

|J ′′(z)|KγMγ,

since λ = J ′′(0). Now, from (4.7), we get

γ
3
2 > λKγ

2γ
1
2 + 2Kγ sup

z∈Oγ

|J ′(z)|γ
1
2 + 2 sup

z∈Oγ

|J ′′(z)|KγMγ.

5 Examples

Consider HJM model with volatility σ̃ such that condition (4.6) does not hold. If, for
small ε > 0, we consider HJM model with volatility εσ̃ instead of σ̃, then condition (4.6)
will hold. The following proposition states that there always exists an invariant measure
for HJM model, if noise is small enough.

Proposition 5.1. Assume that σ̃ : L̂2
γ → L2

γ ⊂ L̂2
γ is Lipschitz and bounded mapping and

for some r∗ > 0

(∗) J ′, J ′′ are well-defined on [−r∗, r∗].

Then for ε sufficiently small there exists an invariant measure for HJM model (3.1) on

L̂2
γ with σ given by

σ(f)(x) = εσ̃(f)(x).

Proof of Proposition 5.1. There exist K̃γ, M̃γ > 0 such that for every f, g ∈ L̂2
γ

‖σ̃(f)− σ̃(g)‖
L̂2

γ
≤ K̃γ ‖f − g‖

L̂2
γ
,

‖σ̃(f)‖
L̂2

γ
≤ M̃γ.

7



Then for some r̃γ > 0, we have ‖σ̃(f)‖L1 ≤ r̃γ for every f ∈ L̂2
γ. Fix ε > 0 such that

ε <
r∗

r̃γ

, (5.1)

ε2 < γ
3
2

(
max
|z|=r∗

J ′′(z)

)−1 (
K̃2

γγ
1
2 + 4K̃γM̃γ

)−1

. (5.2)

Let σ = εσ̃. Then Mγ = εM̃γ, Kγ = εK̃γ. It follows that J ′ is well-defined on Oγ, since

Oγ ⊂ [−εr̃γ, εr̃γ] ⊂ [−r∗, r∗] ,

by (5.1). And from (2.6)

sup
z∈Oγ

|J ′′(z)| ≤ sup
|z|≤r∗

|J ′′(z)| = max
|z|=r∗

J ′′(z).

Inequality (5.2) now leads to

sup
z∈Oγ

|J ′′(z)| < γ
3
2

(
ε2K̃2

γγ
1
2 + 4εK̃γεM̃γ

)−1

= γ
3
2

(
Kγ

2γ
1
2 + 4KγMγ

)−1

.

Remark Condition (∗) is fulfilled if and only if J ′′(−r∗), J ′′(r∗) < +∞.

If σ(f) is positive for every f ∈ L̂2
γ, then the proposition still holds if we replace (∗) by

assumption: J ′′(r∗) < +∞.

In the following proposition we compute constants Kγ, Mγ, rγ for volatility of the form

σ(f)(x) = v (f(x))ψ(x), (5.3)

for some real functions v, ψ. The proof is left to Appendix.

Proposition 5.2. Consider volatility given by (5.3), where ‖ψ‖L∞ < +∞, and v is a real
function such that for some K,M > 0

|v(x)− v(y)| ≤ K|x− y|,
|v(x)| ≤M,

for every x, y ∈ R. If in addition for some γ > 0 ψ ∈ L2
γ, then

Kγ =
√

2Kmax
{
‖ψ‖L2

γ
, ‖ψ‖L∞

}
,

Mγ = M ‖ψ‖L2
γ
, rγ = M ‖ψ‖L1 .

As an application of Proposition 5.2 we have the following result.
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Proposition 5.3. Assume that λ = 1 and Z has only positive jumps. Let v : R → R
satisfy

|v(x)− v(y)| ≤ |x− y|,
0 ≤ v(x) ≤ 1,

for every x, y ∈ R. If

γ > 1 +

√
1 + 4

√
2 ≈ 3, 5801,

then there exists an invariant measure for HJM model (3.1) on L̂2
γ with σ given by

σ(f)(x) = v (f(x)) e−γx.

Proof of Proposition 5.3. Applying Proposition 5.2 with K = M = 1 and ψ(x) = e−γx,
we compute

Kγ =
√

2, Mγ = γ−
1
2 .

Thus condition (4.6) takes the following form:

sup
z∈Oγ

|J ′′(z)|
(
2γ

1
2 + 4

√
2γ−

1
2

)
< γ

3
2 .

Multiplying by γ
1
2 , we get

sup
z∈Oγ

|J ′′(z)|
(
2γ + 4

√
2
)
< γ2.

But sup
z∈Oγ

|J ′′(z)| = 1, which follows from (3.2). Hence

−γ2 + 2γ + 4
√

2 < 0.

6 Proof of Theorem 4.1

Let H be a separable Hilbert space of real functions defined on [0,+∞). It is worthwhile
to rewrite HJM equation (3.1) on H as

dft =

(
∂

∂x
ft + α(ft)

)
dt+ σ(ft)dZ(t). (6.1)

Let η be a random variable with distribution L(η). A probability measure µ on H is an
invariant measure for equation (6.1), if for all t ≥ 0, we have L (ft) = µ, where (ft)t≥0 is
a solution of equation (6.1) with a random initial condition η such that L(η) = µ.

We recall Theorem 4.1 from Rusinek [10], which gives a sufficient condition for the exis-
tence of an invariant measure for equation of the form

dX(t) = (AX + F (X)) dt+B(X)dZ(t). (6.2)

The theorem will be formulated in case Z takes values in R and EZ(1) = 0.
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Theorem 6.1. Let (H, ‖·‖) be a separable Hilbert space. Assume that

- Stroungly continuous semigroup S(t)t≥0 is generated by A - linear operator on H
with dense domain - which in general may be unbounded.

- F,B are bounded mappings from H into H.

- Z is a one-dimensional Lévy process such that VarZ(1) < +∞ and EZ(1) = 0.

If

‖S(t)x‖ ≤ e−βt ‖x‖ ,
‖F (x)− F (y)‖ ≤ LF ‖x− y‖ ,
‖B(x)−B(y)‖ ≤ LB ‖x− y‖ ,

and

−2β + 2LF + VarZ(1)LB
2 < 0, (6.3)

then there exists an invariant measure for equation (6.2).

Remark Let (fη
t )t≥0 denote the solution of HJM equation (3.1) on L̂2

γ with initial con-

dition η ∈ L̂2
γ. Theorem 4.1 from Rusinek [10] ensures the uniqueness of an invariant

measure. Hence in the proof of Theorem 4.1 we obtain that if κ, η ∈ L̂2
γ are such that

κ− c1, η − c1 ∈ L2
γ,

for the same c ∈ R, then L (fκ
t ) ,L (fη

t ) converge to the same invariant measure µc, de-
pending only on c.

Dependence between the coefficients α and σ in HJM equation (3.1) is a consequence
of no-arbitrage and it was proved in Jakubowski and Zabczyk [7] that α(f) = T (σ(f)),
where T is the so-called HJM function given by

T (f)(x) = J ′

 x∫
0

f(s)ds

 f(x).

In order to prove Theorem 4.1, we show that α : L̂2
γ → L2

γ ⊂ L̂2
γ is Lipschitz mapping,

whenever σ is Lipschitz and bounded, computing Lipschitz constant of α in the following
lemma.

Lemma 6.2. Assume that σ : L̂2
γ → L2

γ ⊂ L̂2
γ. Let α(f) = T (σ(f)). For every F,G ∈ L̂2

γ,
we have

‖α(F )− α(G)‖L2
γ
≤

(
sup
z∈Oγ

|J ′′(z)|γ−
1
2Mγ + sup

z∈Oγ

|J ′(z)|

)
Kγ ‖F −G‖

L̂2
γ
,

where Kγ,Mγ,Oγ are given by (4.2), (4.3), (4.4).
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Proof of Lemma 6.2. Let F,G ∈ L̂2
γ and write f = σ(F ), g = σ(G). Then f, g ∈ L2

γ and
for every x ≥ 0

x∫
0

f(s)ds,

x∫
0

g(s)ds ∈ Oγ.

Throughout the proof, V1 stands for sup
z∈Oγ

|J ′(z)|, V2 stands for sup
z∈Oγ

|J ′′(z)|. With this

notation, ∣∣∣∣∣∣J ′
 x∫

0

f(s)ds

∣∣∣∣∣∣ ≤ V1. (6.4)

By Lagrange theorem, J ′
(

x∫
0

f(s)ds

)
− J ′

(
x∫
0

g(s)ds

)
= J ′′(ξ)

x∫
0

(f − g) (s)ds, where ξ ∈

Oγ. Hence ∣∣∣∣∣∣J ′
 x∫

0

f(s)ds

− J ′

 x∫
0

g(s)ds

∣∣∣∣∣∣ ≤ V2 ‖f − g‖L1 .

Thus ∣∣∣∣∣∣J ′
 x∫

0

f(s)ds

− J ′

 x∫
0

g(s)ds

∣∣∣∣∣∣ ≤ V2γ
− 1

2 ‖f − g‖L2
γ
, (6.5)

by (4.1). With the notation h = T (f)− T (g), we have

‖T (f)− T (g)‖2
L2

γ
= 〈T (f)− T (g), h〉L2

γ
= I1 + I2,

where

I1 =

+∞∫
0

J ′

 x∫
0

f(s)ds

 (f(x)− g(x))h(x)eγxdx,

I2 =

+∞∫
0

J ′
 x∫

0

f(s)ds

− J ′

 x∫
0

g(s)ds

 g(x)h(x)eγxdx.

From (6.4), (6.5)

|I1| ≤ V1

+∞∫
0

|f(x)− g(x)| |h(x)| eγxdx,

|I2| ≤ V2γ
− 1

2 ‖f − g‖L2
γ

+∞∫
0

|g(x)| |h(x)| eγxdx.
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By Hölder inequality,

|I1| ≤ V1 ‖f − g‖L2
γ
‖h‖L2

γ
,

|I2| ≤ V2γ
− 1

2 ‖f − g‖L2
γ
‖g‖L2

γ
‖h‖L2

γ
,

so

〈T (f)− T (g), h〉L2
γ
≤ |I1|+ |I2|

≤
(
V2γ

− 1
2 ‖g‖L2

γ
+ V1

)
‖f − g‖L2

γ
‖h‖L2

γ
.

Therefore

‖α(F )− α(G)‖L2
γ

= ‖T (f)− T (g)‖L2
γ
≤
(
V2γ

− 1
2 ‖g‖L2

γ
+ V1

)
‖f − g‖L2

γ

≤
(
V2γ

− 1
2Mγ + V1

)
Kγ ‖F −G‖

L̂2
γ
.

Proof of Theorem 4.1. For η ∈ L̂2
γ let c = ϕ(η). Then

ηc = η − c1 ∈ L2
γ.

Let σc, αc : L2
γ → L2

γ be defined by σc(f) = σ(f + c1), αc(f) = α(f + c1). Consider
equation on L2

γ

gt = S(t)ηc +

t∫
0

S(t− s)αc(gs)ds+

t∫
0

S(t− s)σc(gs)dZ(s). (6.6)

The idea of defining σc, αc and working on subspace comes from Tehranchi [11]. Let us
apply condition (6.3) from Theorem 6.1. In our case β = 1

2
γ. From Lemma 6.2

LF =

(
sup
z∈Oγ

|J ′′(z)|γ−
1
2Mγ + sup

z∈Oγ

|J ′(z)|

)
Kγ.

And LB = Kγ, so condition (6.3) will take the following form:

−γ + 2

(
sup
z∈Oγ

|J ′′(z)|γ−
1
2Mγ + sup

z∈Oγ

|J ′(z)|

)
Kγ + λKγ

2 < 0.

After multiplying by γ
1
2 , you get exactly condition (4.5). It follows that L (gt) converges

to L (Xc) for random variable Xc such that EXc
2 < +∞. If (gt)t≥0 is a solution to (6.6),

then (ft)t≥0 given by ft = gt + c1 is a solution to

ft = S(t)η +

t∫
0

S(t− s)α(fs)ds+

t∫
0

S(t− s)σ(fs)dZ(s).

So L (ft) converges to L (Xc + c1), hence µc = L (Xc + c1) is an invariant measure for

HJM model space L̂2
γ.
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7 Proof of Proposition 2.1

Let Z(t)t≥0 be a Lévy process taking values in R. Associated with Z is the so-called Lévy
measure of Z, denoted ν, measure on R, given by

ν (Γ) = E

( ∑
0<s≤1

1Γ

(
Z(s)− Z

(
s−
)))

,

where Γ is a Borel subset of R such that Γ ⊂ R \ {0}. And ν ({0}) = 0. It is well-known
that ν satisfies the following conditions∫

|y|≤1

y2ν(dy) < +∞, (7.1)

∫
|y|>1

ν(dy) < +∞. (7.2)

Process Z(t) can be represented as

Z(t) = at+
√
qW (t) + ξ(t),

where a ∈ R, q > 0, W is a standard one-dimensional Wiener process and ξ(t) is a
jump process. We can present function J given by (2.1) in terms of a, q and function J0

connected to measure ν. We have

J(z) = −az +
1

2
qz2 + J0(z),

where function J0 is given by

J0(z) =

∫
|y|≤1

(e−zy − 1 + zy)ν(dy) +

∫
|y|>1

(e−zy − 1)ν(dy).

J(z) is well-defined if and only if
∫

|y|>1

e−zyν(dy) < +∞ by assumptions (7.1), (7.2) and

Lemma 8.1 from Appendix.

Under assumption (7.2) integral
−1∫
−∞

e−zyν(dy) is well-defined for every z < 0 and integral

+∞∫
1

e−zyν(dy) is well-defined for every z > 0. If
−1∫
−∞

e−ryν(dy) < +∞ for some r > 0 and

z < r, then also
−1∫
−∞

e−zyν(dy) < +∞. If
+∞∫
1

e−ryν(dy) < +∞ for some r < 0 and z > r,

then also
+∞∫
1

e−zyν(dy) < +∞. Define

r−ν = inf

r ≤ 0 :

+∞∫
1

e−ryν(dy) < +∞

 , (7.3)

r+
ν = sup

r ≥ 0 :

−1∫
−∞

e−ryν(dy) < +∞

 . (7.4)

13



Then interior of DJ = {z ∈ R : J(z) < +∞} is given by

intDJ =
(
r−ν , r

+
ν

)
. (7.5)

By Lemma 8.1 and Lemma 8.2 from Appendix function J as well as derivative of J of
any order are well-defined on set intDJ . We have

J ′(z) = −a+ qz +

∫
|y|≤1

(
−ye−zy + y

)
ν(dy) +

∫
|y|>1

−ye−zyν(dy),

J ′′(z) = q +

∫
R

y2e−zyν(dy).

And for k ≥ 3

J (k)(z) =

∫
R

(−y)ke−zyν(dy).

Proof of Proposition 2.1. Throughout the proof, c = infA, d = supA. The proof will be
divided into 2 steps.
I. Assume that A = [c, d] ⊂ intDJ . Consider F : [c, d] → R such that F ′ and F ′′ exist on
[c, d]. The proof is based on the following observations.

(i) If F, F ′′ ≥ 0 on [c, d], then sup
x∈[c,d]

|F (x)| = max {|F (c)| , |F (d)|}.

(ii) If F ′ ≥ 0 on [c, d], then sup
x∈[c,d]

|F (x)| = max {|F (c)| , |F (d)|}.

(iii) If F, F ′ ≥ 0 on [c, d], then sup
x∈[c,d]

|F (x)| = F (d).

(iv) If F ≥ 0, F ′ ≤ 0 on [c, d], then sup
x∈[c,d]

|F (x)| = F (c).

(v) If F ≤ 0, F ′ ≥ 0 on [c, d], then sup
x∈[c,d]

|F (x)| = −F (c).

Applying (i) to J (k) for even k and (ii) to J (k) for odd k, we obtain (2.2).
If Z has only negative jumps, then for k ≥ 3

J (k)(z) =

−1∫
−∞

(−y)ke−zyν(dy) ≥ 0,

so applying (iii) to J (k), we obtain (2.3).
If Z has only positive jumps, then for k ≥ 3

J (k)(z) = (−1)k

+∞∫
1

yke−zyν(dy).
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Thus function J (k) is positive for even k and negative for odd k. Applying (iv) to J (k) for
even k and (v) to J (k) for odd k, we obtain (2.4).

II. Now let A ⊂ DJ be any. To avoid technicalities, we shall prove that if sup
z∈A

|J ′(z)| =

M < +∞, then J ′(d) is well-defined. Let {dn}n∈N ⊂ A, dn ↗ d. Then sequence {Xn}n∈N
given by Xn = J ′(dn) is nondecreasing and bounded, since |Xn| ≤ M , so there exists
X = lim

n→∞
Xn, from which

|J ′(d)| = |X| ≤M = sup
z∈A

|J ′(z)| .

In the same manner we obtain |J ′(c)| ≤ sup
z∈A

|J ′(z)|. It follows that

max {|J ′(c)| , |J ′(d)|} ≤ sup
z∈A

|J ′(z)| ≤ sup
z∈[c,d]

|J ′(z)|

= max {|J ′(c)| , |J ′(d)|} .

Remark If EZ(1) = 0, then J ′(0) = 0, J ′ is negative on (−∞, 0) and J ′ is positive on
(0,+∞). Therefore, since J(0) = 0, we have J ≥ 0, so (2.2) holds for J instead of J (k) as
well. If EZ(1) = 0, then

J(z) =
1

2
qz2 +

∫
R

(
e−zy − 1 + zy

)
ν(dy).

8 Appendix

Let ψX denote moment-generating function of a random variable X. Then function J
is simply J(z) = lnψZ(1)(−z). Moment-generating function together with characteristic
function ϕX (and ϕX is connected to ψX by ϕX(t) = ψX(it)) are basic concepts of prob-
ability theory, but we add to the paper two well-known statements about function J also
with proofs, which use concept of Lévy measure of a Lévy process.

Lemma 8.1. Under assumption (7.1) for every z ∈ R integrals∫
|y|≤1

(
e−zy − 1 + zy

)
ν(dy),

∫
|y|≤1

y
(
e−zy − 1

)
ν(dy),

∫
|y|≤1

yke−zyν(dy), k ≥ 2,

are well-defined.

Proof of Lemma 8.1. For every x ∈ R and n ∈ N there exists θ ∈ [0, 1] such that

ex =
n−1∑
k=0

xk

k!
+ eθxx

n

n!
.
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So ∣∣∣∣∣ex −
n−1∑
k=0

xk

k!

∣∣∣∣∣ =

∣∣∣∣eθxx
n

n!

∣∣∣∣ ≤ e|x|
|x|n

n!
.

For n = 1 we get |ex − 1| ≤ e|x||x|, for n = 2 we get |ex − 1− x| ≤ 1
2
e|x||x|2, thus∫

|y|≤1

∣∣e−zy − 1 + zy
∣∣ ν(dy) ≤ ∫

|y|≤1

1

2
e|zy||zy|2ν(dy) ≤ 1

2
e|z||z|2

∫
|y|≤1

y2ν(dy),

∫
|y|≤1

∣∣(e−zy − 1
)
y
∣∣ ν(dy) ≤ ∫

|y|≤1

e|zy| · |zy| · |y|ν(dy) ≤ e|z||z|
∫

|y|≤1

y2ν(dy).

And for k ≥ 2 ∫
|y|≤1

|y|ke−zyν(dy) ≤ e|z|
∫

|y|≤1

y2ν(dy).

Lemma 8.2. For k ≥ 0 define Dk
J =

{
z ∈ R :

∫
|y|>1

|y|ke−zyν(dy) < +∞

}
. For every

k ≥ 0, we have (r−ν , r
+
ν ) ⊂ Dk

J , where r−ν , r
+
ν are given by (7.3), (7.4).

Proof of Lemma 8.2. For k = 0 we have (r−ν , r
+
ν ) ⊂ D0

J by definition of r−ν and r+
ν . We

now proceed by induction. Assume that (r−ν , r
+
ν ) ⊂ Dk

J . Let z ∈ (r−ν , r
+
ν ). We shall prove

that z ∈ Dk+1
J . Fix ε > 0 such that z + ε < r+

ν and z − ε > r−ν . Then z − ε, z + ε ∈ Dk
J .

We have ∫
|y|>1

|y|k+1e−zyν(dy) =

∫
|y|>1

|y|k|y|e−ε|y|eε|y|e−zyν(dy).

Let F (y) = ye−εy, y ≥ 0. Then F ′(y∗) = 0 for y∗ = ε−1, F (0) = 0, F (ε−1) = (εe)−1 and
F (+∞) = 0, so

sup
y≥0

yeεy =
1

εe
.

It follows that∫
|y|>1

|y|k+1e−zyν(dy) ≤ 1

εe

∫
|y|>1

|y|keε|y|e−zyν(dy)

=
1

εe

−1∫
−∞

|y|ke−(z+ε)yν(dy) +
1

εe

+∞∫
1

|y|ke−(z−ε)yν(dy).

Hence
∫

|y|>1

|y|k+1e−zyν(dy) < +∞, since z − ε, z + ε ∈ Dk
J .

We end Appendix with the proof of Proposition 5.2.
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Proof of Proposition 5.2. Let f, g ∈ L̂2
γ. We have

‖σ(f)‖L1 =

+∞∫
0

|v(f(x))| |ψ(x)| dx ≤M ‖ψ‖L1 ,

‖σ(f)‖2
L2

γ
=

+∞∫
0

|v(f(x))|2 |ψ(x)|2 eγxdx ≤M2 ‖ψ‖2
L2

γ
.

And

‖σ(f)− σ(g)‖2
L2

γ
=

+∞∫
0

|v(f(x))− v(g(x))|2 |ψ(x)|2 eγxdx

≤ K2

+∞∫
0

|f(x)− g(x)|2 |ψ(x)|2 eγxdx.

Let c = ϕ(f), d = ϕ(g) ∈ R be such that f − c1, g − d1 ∈ L2
γ. Then

‖σ(f)− σ(g)‖2
L2

γ
≤ 2K2

+∞∫
0

|f(x)− c− (g(x)− d)|2 |ψ(x)|2 eγxdx

+ 2K2

+∞∫
0

|c− d|2 |ψ(x)|2 eγxdx

≤ 2K2 ‖ψ‖2
L∞ ‖f − c1− (g − d1)‖2

L2
γ

+ 2K2 ‖ψ‖2
L2

γ
|c− d|2

≤ 2K2 max
{
‖ψ‖2

L∞ , ‖ψ‖
2
L2

γ

}
‖f − g‖2

L̂2
γ
.
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