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FOURIER-LIKE METHODS FOR EQUATIONS

WITH SEPARABLE VARIABLES

D. Przeworska-Rolewicz (Warszawa)

It is well known that a power of a right invertible operators is again right
invertible, as well as a polynomial in a right invertible operator under appropriate
assumptions. However, a linear combination of right invertible operators (in par-
ticular, their sum and/or difference) in general is not right invertible. It will be
shown how to solve equations with linear combinations of right invertible operators
in commutative algebras using properties of logarithmic and antilogarithmic map-
pings. The used method is, in a sense, a kind of the variables separation method.
We shall obtain also an analogue of the classical Fourier method for partial dif-
ferential equations. Note that results concerning the Fourier method are proved
under weaker assumptions than these obtained in PR[1] (cf. also PR[2], PR[3],
PR[6]).

1. Preliminaries. Basic notions of Algebraic Analysis

We recall here the following notions and theorems (without proofs; cf. PR[2],
PR[3]). Denote by N, N0, R, C, Z, Q the sets of positive integers, nonnegative
integers, reals, complexes, integers and rational numbers, respectively, and by F

any field of scalars. If F is a field of numbers then by F[t] is denoted the set of all
polynomials in t with coefficients in F.

Let X be a linear space (in general, without any topology) over a field F of
scalars of the characteristic zero.

• L(X) is the set of all linear operators with domains and ranges in X ;
• dom A is the domain of an A ∈ L(X);
• kerA = {x ∈ dom A : Ax = 0} is the kernel of an A ∈ L(X);
• L0(X) = {A ∈ L(X) : dom A = X};
• I(X) is the set of all invertible elements in X .

Key words: algebraic analysis, commutative algebra with unit, Leibniz condi-
tion, logarithmic mapping, antilogarithmic mapping, right invertible operator, sine
mapping, cosine mapping, initial value problem, boundary value problem, Fourier
method
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An operator D ∈ L(X) is said to be right invertible if there is an operator
R ∈ L0(X) such that RX ⊂ dom D and DR = I, where I denotes the identity
operator. The operator R is called a right inverse of D. By R(X) we denote the
set of all right invertible operators in L(X). Let D ∈ R(X). Let RD ⊂ L0(X)
be the set of all right inverses for D, i.e. DR = I whenever R ∈ RD. We have
dom D = RX ⊕ ker D, independently of the choice of an R ∈ RD. Elements of
ker D are said to be constants, since by definition, Dz = 0 if and only if z ∈ kerD.
The kernel of D is said to be the space of constants. We should point out that, in
general, constants are different than scalars, since they are elements of the space
X . If two right inverses commute each with another, then they are equal.

Clearly, if ker D 6= {0} then the operator D is right invertible, but not in-
vertible. Here the invertibility of an operator A ∈ L(X) means that the equation
Ax = y has a unique solution for every y ∈ X . An element y ∈ dom D is said
to be a primitive for an x ∈ X if y = Rx for an R ∈ RD. Indeed, by definition,
x = DRx = Dy. Again, by definition, all x ∈ X have primitives. Let

FD = {F ∈ L0(X) : F 2 = F ; FX = kerD and ∃R∈RD
FR = 0}.

Any F ∈ FD is said to be an initial operator for D corresponding to R. One can
prove that any projection F ′ onto ker D is an initial operator for D corresponding
to a right inverse R′ = R − F ′R independently of the choice of an R ∈ RD.

If two initial operators commute each with another, then they are equal. Thus
this theory is essentially noncommutative. An operator F is initial for D if and
only if there is an R ∈ RD such that

(1.1) F = I − RD on dom D.

It is enough to know one right inverse in order to determine all right inverses and
all initial operators. Note that a superposition of a finite number of right invertible
operators is again a right invertible operator.

The equation Dx = y (y ∈ X) has the general solution x = Ry + z, where
R ∈ RD is arbitrarily fixed and z ∈ ker D is arbitrary. However, if we put an
initial condition: Fx = x0, where F ∈ FD and x0 ∈ ker D, then this equation has
a unique solution x = Rx + x0.

If T ∈ L(X) belongs to the set Λ(X) of all left invertible operators, then
ker T = {0}. If D is invertible, i.e. D ∈ I(X) = R(X) ∩ Λ(X), then FD = {0}
and RD = {D−1}.

If P (t) ∈ F[t] then all solutions of the equation P (D)x = y, y ∈ X , can be
obtained by a decomposition of the rational function 1/P (t) into vulgar fractions.

Write

vFA = {λ ∈ F \ {0} : I − λA is invertible} for A ∈ L(X)
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Clearly, λ ∈ vFA and only if 1/λ is a regular value of A. Let V (X) be the set of
all Volterra operators, i.e.

V (X) = {A ∈ L0(X) : A − λI is invertible for all λ ∈ F \ {0}}.

Then A ∈ V (X) if and only if vFA = F \ {0}.

If X is an algebra over F with a D ∈ L(X) such that x, y ∈ dom D implies
xy, yx ∈ dom D, then we say that X is a D-algebra and we write D ∈ A(X). The
set of all commutative algebras belonging to A(X) will be denoted by A(X). Let
D ∈ A(X) and

(1.2) fD(x, y) = D(xy) − cD[xDy + (Dx)y] for x, y ∈ dom D,

where cD is a scalar dependent on D only. Clearly, fD is a bilinear (i.e. linear
in each variable) form which is symmetric when X is commutative, i.e. when
D ∈ A(X). This form is called a non-Leibniz component (cf. PR[2]). If D ∈ A(X)
then the product rule in X can be written as follows:

D(xy) = cD[xDy + (Dx)y] + fD(x, y) for x, y ∈ dom D.

If D ∈ A(X) and if D satisfies the Leibniz condition:

(1.3) D(xy) = xDy + (Dx)y for x, y ∈ dom D,

then X is said to be a Leibniz algebra. It means that in Leibniz algebras cD = 1 and
fD = 0. The Leibniz condition implies that xy ∈ dom D whenever x, y ∈ dom D,
i.e. Leibniz algebras are D-algebras. If X is a Leibniz algebra with unit e then
e ∈ ker D, i.e. D is not left invertible. The set of commutative Leibniz D-algebras
X with a D ∈ R(X) and with unit e ∈ dom D is denoted by L(D). Clearly, if
X ∈ L(D) then e ∈ ker D.

Non-Leibniz components for powers of D ∈ A(X) are determined by recur-
rence formulae (cf. PR[2], PR[3]).

Suppose that D ∈ A(X) and λ 6= 0 is an arbitrarily fixed scalar. Then
λD ∈ A(X) and cλD = cD, fλD = λfD.

If D1, D2 ∈ A(X), the superposition D = D1D2 exists and D1D2 ∈ A(X),
then

(1.4) cD1D2
= cD1

cD2
and for x, y ∈ dom D = dom D1 ∩ D2

fD1D2
(x, y) = fD1

(x, y) + D1fD2
(x, y) + +cD1

cD2
[(D1x)D2y + (D2x)D1y].

For higher powers of D in Leibniz algebras, by an easy induction from Formulae
(1.4) and the Leibniz condition, we obtain the Leibniz formula:

(1.5) Dn(xy) =
n∑

k=0

(
n

k

)
(Dkx)Dn−ky for x, y ∈ dom Dn (n ∈ N).
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Let X ∈ A(X). Denote by the set M(X) of all multiplicative mappings (not
necessarily linear) with domains and ranges in X :

M(X) = {A : A(xy) = (Ax)(Ay) whenever x, y ∈ dom A ⊂ X}.

Suppose that X ∈ A(X) and D ∈ R(X). An initial operator F for D is said
to be almost averaging if F (zx) = zFx whenever z ∈ ker D, x ∈ X . Clearly, every
multiplicative operator F ∈ FD is almost averaging for F (zx) = (Fz)(Fx) = zFx
if z ∈ ker D, x ∈ X , but not conversely (cf.PR[2]).

Suppose that D ∈ A(X). Let a multifunction Ω : dom D −→ 2dom D be
defined as follows:

(1.1) Ωu = {x ∈ dom D : Du = uDx} for u ∈ dom D.

The equation

(1.2) Du = uDx for (u, x) ∈ graph Ω

is said to be the basic equation. Clearly,

Ω−1x = {u ∈ dom D : Du = uDx} for x ∈ dom D.

The multifunction Ω is well-defined and dom Ω ⊃ ker D \ {0}.

Suppose that (u, x) ∈ graph Ω, L is a selector of Ω and E is a selector of
Ω−1. By definitions, Lu ∈ dom Ω−1, Ex ∈ dom Ω and the following equations are
satisfied:

Du = uDLu, DEx = (Ex)Dx.

Any invertible selector L of Ω is said to be a logarithmic mapping and its
inverse E = L−1 is said to be a antilogarithmic mapping. By G[Ω] we denote the
set of all pairs (L, E), where L is an invertible selector of Ω and E = L−1. For any
(u, x) ∈ dom Ω and (L, E) ∈ G[Ω] elements Lu, Ex are said to be logarithm of
u and antilogarithm of x, respectively. The multifunction Ω is examined in PR[3]
and following papers (also for noncommutative algebras).

Clearly, by definition, for all (L, E) ∈ G[Ω], (u, x) ∈ graph Ω we have

(1.6) ELu = u, LEx = x; DEx = (Ex)Dx, Du = uDLu.

A logarithm of zero is not defined. If (L, E) ∈ G[Ω] then L(kerD \ {0}) ⊂ kerD,
E(kerD) ⊂ kerD. In particular, E(0) ∈ ker D.

If D ∈ R(X) then logarithms and antilogarithms are uniquely determined up
to a constant. Moreover, if F ∈ FD then FE = EF , FL = LF (cf. PR[10]).
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Let D ∈ A(X) and let (L, E) ∈ G[Ω]. A logarithmic mapping L is said to
be of the exponential type if L(uv) = Lu + Lv for u, v ∈ dom Ω. If L is of the
exponential type then E(x + y) = (Ex)(Ey) for x, y ∈ dom Ω−1. We have proved
that a logarithmic mapping L is of the exponential type if and only if X is a Leibniz
commutative algebra (cf. PR[3]). Moreover, Le = 0, i.e. E(0) = e. In Leibniz
commutative algebras with D ∈ R(X) a necessary and sufficient conditions for
u ∈ dom Ω is that u ∈ I(X) (cf. PR[3]).

By Lg(D) we denote the class of these commutative algebras with D ∈ R(X)
and with unit e ∈ dom Ω for which there exist invertible selectors of Ω, i.e. there
exist (L, E) ∈ G[Ω]. By L(D) we denote the class of these commutative Leibniz
algebras with unit e ∈ dom Ω for which there exist invertible selectors of Ω. By
these definitions, X ∈ Lg(D) is a Leibniz algebra if and only if X ∈ L(D) and
D ∈ R(X). This class we shall denote by L(D). It means that L(D) is the class of
these commutative Leibniz algebras with D ∈ R(X) and with unit e ∈ dom Ω for
which there exist invertible selectors of Ω, i.e. there exist (L, E) ∈ G[Ω].

In the same manner we define logarithmic and antilogarithmic mappings of
higher order. Namely, let n ∈ N be arbitrarily fixed. Suppose that D ∈ A(X).
Let a multifunction Ωn : dom Dn −→ 2dom Dn

be defined as follows:

(1.7) Ωnu = {x ∈ dom Dn : Dnu = uDnx} for u ∈ dom Dn.

Any invertible selector Ln of Ωn is said to be a logarithmic mapping of the order
n and its inverse En = L−1

n is said to be a antilogarithmic mapping of the order n.
By G[Ωn] we denote the set of all pairs (Ln, En), where Ln is an invertible selector
of Ωn and En = L−1

n . For any (u, x) ∈ dom Ωn and (Ln, En) ∈ G[Ωn] elements
Lnu, Enx are said to be logarithm of the order n of u and antilogarithm of the
order n of x, respectively. The multifunctions Ωn and relations between them are
examined in PR[3]. Clearly, if X ∈ Lg(D) then X ∈ Lg(Dn) for all n ∈ N.

If kerD = {0} then either X is not a Leibniz algebra or X has no unit (cf.
PR[3]). Thus, by our definition, if X ∈ L(D) then ker D 6= {0}, i.e. the operator
D is right invertible but not invertible.

2. Linear combinations of right invertible operators.

We begin with

Proposition 2.1. Suppose that n, r1, ..., rn ∈ N,

(2.1) X ∈
n⋂

j=1

L(Dj),

(2.2) D =

n∑

j=1

αjD
rj

j , αj ∈ X (j = 1, ..., n), dom D =

n⋂

j=1

dom D
rj

j 6= ∅,
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(L
(j)
rj , E

(j)
rj ) ∈ G[Ω

(j)
rj ], where Ω

(j)
rj is induced by D

rj

j (j = 1, ..., n),

(2.3) x =
n∏

k=1

uk, where uk ∈ kerDk ∩ I(X) (k = 1, ..., n),

Then

(2.4) Dx = ax, where a =

n∑

j=1

αjaj,

(2.5) aj = D
rj

j L(j)
rj

ũj and ũj =

n∏

k=1, k 6=j

uk (j = 1, ..., n),

i.e. ũj , uj ũj = x ∈ I(X) (j = 1, ..., n).

Proof. Since by our assumptions, the operators D1,...,Dn satisfy the Leibniz
condition and D1u1 = ... Dnun = 0, from the Leibniz Formula (1.5) we get

Dm
j x = Dm

j (

n∏

k=1

uk) =

m∑

l=0

(
m

l

)
(Dl

juj)(D
m−l
j ũj) = ujD

m
j ũj

for j = 1, ..., n. Thus

Dx =
( n∑

j=1

αjD
rj

j

) n∏

k=1

uk =

=

n∑

j=1

αjujD
rj

j

n∏

k=1, k 6=j

uk =

=
( n∏

k=1

uk

) n∑

j=1

αj

( n∏

k=1, k 6=j

u−1
k

)
D

rj

j

( n∏

k=1, k 6=j

uk

)
=

= x

n∑

j=1

αj ũ
−1
j D

rj

j ũj = x

n∑

j=1

αjD
rj

j L(j)
rj

ũj = x

n∑

j=1

αjaj = xa.

�

Proposition 2.2. Suppose that all assumptions of Proposition 2.1 are sat-

isfied. Then there are Rj ∈ RDj
such that R

rj

j aj ∈ dom (Ω
(j)
rj )−1 (j = 1, ...n)

and

(2.6) ũj = E(j)
rj

(R
rj

j aj) (j = 1, ..., n).

6



Proof. By our assumptions, aj = D
rj

j L
(j)
rj ũj for j = 1, ..., n. Hence there

are Rj ∈ RDj
such that L

(j)
rj ũj = R

rj

j aj (cf. PR[3]), i.e. ũj = E
(j)
rj L

(j)
rj ũj =

E
(j)
rj (R

rj

j aj). �

Proposition 2.3. Suppose that all assumptions of Proposition 2.1 are sat-
isfied and r1 = ... = rn = 1. Then the operator D defined by (2.2) satisfies the
Leibniz condition.

Proof. Let x, y ∈ dom D. Clearly, x, y ∈ dom D whenever x, y ∈⋂n

j=1 dom Dj . Since D1,...,Dn satisfy the Leibniz condition, we get

D(xy) =

n∑

j=1

αjDj(xy) =

n∑

j=1

αj(xDjy + yDjx) =

= x

n∑

j=1

αjDjy + y

n∑

j=1

αjDjx = xDy + yDx.

�

Proposition 2.4. Suppose that all assumptions of Proposition 2.1 are satis-
fied. Let

(2.7) Un = {
n∏

k=1

uk : uk ∈ ker Dk ∩ I(X) (k = 1, ..., n)} (n ∈ N).

Then selectors L of the multifunction Ω induced by D satisfy the equality DLx = a
for x ∈ Un.

Proof. By Equation (2.4), we have Dx = ax, where x ∈ I(X). Thus, by
definition, DLx = x−1Dx = a for any selector L of Ω. �

This, and Proposition 2.3 together imply

Corollary 2.1. Suppose that all assumptions of Proposition 2.1 are satisfied.
If r1 = ... = rn = 1 and Un ∈ Lg(D) then Un ∈ L(D).

Proposition 2.5. Suppose that all assumptions of Proposition 2.1 are sat-

isfied and a = 0. Then there are Rj ∈ RDj
such that R

rj

j aj ∈ dom (Ω
(j)
rj )−1

(j = 1, ..., n) and

(2.8) x =
1

n

n∑

j=1

uj ũj =
1

n

n∑

j=1

ujE
(j)
rj

(R
rj

j aj) ∈ kerD,

where uj ∈ ker Dj ∩ I(X) (j = 1, ..., n).

Proof. By our assumptions and Proposition 2.1, Dx = ax = 0 and x = uj ũj

(j = 1, ..., n). Hence x = 1
n

n∑

j=1

uj ũj . This, and Proposition 2.2 together imply

(2.8). �
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Proposition 2.6. Suppose that all assumptions of Proposition 2.1 are satis-
fied and a ∈ I(X). Then the equation

(2.9) Dx = y, y ∈ X

has a solution

(2.10) x = y
( n∑

j=1

αjD
rj

j L(j)
rj

ũj

)−1

Proof. By our assumptions, ax = Dx = y. Since a ∈ I(X), we get x = a−1y.
Propositions 2.1 and 2.2 together imply that

x = a−1y = y
( n∑

j=1

αjaj

)−1
= y

( n∑

j=1

αjD
rj

j L(j)
rj

ũj

)−1
.

�

Corollary 2.2. Suppose that all assumptions of Proposition 2.1 are satisfied,
r1 = ... = rn = 1 and a ∈ I(X). Then the equation (2.9) has a solution

(2.11) x = y
( n∑

j=1

αjDj

n∑

k=1, k 6=j

L
(j)
1 uk

)−1
.

Proof. Proposition 2.6 and the Leibniz condition together imply that

x = y
( n∑

j=1

αjDjL
(j)
1

n∏

k=1, k 6=j

uk

)−1
= y

( n∑

j=1

αjDj

n∑

k=1, k 6=j

L
(j)
1 uk

)−1
.

�

Some more generalized approaches to problems with linear combinations of
right invertible operators of order one have on vectors fields and magnifolds have
been given by Virsik V[1] and Multarzyński M[1], M[2].

3. Trigonometric elements and mappings.

We shall show now an approach to the trigonometric identity in Leibniz D-
algebras with unit e (but not necessarily with logarithms). Clearly, without addi-
tional assumptions we cannot expect too much.

Proposition 3.1. Suppose that X ∈ L(D), x ∈ dom D2 and x, Dx are not
zero divisors. If x2 + (Dx)2 = e then

(3.1) αx + βDx ∈ ker (D2 + I) whenever α, β ∈ F.

8



Proof. Let y = −Dx. Then Dy = −D2x and

0 = De = D[x2 + (Dx)2] = 2xDx + 2(Dx)D2x = 2(Dx)(x + D2x) = 2y(x − Dy).

Since y = −Dx is not a zero divisor, we have x − 2y = 0. Hence Dy = x
and y = −Dx = −D2y, which implies y ∈ ker (D2 + I). On the other hand,
x = Dy = −D2x, which implies x ∈ ker (D2 + I). �

Proposition 3.2. Suppose that all assumptions of Proposition 3.1 are satis-
fied. If Condition (3.1) hold for x and Dx and u = x2 + (Dx)2 then u ∈ ker D.

Proof. Let u = x2 + (Dx)2. Then Du = 2xDx + 2(Dx)D2x = 2(Dx)(x +
Dx) = 2(Dx)(D2 + I)x = 0, which implies u ∈ kerD. �

Corollary 3.1. Suppose that all assumptions of Proposition 3.1 are satisfied,
Condition (3.1) holds for x and Dx, F ∈ FD ∩ M(X), Fx = e, FDx = 0 and
u = x2 + (Dx)2. Then u = e, i.e. x2 + (Dx) = e.

Proof. Since F is a multiplicative initial operator and Fx = e, FDx = 0, we
find u = F [x2 + (Dx)2] = (Fx)2 + (FDx)2 = e2 + 0 = e. �

Proposition 3.3. Suppose that all assumptions of Proposition 3.1 and Con-
dition (3.1) are satisfied, F ∈ FD ∩ M(X) and Fx = e. Then FDx = 0.

Proof. By our assumptions, e = Fe = F [x2 + (Dx)2] = (Fx)2 + (FDx)2 =
e + (FDx)2, which implies (FDx)2 = 0. Hence FDx = 0. �

Proposition 3.4. Suppose that all assumptions of Proposition 3.1 are satis-
fied. If x± ∈ ker (D ± iI) and x = 1

2 (x+ + x−), y = 1
2i

(x+ − x−), then

(i) x, y ∈ ker (D2 + I), Dx = −y, Dy = x and 1
2
(x ± y) ∈ ker (D2 ∓ iI);

(ii) x2 + y2 = x+x− ∈ ker D.

Proof. Points (i) is proved by checking. In order to prove (ii), observe that,
by the Leibniz condition and our assumptions,

D(x+x−) = x+Dx− + x−Dx+ = ix+x− − ix+x− = 0.

�

Observe that x± are eigenvectors of the operator D corresponding to the
eigenvalues ∓i, respectively.

Here and in the sequel we assume that F is an algebraically closed field of
scalars. For instance, F = C. The following results are slightly stronger (with
some proofs slightly simpler than in PR[2]):

Definition 3.1. Let X be a linear space over F. If λ ∈ F is an eigenvalue of
an operator D ∈ R(X) then every eigenvector xλ corresponding to λ is said to be
an exponential element (shortly: an exponential). �
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This means that xλ is an exponential if and only if xλ 6= 0 and xλ ∈ ker(D −
λI).

Proposition 3.5. Let X be a linear space (over F). Suppose that D ∈ R(X).
If 0 6= xλ ∈ ker(I − λR) for an R ∈ RD and a λ ∈ F then xλ ∈ ker(D − λI), i.e.
xλ is an exponential.

Proof. By our assumption, (D − λI)xλ = (D − λDR)xλ = D(I − λR)xλ =
0. �

By an easy induction we prove

Proposition 3.6. Suppose that X is a linear space (over F), D ∈ R(X) and
{λn} ⊂ F is a sequence of eigenvalues such that λi 6= λj for i 6= j. Then for an
arbitrary n ∈ N the exponentials xλ1

,...,xλn
are linearly independent.

Proposition 3.7 Suppose that X is a linear space (over F), D ∈ R(X), F is
an initial operator for D corresponding to an R ∈ RD and xλ is an exponential.
Then xλ is an eigenvector for R corresponding to the eigenvalue 1/λ if and only if
Fxλ = 0, i.e. if R is not a Volterra operator.

Proof. Sufficiency. Since Dxλ = λxλ and Fxλ = 0, we get xλ = xλ − Fxλ =
(I − F )xλ = RDxλ = λRxλ. Hence xλ ∈ ker(I − λR). Since xλ 6= 0, we conclude
that xλ is an eigenvector for R corresponding to 1/λ.

Necessity. Suppose that 1/λ is an eigenvalue of R and the corresponding
eigenvector xλ is an exponential. Then Fxλ = (I − RD)xλ = (I − λR)xλ =
−λ(R − 1

λ
I)xλ = 0. �

Theorem 3.1. Suppose that X is a linear space (over F), D ∈ R(X), ker D 6=
{0}, R ∈ RD and λ ∈ vFR. Then

(i) λ is an eigenvalue of D and the corresponding exponential is

(3.2) xλ = eλ(z), where eλ = (I − λR)−1, z ∈ ker D;

whenever eλ = (I − λR)−1 exists, is said to be an exponential operator;

(ii) the dimension of the eigenspace Xλ corresponding to the eigenvalue λ is
equal to dimension of the space of constants, i.e. dim Xλ = dim ker D 6= 0;

(iii) if λ 6= 0 then there exist non-trivial exponentials: eλ(z) 6= 0.

(iv) exponentials are uniquely determined by their initial values, i.e. if F is
an initial operator for D corresponding to R then F [eλ(z)] = z;

(v) if R is a Volterra operator then every λ ∈ F is an eigenvalue of D, i.e. for
every λ ∈ F there exist exponentials.

Proof. (i) By definition, (I − λR)eλ(z) = (I − λR)(I − λR)−1z = z, where
z ∈ ker D. Thus eλ(z) = z + λReλ(z), which implies Deλ(z) = Dz + λDReλ(z) =
λeλ(z).
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(ii) Since by our assumptions, the operator eλ = I −λR is invertible, dim Xλ

= dim {eλ(z) : z ∈ ker D} = dim {(I − λR)−1z : ker D} = dim ker D 6= 0.

(iii) If λ 6= 0 and eλ(z) = (I − λR)−1z = 0 then z = (I − λR)eλ(z) = 0, This
contradicts our assumption that ker D 6= {0}.

(iv) By definitions and (i), we have Feλ(z) = (I−RD)eλ(z) = (I−λR)eλ(z) =
z.

(v) If R ∈ V (X) then vFR = F {0}. Clearly, for λ = 0 the operator I − λR is
also invertible. Hence, by (i), every scalar λ is an eigenvalue of D. �

Definition 3.2. Let F = C. Suppose that X is a linear space (over C,
D ∈ R(X), ker D 6= {0} and R ∈ RD ∩ V (X). Then the operators

(3.3) cλ =
1

2
(eλi + e−λi), sλ =

1

2i
(eλi − e−λi) (λ ∈ R)

are said to be cosine and sine operators, respectively (or: trigonometric operators).
Elements cλ(z), sλ(z), where z ∈ kerD, are said to be cosine and sine elements,
respectively (or: trigonometric elements). �

Theorem 3.2. Suppose that all assumptions of Definition 3.2. are satisfied.
Then

(3.4) cλ = (I + λ2R2)−1, sλ = λR(I + λ2R2)−1 (λ ∈ R)

(3.5) Dcλ = −λsλ, Dsλ = λcλ (λ ∈ R)

(3.6) c0(z) = z, s0(z) = 0, F sλ(z) = 0 for z ∈ kerD, λ ∈ R.

Moreover, whenever z ∈ kerD, λ ∈ R, the element cλ(z) is even with respect to λ
and the element sλ is odd with respect to λ.

Proof. By the first Formula of (3.4), for λ ∈ R we get

cλ =
1

2
[(I−λiR)−1+(I+λiR)−1] =

1

2
(I−λiR)−1(I+λiR)−1(I+λiR+I−λiR) =

=
1

2
(I + λ2R2)−12I = (I + λ2R2)−1.

A similar proof for sλ. By definitions, if λ ∈ R, then

Dcλ =
1

2
D(eλi + e−λi) =

=
1

2
(λieλi + λie−λi) =

1

2
λi(eλi + e−λi) = −

λ

2i
(eλi + e−λi) = −λsλ.
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Since DR = I, we have Dsλ = λDR(I + λ2R2)−1 = λ(I + λ2R2)−1 = λcλ.

Let z ∈ ker D. Let λ = 0. Then c0(z) = z, s0(z) = 0. Since FR = 0, for
every λ ∈ R we have Fsλ(z) = λFR(I + λ2R2)−1 = 0. Let z ∈ kerD. Then

c−λ(z) = [I + (−λ)2R2)−1](z) = (I + λ2R2)−1z = cλ(z);

s−λ(z) = −λR[I + (−λ)2R2)−1](z) = −λR(I + λ2R2)−1z = −sλ(z).

�

Consider now trigonometric elements in algebras. It is easy to verify

Proposition 3.6. Suppose that D ∈ A(X) ∩ R(X), kerD 6= {0} and R ∈
RD ∩ V (X). Then

(3.6) [cλ(z)]2 + [sλ(z)]2 = eλi(z)e−λi(z) for all z ∈ kerD, λ ∈ R.

(3.7) D[eλi(z)e−λi(z)] = cDz + fD(eλi(z), e−λiz) for all z ∈ ker D, λ ∈ R.

Corollary 3.2. Suppose that X is a Leibniz D-algebra kerD 6= {0} and
R ∈ RD ∩ V (X). Then

(3.8) D[eλi(z)e−λi(z)] = z for all z ∈ ker D, λ ∈ R,

Proof. Since X is a Leibniz D-algebra, we have cD = 1 and fD = 0. Hence
Formulae (3.6) and (3.7) implies (3.8). �

An immediate consequence of Corollary 3.2 is

Corollary 3.3. Suppose that X is a Leibniz D-algebra kerD 6= {0} and
R ∈ RD ∩ V (X). Then the Trigonometric Identity holds, i.e.

(3.9) [cλ(z)]2 + [sλ(z)]2 = z for all z ∈ kerD, λ ∈ R.

Proposition 3.7. (cf. PR[3]). Suppose that X ∈ Lg(D), λg = Re ∈
dom Ω−1 for every R ∈ RD and λ ∈ vFR. Then there are (L, E) ∈ G[Ω] such that

E(λg) = (I − λR)−1z = eλz ∈ ker(D − λI) for all z ∈ ker D.

Proof. Let R ∈ RD be fixed. Elements of the form u = eλz = (I−λR)−1z are
well-defined for all z ∈ ker D and (D − λI)u = D(I − λR)u = Dz = 0. Moreover,
Du = λu = uλe = uλDRe = uD(λg), which implies that λg ∈ dom Ω−1 and there
are (L, E) ∈ G[Ω] such that eλ = u = E(λg). �
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Definition 3.3. (cf. PR[3]). Suppose that F = C, X ∈ Lg(D) and E1 =
dom Ω−1 is symmetric, i.e. −x ∈ E1 whenever x ∈ E1. Let (L, E) ∈ G[Ω]. Write

(3.10) Cx =
1

2
[E(ix) + E(−ix)], Sx =

1

2i
[E(ix)− E(−ix)] for ix ∈ E1.

The mappings C and S are said to be cosine and sine mappings or trigonomet-
ric mappings. Elements Cx and Sx are said to be cosine and sine elements or
trigonometric elements. �

Clearly, trigonometric mappings and elements have such properties as the
classical cosine and sine functions. Namely, we have (proofs can be found in
PR[3]):

Proposition 3.8. (cf. PR[3]). Suppose that all assumptions of Definition
3.3 are satisfied. Let (L, E) ∈ G[Ω]. Then trigonometric mappings C and S are
well-defined for all ix ∈ E1 and have the following properties:

(i) The de Moivre formulae hold:

E(ix) = Cx + iSx, E(−ix) = Cx − iSx for ix ∈ E1.

In particular, if X is a commutative Leibniz algebra then

(3.11) (Cx + iSx)n = C(nx) + iS(nx) for ix ∈ E1 and n ∈ N;

(ii) C and S are even and odd functions of their argument, respectively, i.e.
C(−x) = Cx, S(−x) = −Sx for ix ∈ E1 and C(0) = z ∈ ker D {0}, S(0) = 0. In
particular, for all ix ∈ E1

(3.12) (Cx)2 + (Sx)2 =
1

2
[E(ix)E(−ix) + E(ix)E(ix)].

(iii) The mappings C′, S′ defined as follows: C′x = C(x+ z), S′x = S(x+ z)
for ix ∈ E0, z ∈ ker D also satisfy assertions (i)-(ii).

(iv) For all ix ∈ dom Ω−1

(3.13) (Cx)2 + (Sx)2 = E(ix)(E(−ix);

(3.14) DCx = −(Sx)Dx, DSx = (Cx)Dx.

Corollary 3.4. (cf. PR[3]). Suppose that all assumptions of Proposition 3.8
are satisfied and X is a Leibniz D-algebra with unit e. Then the Trigonometric
Identity holds, i.e.

(3.15) (Cx)2 + (Sx)2 = e whenever ix ∈ E1.
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The following question arises: Do exist non-Leibniz algebras with the Trigono-
metric Identity (3.15) ? The answer to this question is negative, i.e. non-Leibniz
algebras with the Trigonometric Identity (3.15) do not exist (cf. PR[6]). In other
words: The Leibniz condition is necessary and sufficient for the Trigonometric
Identity to hold.

In order to apply trigonometric mappings, we shall make use of the following
condition:

[C]n F = C, n ∈ N is arbitrarily fixed, X ∈ Lg(Dn), Ω1 = Ω
and dom Ω−1

n is symmetric, i.e. −x ∈ dom Ωn whenever x ∈ dom Ωn.

Suppose now that Condition [C]2 holds and X ∈ L(D). Suppose that λ ∈ C,
R ∈ RD, g = Re and λig ∈ dom Ω1. If (L1, E1) ∈ G[Ω1] and (L2, E2) ∈ G[Ω2]
then

(3.16) ker(D2 + λ2I) = {z1E(λig) + z2E(−λig) : z1, z2 ∈ ker D} =

= {zC(λg) + z̃S(λg) : z, z̃ ∈ ker D} = {(z′′g + z′)E2(
λ2g2

2
) : z′, z′′ ∈ ker D}.

The assumption that λi,−λi ∈ vCR ensures that λig,−λig ∈ dom Ω−1
1 . In this

case, −λ2 ∈ vCR2.

4. Fourier-like problems for right invertible operators.

We will apply properties of trigonomeric mappings and elements in order to
find non-trivial solutions of some homogeneous initial and boundary value prob-
lems for difference of two right invertible operators (of the first and second order).

Proposition 4.1. Let X ∈ L(Di), ker Di 6= {0}, i = 1, 2, ker D1 ∩ ker D2

= Ce = {λe}λ∈C. Suppose that x = uv, where u ∈ ker D2, v ∈ ker D1. Then

(4.1) (D2 − D2
1)x = u(D2 + λ2I)v − v(D2

1 + λ2I)v for all λ ∈ C {0}.

.

Proof. By our assumptions, D2u = 0, D1v = 0 and both operators D1, D2

satisfy the Leibniz condition. This and Leibniz Formula (1.5) together imply that

(D2 − D2
1)x = (D2 − D2

1)(uv) = D2(uv) − D2
1(uv) =

= uD2v + vD2u − uD2
1v − 2(D1u)(D1v) − vD2

1u = uD2v − vD2
1u =

= u(D2v + λ2v) − λ2uv − vD1u = u(D2 + λ2I)v − v(D2
1 + λ2I)u.

�

Proposition 4.1 immediately implies
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Corollary 4.1. Let X ∈ L(Di), ker Di 6= {0}, i = 1, 2, ker D1 ∩ ker D2

= Ce = {λe}λ∈C. Suppose that x = uv, where u ∈ ker D2, v ∈ ker D1. Then
(D2 −D2

1)x = 0 if and only if u(D2 + λ2I)v− v(D2
1 + λ2I)v = 0 for all λ ∈ C {0}.

Corollary 4.2. Let X ∈ L(Di), ker Di 6= {0}, i = 1, 2, ker D1 ∩ ker D2 =
Ce = {λe}λ∈C and x = uv, where u ∈ ker D2, v ∈ ker D1. Then (D2 −D2

1)x = 0
if and only if u ∈ I(ker D2), v ∈ I(ker D1) and there is a λ ∈ C {0} such that

(4.2) u−1D2
1u = vD2v = −λ2e.

Proof. Equalities (4.2) hold if and only if (D2
1 + λ2I)u = 0, (D2 + λ2I)v = 0.

This, and Corollary 4.1 together imply that (D2−D2
1)x = 0 if and only if Equalities

(4.2) hold. �

Theorem 4.1. Suppose that X ∈ L(Di), ker Di 6= {0}, i = 1, 2,
ker D1 ∩ ker D2 = Ce = {λe}λ∈C and almost averaging F0, F1 ∈ FD1

, F2 ∈ FD2

correspond to R0, R1 ∈ RD1
, R2 ∈ RD2

, respectively. Suppose, moreover, that
x = uv, where u ∈ I(ker D2), v ∈ I(ker D1) and there is are a λ ∈ vCR0 such that
Equalities (4.2) hold and a u such that F1u = 0. Then the homogeneous initial
value problem

(4.3) (D2 − D2
1)x = 0,

with the homogeneous boundary condition

(4.4) F0x = 0, F1x = 0

and with the homogeneous initial condition

(4.5) F2x = 0

is ill posed, since it has a non-trivial solution x = uv, where v is an eigenvector of
R2 corresponding to the eigenvalue -λ2.

Proof. By Corollary 4.3, elements u, v are invertible by our assumption, hence
they are not zero divisors and x = uv is a non-trivial solution of the equation
(D2 −D2

1)x = 0. Since λ ∈ vCR0, Equalities (4.2) implies that v ∈ ker (D2 + λ2I)
= ker D2(I + λ2I)R2, i.e. v = −λ−2R2, u ∈ ker (D2

1 + λ2I). Since F0R0 = 0, we
have F0u = 0. Since u ∈ ker D2, v ∈ ker D1 and initial operators F0, F1, F2 are
almost averaging, we find F0x = F0(uv) = vF0u = 0, F1(uv) = vF1u = 0, F2x =
F2(uv) = uF2v = u(−λ−2)F2R2v = 0 (for F2R2 = 0). �

Theorems 4.1 and 3.2 together imply

Corollary 4.3. Suppose that X ∈ L(Di), ker Di 6= {0}, i = 1, 2,
ker D1 ∩ ker D2 = Ce = {λe}λ∈C and almost averaging F0, F1 ∈ FD1

, F2 ∈ FD2

correspond to R0, R1 ∈ RD1
, R2 ∈ RD2

, respectively. Suppose, moreover, that
x = uv, where u ∈ I(ker D2), v ∈ I(ker D1) and there are a λ ∈ vCR0 such that
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Equalities (4.2) hold and a z0 ∈ ker D1 such that F1u = F1sλ(z0) = 0. Then the
initial value problem (4.3)-(4.5) is ill posed and its non-trivial solution is x = uv,
where u = sλ(z0), sλ = λR0(λ

2I + R2
0), F1u = 0 for a z0 ∈ ker D1, v is an

eigenvector of R2 corresponding to the eigenvalue - λ2.

Theorem 4.3. Suppose that X ∈ L(D1)∩L(D2), Condition [C]2 is satisfied

with respect to the multifunction Ω
(1)
1 induced by D1, (L

(1)
1 , E

(1)
1 ) ∈ G[Ω

(1)
1 ],

S(1) is a sine mapping induced by E
(1)
1 , F0, F1, F2 are almost averaging initial

operators corresponding to R0, R1 ∈ RD1
, R2 ∈ RD2

, respectively, g1 = R0e,

there exist a λ such that iλ ∈ vCR0, iλg1 ∈ dom (Ω
(1)
1 )−1, S(1)(λg1) ∈ ker D2

and F1S
(1)(λg1) = 0. Then the initial value problem (4.3)-(4.5) is ill-posed and

its non-trivial solution is x = uv, where u = S(1)(λg1) ∈ ker D2, v ∈ kerD1 is an
eigenvector of R2 corresponding to the eigenvalue −λ2, i.e. 0 6= v ∈ ker(I +λ2R2).

Proof. Let x = uv. Then, by our assumptions, (D2+λ2I)v = D2(I+λ2R2)v =
0. Since both operators D1 and D2 satisfy the Leibniz condition and u ∈ kerD2,
we can apply Corollary 4.1 in a similar way, as before. Since F0, F1, F2 are almost

averaging and F0E
(j)
1 (±iλg1) = e (cf. PR[3]), we find

F0x = F0(uv) = vF0u = vF0S
(1)(λg1) = v

1

2i
F0[E

(1)(iλg1) − E(1)(−iλg1)] =

=
1

2i
v[F0E

(1)(iλg1) − F0E
(1)(−iλg1)] =

1

2i
v(e − e) = 0;

F1x = F1(uv) = vF1u = vF1S
(1)(λg1) = 0;

F2x = F2(uv) = uF2v = uF2(−λ2R2v) = −λ2uF2R2v = 0.

�

Theorem 4.4. Suppose that X ∈ L(D1)∩L(D2), Condition [C]2 is satisfied

with respect to the multifunction Ω
(1)
1 induced by D1, (L

(1)
1 , E

(1)
1 ) ∈ G[Ω

(1)
1 ],

C(1) is a cosine mapping induced by E
(1)
1 , F0, F1, F2 are almost averaging initial

operators corresponding to R0, R1 ∈ RD1
, R2 ∈ RD2

, respectively, g1 = R0e,

there exist a λ such that iλ ∈ vCR0, iλg1 ∈ dom (Ω
(1)
1 )−1, C(1)(λg1) ∈ kerD2 and

F0C
(1)(λg1) = 0. Then the initial value problem (4.3), (4.4),

(4.6) F1Dx = 0

is ill-posed and its non-trivial solution is x = uv, where u = C(1)(λg1) ∈ kerD2,
v is an eigenvector of R2 corresponding to the eigenvalue −λ2, i.e. 0 6= v ∈
ker(I + λ2R2).

Proof. Let x = uv. Then, by our assumptions, u ∈ ker D2, DC(1)(λg1) =
−λS(1)(λg1). Thus, in a similar manner as in the proof of Theorem 4.1, we prove
that (D2 − D2

1)x = 0, F0x = 0, F2x = 0. Condition F1x = 0 follows from the
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fact that (as before) F1 is almost averaging, hence F1x = vF1u = vF1C
(1)(λg1) =

1
λ
vF1DS(1)(λ) = 0. �

Corollary 4.5. Suppose that all assumptions of Theorem 4.2 are satisfied
and F1 = F0, hence also R1 = R0. Then equation (4.3) has a non-trivial solution
x = uv, where u = C(1)(λg1) ∈ kerD2, v is an eigenvector of R2 corresponding to
the eigenvalue −λ2. This solution satisfies the homogeneous initial conditions

(4.7) F0x = 0, F0Dx = 0, F2x = 0.

Hence the problem (4.3),(4.7) is ill-posed.

Theorem 4.3. Suppose that X ∈ L(D1)∩L(D2), Condition [C]2 is satisfied

with respect to the multifunction Ω
(2)
1 induced by D2, (L

(2)
1 , E

(2)
1 ) ∈ G[Ω

(2)
1 ], S(2),

C(2) are sine and cosine mappings induced by E
(2)
1 , F0, F1, F2 are almost averaging

initial operators corresponding to R0, R1 ∈ RD1
, R2 ∈ RD2

, respectively, g2 =

R2e, there exist a λ such that iλ ∈ vCR2, −λ2g2 ∈ dom (Ω
(2)
1 )−1, z0, z1 ∈ kerD1,

z2 ∈ ker D2 ∩ I(X) and

(4.8) u = z0S
(2)(λg2) + z1C

(2)(λg2) ∈ I(X).

If v = z2E
(2)
1 (−λ2g2) ∈ ker D1 then x = uv ∈ I(X) is a non-trivial solution of

Equation (4.3).

Proof. By the Leibniz condition, v = z2E
(2)
1 (−λ2g2) ∈ I(X). Then

(D2 + λ2I)v = D2[z2E
(2)
1 (−λ2g2) + λ2v] =

= −λ2z2E
(2)
1 (−λg2)D2R2e + λ2v = −λ2v + λ2v = 0.

By Formulae (3.16), u ∈ ker(D2
2 + λ2I), in a similar manner, as in the proof of

Corollary 4.1, we get

(D1 − D2
2)x = (D1 − D2

2)(uv) = uD2v − vD2
1u = u(−λ2v) − u(−λ2v) = 0.

�

Theorem 4.4. Suppose that X ∈ L(D1)∩L(D2), Condition [C]2 is satisfied

with respect to the multifunctions Ω
(i)
1 induced by Di, (L

(i)
1 , E

(i)
1 ) ∈ G[Ω

(i)
1 ], S(i)

are sine mappings induced by E
(i)
1 (i = 1, 2), F0, F1, F2, F3 are almost averaging

initial operators corresponding to R0, R1 ∈ RD1
, R2, R3 ∈ RD2

, respectively, g1 =

R0e, g2 = R2e, there exist a λ such that iλ ∈ vCR0 ∩ vCR2, iλgi ∈ dom (Ω
(i)
1 )−1,

S(i)(λgi) ∈ ker Dj (j 6= i; i, j = 1, 2) and F1S
(1)(λg1) = 0, F3S

(2)S(λg2) = 0.
Then the equation

(4.9) (D2
1 − D2

2)x = 0
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has a non-trivial solution x = uv, where u = S(1)(λg1) ∈ ker D2, v = S(2)(λg2) ∈
ker D1. This solution satisfies the homogeneous boundary conditions

(4.10) F0x = 0, F1x = 0, F2x = 0, F3x = 0.

Hence the problem (4.9)-(4.10) is ill-posed.

Proof. Let x = uv. By definition, D2
1u = −λ2u, D2

2v = −λ2v. Hence, in a
similar way, as in the proof of Corollary 4.1, we find

(D2
1 − D2

2)x = (D1
2 − D2

2)(uv) = vD2
1u − uD2

2v = −λ2uv + λ2uv = 0.

By our assumptions, F1u = 0, F3v = 0 and u ∈ ker D2, v ∈ ker D1. Since F1

and F3 are almost averaging, we get F1x = F1(uv) = vF1u = 0, F3x = F3(uv) =
uF3v = 0. As in the proof of Theorem 4.1, we find F0x = F0(uv) = vF0u =
vF0S

(1)(λg1) = 0. Similarly, F2x = F2(uv) = uF2v = F2S
(2)(λg2) = 0. �

Theorem 4.5. Suppose that X ∈ L(D1)∩L(D2), Condition [C]2 is satisfied

with respect to the multifunction Ω
(1)
1 induced by D1, (L

(1)
1 , E

(1)
1 ) ∈ G[Ω

(1)
1 ],

S(1) is a sine mapping induced by E
(1)
1 , F0, F1, F2, F3 are almost averaging initial

operators corresponding to R0, R1 ∈ RD1
, R2, R3 ∈ RD2

, respectively, g1 = R0e,

there exist a λ such that iλ ∈ vCR0, iλg1 ∈ dom (Ω
(1)
1 )−1, u = S(1)(λg1) ∈

ker D2, F1S
(1)(λg1) = 0 and 0 6= v ∈ ker D1 is an eigenvector of the operator

R2R3 corresponding to the eigenvalue −λ2. Then Equation (4.9) has a non-trivial
solution x = uv which satisfies the homogeneous mixed boundary conditions

(4.11) F0x = 0, F1x = 0, F2x = 0, F3D2x = 0.

Hence the problem (4.9),(4.11) is ill-posed.

Proof. Following the proofs of Theorems 4.1 and 4.2, we prove that x = uv
and F0x = F1x = 0. By our assumptions, D2u = 0, F2R2 = 0, F3R3 = 0,
v = −λ2R2R3, hence D2v = −λ2R3v. Since F2 and F3 are almost averaging, we
get

F2x = F2(uv) = uF2v = −λ2uF2R2R3v = 0,

F3D2x = F3D2(uv) = F3(uD2v + vD2u) =

= F3(uD2v) = uF3D2v = −λ2uF3R3v = 0.

�

Corollary 4.5. Suppose that all assumptions of Theorem 4.5 are satisfied and
F3 = F2, hence R3 = R2. Then Equation (4.9) has a non-trivial solution x = uv,
where 0 6= v ∈ kerD1 is an eigenvector of the operator R2

2 corresponding to the
eigenvalue −λ2. This solution satisfies the homogeneous boundary conditions

(4.12) F0x = 0, F1x = 0

18



and the homogeneous initial conditions

(4.13) F2x = 0, F2D2x = 0.

Hence the problem (4.9), (4.12), (4.13) is ill-posed.

We should point out that we do not assume any right inverse under consider-
ation to be a Volterra operator.

Under appropriate assumptions the Sylvester inertia law holds in algebras
with logarithms (cf. PR[9]). We therefore can say that Equation (4.3) is parabolic-
like and Equation (4.9) is hyperbolic-like whenever X is an algebra with loga-
rithms. Indeed, these equations have forms (D2 − D2

1)x = 0, (D2
2 − D1

2)x = 0 of
the classical canonic parabolic and hyperbolic equations, respectively (cf. Po[1]).

Clearly, a linear combination of solutions x
λn

of any problem considered above
corresponding to the eigenvalues λn, is again a solution of that problem. Even
more. Consider Equation (4.3). If we are given λj ∈ vCR2 such that λj 6= λk for
j 6= k (j, k = 1, ..., n; n ∈ N) then the corresponding eigenvectors vλj

(j = 1, ..., n)
are linearly independent and a linear combination

x =
n∑

j=1

αjxλj
=

n∑

j=1

αjuλj
vλj

,

where αj ∈ C, xλ = uλj
vλj

, uλj
∈ ker (D2

1 + λ2
j ) (j = 1, ..., n), is again a solution

of Equation (4.3). A similar conclusion can be obtained for Equation (4.9).

Through this paper we have assumed several times that F1u = 0, where u
was a sine element. However, under appropriate assumptions (X is a complete
linear space over C, D is closed) in a complex extension of X , exponentials, sine
and cosine elements are 2πe-periodic:

E[i(x + 2πe)] = E(ix), C(x + 2πe) = Cx, S(x + 2πe) = Sx,

whenever these elements are well-defined (cf. PR[3], Chapter 9). If it is the case,
we conclude that

F1u = F1S(λg) = F1S(λg + 2πe) = F1S(λg) = S(0) = 0,

whenever g = Re, R ∈ RD, λ ∈ vCR.
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M[1] On some right invertible operators in differential spaces. Demonstratio
Math., 4, 37(2004), 905-920.

M[2] On divided difference operators in function algebras. Demonstratio Math.,
2, 41(2008), 273-289.

W. Pogorzelski

[Po] Integral Equations and Their Applications. 1-st Polish ed. Vol. I - 1953, Vol.
II - 1958, Vol. III - 1960; PWN-Polish Scientific Publishers, Warszawa; English ed.
Pergamon Press and PWN-Polish Scientific Publishers, Oxford-Warszawa, 1966.

D. Przeworska-Rolewicz

PR[1] Remarks on boundary value problems and Fourier method for right invert-
ible operators. Math. Nachrichten, 72(1976), 109-117.

PR[2] Algebraic Analysis. D. Reidel and PWN-Polish Scientific Publishers,
Dordrecht-Warszawa, 1988.

PR[3] Logarithms and Antilogarithms. An Algebraic Analysis Approach. With
Appendix by Z. Binderman. Kluwer Academic Publishers, Dordrecht, 1998.

PR[4] Linear combinations of right invertible operators in commutative algebras
with logarithms. Demonstratio Math., 4, 31(1998), 887-898.

PR[5] Postmodern Logarithmo-technia. Computers and Mathematics with Ap-
plications, 41(2001), 1143-1154.

PR[6] Non-Leibniz algebras with logarithms do not have the trigonometric iden-
tity. In: Algebraic Analysis and Related Topics. Proc. Intern. Conf. Warszawa,
September 21-25, 1999. Banach Center Publications, 53. Inst. of Math., Polish
Acad. of Sci., Warszawa, 2000, 177-189.

PR[7] Algebraic Analysis in structures with Kaplansky-Jacobson property. Studia
Math., 168(2)(2005), 165-186.

PR[8] Some summations formulae in commutative Leibniz algebras with loga-
rithms. Control and Cybernetics, 3, 36(2007), 841 - 857.

PR[9] Sylvester inertia law in commutative Leibniz algebras with logarithms.
Demonstratio Math., 40(2007), 659 - 669.

20



PR[10] Nonlinear separable equations in linear spaces and commutative Leibniz
agebras. Preprint 691, Institute of Mathematics, Polish Academy of Sciences,
Warszawa, September 2008. http//www,impan.pl/Preprints/p691.

G. G. Virsik

V[1] Right inverses of vector fields. J. Austral. Math. Soc. (Series A), 58(1995),
411-420.

Institute of Mathematics, Polish Academy of Sciences
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ABSTRACT

FOURIER-LIKE METHODS FOR EQUATIONS WITH SEPARABLE VARI-

ABLES

D. Przeworska-Rolewicz (Warszawa)

It is well known that a power of a right invertible operators is again right
invertible, as well as a polynomial in a right invertible operator under appropriate
assumptions. However, a linear combination of right invertible operators (in par-
ticular, their sum and/or difference) in general is not right invertible. It will be
shown how to solve equations with linear combinations of right invertible opera-
tors in commutative algebras using properties of logarithmic and antilogarithmic
mappings. The used method is, in a sense, a kind of the variables separation
method. We shall obtain also an analogue of the classical Fourier method for
partial differential equations.

Key words: algebraic analysis, commutative algebra with unit, Leibniz condi-
tion, logarithmic mapping, antilogarithmic mapping, right invertible operator, sine
mapping, cosine mapping, initial value problem, boundary value problem, Fourier
method
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