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Abstract

The goal is to give a Hilbert space version of the well known theorem on
equivalence of measures corresponding to the real valued Lévy processes
(see e.g. Gihman, Skorohod (1966), Sato (1999)).
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1 Introduction

The theorem on equivalence of measures corresponding to the real valued Lévy
processes can be found e.g. in Gihman, Skorohod (1966) or in a recent mono-
graph Sato (1999). Besides its theoretical value it finds applications for example
in detection theory (see e.g. Kailath, Poor (1998)) or mathematical finance (see
e.g. Cont, Tankov (2004)). Our goal is to give a counterpart of this theorem in
a Hilbert space setup. To the authors’ knowlegde the proof of the result is not
documented in the literature.

The proof basically follows Sato (1999) (see the proofs of Theorems 33.1 and
33.2). To show the necessary conditions one uses Lévy—It6 decomposition and
deals with the gaussian and the jump part separately. As opposed to the Sato
(1999) we used Feldman-Hajek theorem and the law of large numbers, similarly
as in Gihman, Skorohod (1966). The latter allowed us to avoid the explicit
use of the Hellinger integral (which in turn appears in the proof of Feldman—
Hajek theorem). The proof of the sufficent conditions benefits from the theory
of integration with respect to Poisson random measures.

2 Preliminaries

We assume that H is a separable Hilbert space with scalar product (-,-). For
any x € H we write |z| = \/(x,x). Consider D = D([0,T],H) = {f: [0,T] —
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H: fis cdddg} together with a measure p defined on o—field Fp of Borel cylin-
der sets. We define an H—valued process X = {X(¢): ¢ > 0} with cddldg sample
paths as a cannonical process on D, i.e. X(t)(w) = w(¢) for all w € D.

The H—valued cadlag process X is called a Lévy process if

(i) given 0 < tg < ... < t, < 00, the H-valued random vairables
X(t1) — X(to), ..., X(tn) — X(tn-1)
are independent;
(ii) given 0 < s <t < 00, X; — X is equal in distribution to X;_g;
(iii) X is stochastically continuous, i.e.

lin}f,u(|X(t)fX(s)| >¢e) =0, Ve > 0;

(iv) u(Xo=0)=1.

The above conditions readly depend on the measure p, so to emphasize this
we will also write that {X, u} is a Lévy process. From the definition one can
deduce that the characteristic function of X (¢) is given by the formula

Eei(@X0) — g=tu(@)

for some function . The Lévy-Khinchine formula gives the formula for v, that
is

Y(x) = —i{y,x) + %(Ax, x) —/ (ell(g”’y> —1—i{z,y) L)y <1 (y))v(dy), VxeH,
H

where v € H, A is nonnegative and trace class operator! and v is measure on H
satisfying v({0}) = 0 and [}, (1 A [y[*)v(dy) < oo. The tuple (4,v,7) is called
the generating triplet of X. Moreover, Lévy—Ito decomosition yelds that one
can decompose the sample paths of X into the continuous part, X¢, and pure
jump part, X%, in the following way:

X(t) = X°(t) + X(t),

where

X<(1) :X(t)—/ot /lrldx(ﬂ(ds,dx)—dtu(dm))—/ot /m|21x7r(ds,dm),

XUty = X(t) — X°(¢).

Additionally X¢ is a Brownian motion (with drift v and covariance operator A)
independet of X,
Finally we define the Poisson random measure corresponding to X as

7([0,4],T) = #{s < t: AX(s) €T}, T e B(H).

The measure 7(ds, dx) = w(ds, dx) — dsv(dx) is called the compensated Poisson
random measure.

LA linear, bounded operator A: H — H is called a trace class if there exist {ax}, {bx} C H,
>k lak||br| < oo such that Au = >, by (u,ay), see Da Prato, Zabczyk (1992).



3 The main theorem

In the following we consider two measures p; and po defined on the space
(D, Fp). If {X, u;} is a Levy process with generating triplet (4;,v;,v:), 1 = 1,2,
then we define the corresponding compensated Poisson random measure

mi(ds,dx) = w(ds, dx) — dsv;(dx).

Theorem 1. Let {X,p;} and {X, us} be two H—valued Levy processes with
generating triplets (A, v1,v1) and (As, ve,v2) respectively. Then py ~ po if
and only if the following conditions hold

(1) A]_ = A2 =: A,

ii) v1 ~ v and the function p defined by 722 (z) =e satisfies
i d the function p defined by 422 P(@) satisf
/ (eP @12 _1)2y, (dz) < oo;
H

(iii) The integral [, _, z(dva—dv1)() is well defined and y2—y1— [,

dvi)(z) € AY?(H).

L)< x(dvy—

Let X{ denote the continous part of X with respect to pq, that is

Xe(t) :X(t)—/ot /x<1x%1(ds,dx)+/0t /xZwa(ds,dx).

Then, provided that (i) — (4i7) hold, we get

duz
dp

(X()) = exp {<b, XE(0)) — AV — t(,0)
Fi

+/0 /Hp(x)[w(ds,dx)—1(,171)(p(x))dsu1(dx)]

N /0 /H [P —1—p(x)]1(1,1)(p(m))]dsu1(dx)},

for any b € H such that v — v — flx\<1 x(dvy — dvy) = AY?D.

Remark 1. The essential difference between arbitrary separable Hilbert space
and H = R? is that one has to consider the image of A'/? and not A (see
condition (774)). Of course when H = R then A(H) = AY2(H).

Proof. It can be proven (see Sato (1999), page 220) that assumption

/ (eP @12 _1)2p, (dz) < oo
H

is equivalent to the following three conditions

/ p%(2)v1(dz) < oo, (S1)
lp(z)|<1



/( . "Dy (dx) < oo, (S2)
p(x)>

/( o v1(dz) < oco. (S3)

Necessity. Step 1. Suppose v; = o = 0. First we prove (i). For any
h € H the process Y, (t) = (X3, h) is a real-valued brownian motion with drift
and Y3 (t) has a normal distribution N (¢{~;, h), t(A;h,h)) under p;, i = 1,2.
Absolute continuity of p; and po implies that (Ajh,h) = (Ash,h) (see e.g
Sato (1999), page 229). Since h and A;, As are covariance operators we have
A; = As. Furthermore, the condition (7i7) follows directly from the Feldman-
Hayek theorem (see Appendix, Theorem 2). Indeed, the measures p;(X (1) € ),
i =1,2, are equivalent and gaussian N (;, 4;).
Step 2. Let m be a Poisson random measure corresponding to X. Then

p1(mw([0,¢],T) =0) = e~ tri(D)

p2(7([0,1),T) = 0) = e~ tr2(1),

By absolute continuity of u; and us we get that v4(T') = 0 implies v»(T") = 0
and vice versa, so v; ~ vy. As a result there exists function p defined by
Z—Zf(m) = ¢/(®), Similarly, v1(T') < oo if and only if v5(T) < oco.

To prove the integrability condition (i) observe that

/ (er@)/2 _1)2y (dz) < / (eP@/2 _1)%y, (dz) + / (e”) 4+ 1)vy (dz)
H lo(z)|<e

lo(z)|=e

B /< O D)+ (ol 2 )+ alle(a)] 2 <),

for € > 0. It is therefore sufficient to show that the terms on the right hand side
are finite.

Suppose that va(: p(x) > €) = 0o. Let B, C [0,T] x {p(x) > €} be disjoint
sets such that (Jro; Br = [0,7] x {p(z) > €} and

//B dsvo(dz) = 1.

The family {B,} can be constructed, as the measure dt ® v(dz) does not
have any atoms. Because 7 is a Poisson random measure 7(By), 7(Bs),...
are i.i.d. Poisson random variables with intensity 1 under py. By Remark 2,
n Y m(Bg) — 1 wrt. p2 as n — oo. From absolute continuity it follows
that n=1 Y7 m(By) — 1 w.r.t. pg asn — oo. Since m(By), m(Bz), ... are inde-
pendent Poisson random variables with intensity measure dt ®dv, = e Pdt @ dv,
we get By, 7m(By) = [[p, divi(dx) < e”°. Therefore from Remark 2 it follows

that . B
n! (Zw(Bw - ZEw(Bk)) —#Q,
k=1

k=1

This is a contradiction, because the left hand side is greater then n™* "), m(By,)—
e~¢, which tends to 1 — e™° w.r.t. p; as n — oco. Thus v;(p(z) > &) < oo for
i = 1,2. Interchanging vo with vy, ue with p; and p with —p we get the same
result with —p instead of p. As a consequence v;(|p(z)| > €) < o0, for i =1, 2.



Suppose now that

/ (e /2 _1)2p (dz) = .
<p(z)

Let B,, C [0,T] x {0 < p(z) < e} be disjoint sets such that (Jy-, By = [0,T] x

{0 < p(z) < e} and
// (eP /2 _1)2dsyy (dz) = 1. (1)

From (1) we know that the following random variables are well defined

= eP(@)/2 T ).
zk—//]%( 17 (dt, da) 2)

By Theorem 3 we get
Eu, 2K =0, D Zy, = // (eP@/2 _1)2dt, (dx) = 1.
By,

As the sets { By} are disjoint the random variables Z;, Zs, ... are independent.
Moreover, since

E..Zk = // (eP@/2_1)dt(vy—v1 ) (dx) = // (e”)/2_1)2(eP®)/2 4 1) dtw, (da)
Bk Bk

it follows that 1 < E,,Z;, < 1+ /2. Additionally

DZZZIC = // (eP@/2 —1)2dtvy (da) // (eP®/2 _1)2eP @) dty (da) <
By

From Remark 2 we get n™'Y ;| Z; — 0 w.r.t. py as n — oco. By absolute
continuity of measures 1, 2 we get =t Zp — 0 wort. pp as n — oc.
Moreover, it follows from Remark 2 that

n n
(Sa-3mwa) o
k=1 k=1

But this is impossible since the left hand side is smaller then n=! >~ | Z; — 1
which tends to —1 w.r.t. ps as n — oo. Interchanging vy with vo, py with o
and p with —p we get the same result with —p instead of p. Thus

/( | (eP@/2 _1)2p (dz) < oco.
plx)|I<e

Step 3. By Step 2 the condition (i7) is satisfied. To show that fw|<1
v)(dx) = flel z(eP®) — 1)y (dx) is well defined we follow Sato (1999):

/ |z||e”™) —1|vy (dz) < / |x||ep(z)—1|yl(dx)—|—/ |e” @) —1|vy (d)
|| <1 2| <1,]p(z)|<1 lp(x)|>1



1/2

1/2
< ( / |x|2u1<dx>> ( / jr® — 12u1<dx>>
|z|<1 lp(2)|<1

+/ |eP®) —1|v (dz) < oo,
lp(z)|>1

where we have used the Holder’s inequality. The first integral in the last ex-
pression is finite from the definition of Lévy measure v;. The finiteness of the
second term follows from the inequality (S1) and the basic fact that for any
a €R, |a] <1, |e* — 1] < e|al. The finiteness of the last term follows from (52)
and (S3).

By Lévy—It6 decomposition it follows that

Xi(t / / a7 (ds, dx) / / m(ds,dx)
|| <1 \ac|>1

- /ot /x|<1 zds(ve —11)(x) + /Ot /I'Jc|<1 zds(va — v1)(dx)

The last equality can be justified by the approximation argument. Consequently

Xi(t / ~/|z|<1xds vy — v1)(dx)

meaning that, under the measure p, X{ is a Brownian motion with drift
Yo — flxl <1 Z(v2 — v1)(dz) and covariance matrix As. Finally, because measures

induced on D by (X¢,u1) and (X, us) are equivalent, the whole statement
follows from the Step 1 and Step 2.
Sufficiency. Define

U(t) = (b, X5(0) - §|A1/2b\2 ~ b, ) (3)

/ / x)71(ds, dx) / / w(ds,dz)
p\<1 p|>1

- / / €79 — 1= p(@) 11 1) (ple))]dsw (dz).
0 H

Step 1. We will show that the integrals in (3) are well defined and that the
process eV(*) defines a change of measure. The conditions (S1) — (S3) imply
that

[ [ 167 = 1= @)ty (pla)ldsin (do) < oc
0 H

Thus by Theorem 3

E,, exp {/ /p(gp |>1 m(ds dm)} = exp {/ / ‘>1 ep($) - 1) dsul(dac)}



and

E,, exp {/Ot /|p<a:>|<1 p(x)%l(ds,dx)} = exp {/Ot /p(m)<1 (epm - p(x)) dsul(dz)} .

This proves that the required integrals are well defined. Moreover, by Theorem
3, all term in (3) are independent and we get

EmeU(t) =1.

Step 2. We will show that for every u € R the following equality holds

) ) it t
B X OO — exp ity 2) = LAV = Z(A(z +ub), (2 4+ b)) (4)

siu [ [ (@ 1 pla) (o)) dsin (o)
0 H

b [ (@) 1 i 21y () = upla) Ly o)) ) .

Indeed, from Lévy—Ito decomposition and the linearity of the integral we get

) ) iut
By, eeXOH00) _ E, exp {ZKXf(t), 2 ub) — LAY — dut(m,b)

+i /t /|I|<1<x,z>%1(ds,dx)+i/t /z|>1<x,z>7r(ds,dx)
+zu/ / z)|<1 )71 (ds, dx) —Hu/ / z)|>1 w(ds,dz)
—iu At /H[ep(m) —1- /—’(x)]l(—l,l)(P(fﬂ))]ds’/l(dx)}

. 1ut t?
= exp {zt('yl, z) — —(Ab by — 5 —(A(z 4+ ub), (= + ub))}

t
x exp{ [ [ e -1 p(x)ﬂ(1,1><p<x>>]dsu1<dx>}

0o JH

t t

xE,, exp z/ / (:c,zﬁl(ds,d:c)Jri/ / (x, z)m(ds, dx)
0 Jl|z|<1 0 J|z|>1
—Hu/ / x)71(ds, dx) +zu/ / 7(ds dx)} =1 115.
p(x)\<1 p(w)\>1

Define the following disjoint sets
Boo = [0, 2] x {[z[ <1, [p(z)| <1}, Bor = [0,7] x {|z| <1, |p(x)] = 1},

Bio = [0,1] x {|z[ = 1, [p(x)] <1}, Biy = [0,¢] x {|z| = 1, |p(z) = 1}.



Then

Iy = E,, exp {z / /B (. 2) Fup(e) s, de) 4 / /B ({2 rup(a)) (s, d)

+i //Bm@,z)%l(ds,dx) +i//BOl up(x)m(ds, dx)
+i //B10 up(z)71(ds, dz) +i//Bm (x,z>7r(ds,dx)}

Since v1(|z| > 1) < oo and v1(|p| > 1) < 0o (see (S2) — (53)) we have

/ (@)1 (de) < a(j2] 2 1) < os,
Bio

/ [(z, 2)[v1(dz) < |7] |z|v1(dz) < [z|ri(]p] = 1) < oo,
Bo1

Box

and the integrals [[, (z,z)7(ds,dz), [[5 (z,2)7(ds,dx), [[5 p(z)n(ds,dz),
[[5,, p(x)m(ds, dz) are ji—well defined. Thus we can write

I3 =E,, exp {i//BOO(<33,z)+up(a:))%1(ds,dx)+i //Bu((a:,z>+up(m))7r(ds,dm)

i //Bm(<a:,z> + up(a))m(ds, d) — z//B (2, 2)dsvn (dz)

+i //Bw(<x,z> + up(z))w(ds,dx) — i//Bw up(x)dsz/l(dz)}

Because the sets Byg, B1o, Bo1, B11 are disjoint it follows from the Theorem 3
that

I3 = exp { //B (ei((af,z)+up(x)) —1—i((z,2) + up(m)))dsvl(dac)}

y exp{// (¢il@ 2 +up(@) _ 1)dsv1(dx)}
B
X exp { // (e!(@2)Fur@) _ 1)dspy (dx) — z// (z,z)dsvl(dx)}
B()1 BOl
X exXp { // (et(@2)+ur(@) _ 1) dspy (dx) — z// up(x)dsvy (dx)}
Bio Bio

Thus the identity (4) holds.

Step 4. Let f.(c) and h,(c) denote the left hand side and the right hand
side of the equation (4), respectively, with fixed z and c¢ instead of u. Denote
F ={c € C: Imc € [-1,0]}. Then f, is continuous on F. This follows from
the dominated convergence and the estimate

|ei(z,X(t))+icU(t)| _ e—]?ncU(t) < (1 +Imc)eU(t) —Ime< eU(t) +1

)



where the first inequality follows from convexity of the function ¢t — ef. It is
also analytic in intF since it is the limit of analytic functions

]Eltl (ei<z,X(t)>+icU(t) ]]-{|U(t)|<n})

Similar arguments show that h is also continuous on F' and analytic on intF'.
As a result they can be analytically extended to F = {c € C: Imc € [-1,1]}.
Moreover, by Step 3, f.(c) = h.(c) for all ¢ such that Imec = 0. Since the set
{c € C: I'mc = 0} has a accumulation point belonging to intF the functions I
and h, coincide on F.

Step 5. By Step 4 we get

h=(—i) = exp {itm,2>—;<Azz,Z>+t/H(e“”’”—l—i@wﬂﬂr<1}(w))vz(d$)}-

Define the measure fi2(A4) = E,, (eV'14), for A € F;. Then
Ep,e’®X ) = (). (5)

Observe that the process (X,U) is a Levy process under up, as a sum of in-
dependent Levy processes (corresponding to the continuous and discontinuous
part). Thus by (5) it follows that under fis, the process X is a Levy process
with generating triplet (As, 72, v2). Therefore, 112 and pe must coincide and as
a result g ~ . O

4 Appendix

For the convinience of the reader we recall some well known facts.

Theorem 2 (Feldman-Hajek, see Da Prato, Zabczyk (1992), Theorem ). Let
1, v be two measures on separable Hilbert space. Then the following statements
hold

(i) Suppose that p = N(m1,Q1), v = N(m2,Q2). Then u and v are either
singular or equivalent.

(ii) p and v are equivalent if and only if the following conditions hold:
1/2 1/2
(a) Qi*(H) = Q*(H) =: Hy
(b) m1 —mg € Ho;
(c) Q;l/ngQfl/Q — I is a Hilbert-Schmidt operator? defined on Hy.

Let 7 be the Poisson random measure with intensity measure dsv(dx). The
following theorem summarizes properties of the integrals with respect to Pois-
son random measures and can be found in many texts, like Kingman (1993),
Applebaum (2004), Peszat, Zabczyk (2007), to name a few.

Theorem 3. Let f: H — R, such that [, |f(z)|v(dz) < co. Then

2We say that a linear, bounded operator A: H — H is a Hilbert-Schmidt operator if there
exists in H an orthonormal and complete basis (ex) such that >°7° 4 [(Aej, er)|? < oo, see
Da Prato, Zabczyk (1992).



fo Sy f(@)m(ds, dx) is well defined.
t
(ii) Eexp {cfo Sy fz)m(ds, dx)} = exp{fo Sy (ecf@) — 1)d81/(d33‘)} for all
¢ € C such that the right hand side converges.
(iii) ]E|fO Sy f(x)m(ds,dx)| < co and Efo Sy f(@)7(ds, dx) =

(iv) Assume additionally that [, |f(2)|*v(dz) < oco. Then

]E\//f #(ds, dz)| //\f )2dsv(z

(v) Let fi,..., fn satisfy the same conditions as f and Ay,..., A, be the dis-
joint subsets of [0, T]x H. Then [, fi(z)r(ds,dx), fA fn(x)m(ds, dx)
are independent.

Remark 2 (Law of Large Numbers). Let Xi,...,X,, be a sequence of real
random variables on a certain probability space (€2, F,P). Suppose that

n

lim n_QDQ(Z X;) = 0.

n— o0
k=1

Then Chebyshev’s inequality implies that
-1 (Z X — EZXk> —eo 0 wort. P
k=1 k=1
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