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FOURIER-LIKE METHODS FOR EQUATIONS
WITH SEPARABLE VARIABLES

D. Przeworska-Rolewicz (Warszawa)

It is well known that a power of a right invertible operators is again right
invertible, as well as a polynomial in a right invertible operator under appropriate
assumptions. However, a linear combination of right invertible operators (in par-
ticular, their sum and/or difference) in general is not right invertible. It will be
shown how to solve equations with linear combinations of right invertible operators
in commutative algebras using properties of logarithmic and antilogarithmic map-
pings. The used method is, in a sense, a kind of the variables separation method.
We shall obtain also an analogue of the classical Fourier method for partial dif-
ferential equations. Note that results concerning the Fourier method are proved
under weaker assumptions than these obtained in PR[1] (cf. also PR[2], PR3],
PRI6]).

1. Preliminaries. Basic notions of Algebraic Analysis

We recall here the following notions and theorems (without proofs; cf. PR[2],
PRI[3]). Denote by N, Ny, R, C, Z, Q the sets of positive integers, nonnegative
integers, reals, complexes, integers and rational numbers, respectively, and by F
any field of scalars. If F is a field of numbers then by F[t] is denoted the set of all
polynomials in ¢ with coefficients in F.

Let X be a linear space (in general, without any topology) over a field F of
scalars of the characteristic zero.

e L(X) is the set of all linear operators with domains and ranges in X;
e dom A is the domain of an A € L(X);

o ker A = {x € dom A: Az = 0} is the kernel of an A € L(X);

o L)(X)={Aec L(X):dom A=X};

e /(X) is the set of all invertible elements in X.

Key words: algebraic analysis, commutative algebra with unit, Leibniz condi-
tion, logarithmic mapping, antilogarithmic mapping, right invertible operator, sine
mapping, cosine mapping, initial value problem, boundary value problem, Fourier
method
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An operator D € L(X) is said to be right invertible if there is an operator
R € Lo(X) such that RX C dom D and DR = I, where I denotes the identity
operator. The operator R is called a right inverse of D. By R(X) we denote the
set of all right invertible operators in L(X). Let D € R(X). Let Rp C Lo(X)
be the set of all right inverses for D, i.e. DR = I whenever R € Rp. We have
dom D = RX & ker D, independently of the choice of an R € Rp. Elements of
ker D are said to be constants, since by definition, Dz = 0 if and only if z € ker D.
The kernel of D is said to be the space of constants. We should point out that, in
general, constants are different than scalars, since they are elements of the space
X. If two right inverses commute each with another, then they are equal.

Clearly, if ker D # {0} then the operator D is right invertible, but not in-
vertible. Here the invertibility of an operator A € L(X) means that the equation
Az = y has a unique solution for every y € X. An element y € dom D is said
to be a primitive for an x € X if y = Rz for an R € Rp. Indeed, by definition,
x = DRx = Dy. Again, by definition, all x € X have primitives. Let

Fp={F € Ly(X): F?=F;FX =ker D and 3ger, FR = 0}.

Any F € Fp is said to be an initial operator for D corresponding to R. One can
prove that any projection F’ onto ker D is an initial operator for D corresponding
to a right inverse R' = R — F’R independently of the choice of an R € Rp.

If two initial operators commute each with another, then they are equal. Thus
this theory is essentially noncommutative. An operator F is initial for D if and
only if there is an R € Rp such that

(1.1) F=I1—-RD ondom D.

It is enough to know one right inverse in order to determine all right inverses and
all initial operators. Note that a superposition of a finite number of right invertible
operators is again a right invertible operator.

The equation Dz =y (y € X) has the general solution x = Ry + z, where
R € Rp is arbitrarily fixed and z € ker D is arbitrary. However, if we put an
initial condition: Fx = xo, where F' € Fp and x( € ker D, then this equation has
a unique solution z = Rx + xg.

If T € L(X) belongs to the set A(X) of all left invertible operators, then
ker T = {0}. If D is invertible, i.e. D € Z(X) = R(X) N A(X), then Fp = {0}
and Rp = {D71}.

If P(t) € F[t] then all solutions of the equation P(D)x =y, y € X, can be
obtained by a decomposition of the rational function 1/P(t) into vulgar fractions.

Write
vpA={N€F\{0}:1—A\Aisinvertible} for A€ L(X)
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Clearly, A € vpA and only if 1/ is a regular value of A. Let V(X) be the set of
all Volterra operators, i.e.

V(X)={A4 € Lo(X): A— Al is invertible for all N € F\ {0}}.

Then A € V(X) if and only if g A = F \ {0}.

If X is an algebra over F with a D € L(X) such that =,y € dom D implies
xy,yr € dom D, then we say that X is a D-algebra and we write D € A(X). The
set of all commutative algebras belonging to A(X) will be denoted by A(X). Let
D e A(X) and

(1.2) fo(z,y) = D(zy) — cplzDy + (Dz)y] for z,y € dom D,

where cp is a scalar dependent on D only. Clearly, fp is a bilinear (i.e. linear
in each variable) form which is symmetric when X is commutative, i.e. when
D € A(X). This form is called a non-Leibniz component (cf. PR[2]). If D € A(X)
then the product rule in X can be written as follows:

D(zy) = cplzDy + (Dz)yl + fp(x,y) for w,y € dom D.
If D € A(X) and if D satisfies the Leibniz condition:
(1.3) D(zy) = Dy + (Dx)y for z,y € dom D,

then X is said to be a Leibniz algebra. It means that in Leibniz algebras cp = 1 and
fp = 0. The Leibniz condition implies that zy € dom D whenever z,y € dom D,
i.e. Leibniz algebras are D-algebras. If X is a Leibniz algebra with unit e then
e € ker D, i.e. D is not left invertible. The set of commutative Leibniz D-algebras
X with a D € R(X) and with unit e € dom D is denoted by L(D). Clearly, if
X € L(D) then e € ker D.

Non-Leibniz components for powers of D € A(X) are determined by recur-
rence formulae (cf. PR[2], PR][3]).

Suppose that D € A(X) and A # 0 is an arbitrarily fixed scalar. Then
AD e A(X) and caxp = Cp, f)\D = )\fD

If Dy, Dy € A(X), the superposition D = D; Dy exists and D1Ds € A(X),
then

(1.4) ¢p,p, =C¢p,cp, and for x,y € dom D =dom D; N Dy

fp.p.(x,y) = fp,(x,y) + D1fp,(2,y) + +cp, cp, [(D12) Doy + (D2x) D1y).

For higher powers of D in Leibniz algebras, by an easy induction from Formulae
(1.4) and the Leibniz condition, we obtain the Leibniz formula:

(1.5) D" (xy) = kZ:O (Z) (D*z)D" %y for x,y € dom D" (n € N).
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Let X € A(X). Denote by the set M (X) of all multiplicative mappings (not
necessarily linear) with domains and ranges in X:

M(X)={A: A(zxy) = (Ax)(Ay) whenever z,y € dom A C X}.

Suppose that X € A(X) and D € R(X). An initial operator F' for D is said
to be almost averaging if F'(zx) = zFx whenever z € ker D, x € X. Clearly, every
multiplicative operator F' € Fp is almost averaging for F(zz) = (Fz)(Fz) = zFx
if z € ker D, x € X, but not conversely (cf.PR[2]).

Suppose that D € A(X). Let a multifunction Q : dom D — 2dom D he
defined as follows:
(1.1) Qu={z €dom D: Du=uDz} forué&dom D.
The equation
(1.2) Du=uDx for (u,z) € graph Q
is said to be the basic equation. Clearly,

Q 'z ={ucdom D:Du=uDx} forzc domD.

The multifunction  is well-defined and dom €2 D ker D \ {0}.

Suppose that (u,x) € graph €, L is a selector of 2 and FE is a selector of
Q. By definitions, Lu € dom Q= !, Ex € dom € and the following equations are
satisfied:

Du = uDLu, DEz = (Ex)Dx.

Any invertible selector L of €2 is said to be a logarithmic mapping and its
inverse E = L~ is said to be a antilogarithmic mapping. By G|[Q2] we denote the
set of all pairs (L, ), where L is an invertible selector of Q and E = L~!. For any
(u,z) € dom 2 and (L, F) € G[Q] elements Lu, Fx are said to be logarithm of
u and antilogarithm of x, respectively. The multifunction €2 is examined in PR3]
and following papers (also for noncommutative algebras).

Clearly, by definition, for all (L, F) € G[Q], (u,x) € graph £ we have

(1.6) ELu=wu, LEx=wx; DFEx=(Ex)Dzx, Du=uDLu.

A logarithm of zero is not defined. If (L, F) € G[Q] then L(ker D \ {0}) C ker D,
E(ker D) C ker D. In particular, £(0) € ker D.

If D € R(X) then logarithms and antilogarithms are uniquely determined up
to a constant. Moreover, if F' € Fp then FE = EF, FL = LF (cf. PR[10]).
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Let D € A(X) and let (L, F) € G[Q}]. A logarithmic mapping L is said to
be of the exponential type if L(uv) = Lu + Lv for u,v € dom Q. If L is of the
exponential type then E(z +y) = (Ez)(Fy) for 7,y € dom Q7. We have proved
that a logarithmic mapping L is of the exponential type if and only if X is a Leibniz
commutative algebra (cf. PR[3]). Moreover, Le = 0, i.e. E(0) = e. In Leibniz
commutative algebras with D € R(X) a necessary and sufficient conditions for
u € dom € is that u € I(X) (cf. PR[3]).

By Lg(D) we denote the class of these commutative algebras with D € R(X)
and with unit e € dom 2 for which there exist invertible selectors of €2, i.e. there
exist (L, E) € G[€?]. By L(D) we denote the class of these commutative Leibniz
algebras with unit e € dom (2 for which there exist invertible selectors of 2. By
these definitions, X € Lg(D) is a Leibniz algebra if and only if X € L(D) and
D € R(X). This class we shall denote by L(D). It means that L(D) is the class of
these commutative Leibniz algebras with D € R(X) and with unit e € dom € for
which there exist invertible selectors of €2, i.e. there exist (L, E) € G[Q].

In the same manner we define logarithmic and antilogarithmic mappings of
higher order. Namely, let n € N be arbitrarily fixed. Suppose that D € A(X).
Let a multifunction €, : dom D" — 2dom D" ¢ defined as follows:

(1.7) Quu = {x € dom D" : D"u =uD"z} for u € dom D".

Any invertible selector L,, of §2,, is said to be a logarithmic mapping of the order
n and its inverse E,, = L, ! is said to be a antilogarithmic mapping of the order n.
By G[Q,,] we denote the set of all pairs (L, E,,), where L,, is an invertible selector
of Q, and E, = L. For any (u,z) € dom Q, and (L,, E,) € G[Q,] elements
L,u, E,x are said to be logarithm of the order n of u and antilogarithm of the
order n of z, respectively. The multifunctions {2,, and relations between them are
examined in PR[3]. Clearly, if X € Lg(D) then X € Lg(D") for all n € N.

If ker D = {0} then either X is not a Leibniz algebra or X has no unit (cf.
PR[3]). Thus, by our definition, if X € L(D) then ker D # {0}, i.e. the operator
D is right invertible but not invertible.

2. Linear combinations of right invertible operators.

We begin with
Proposition 2.1. Suppose that n,rq,...,7, € N,

(2.1) X € ﬁ L(D;),

(22> D = Z ajD;j’ Qa; cX (j = 17 '“7n)7 dom D = m dom D;J 7é @,
Jj=1 j=1

5



(L), BY) € GIOY)), where Q) is induced by D} (j = 1,...,n),

(2.3) x = H ug, whereuy €kerDyNI(X) (k=1,..,n),
k=1
Then
(2.4) Dx = ax, wherea= Z ajaj,
j=1
(2.5) a; = D;jL&j)ﬂj and uj; = H ue (j=1,...,n),
k=1, k#j

ie. ﬂj, ujﬂj = c I(X) (_] = 1, ,n)

Proof. Since by our assumptions, the operators Dy,...,D,, satisfy the Leibniz
condition and Diuy = ... Dyu, = 0, from the Leibniz Formula (1.5) we get

m - m m—Il~ m-~
.12 = D H Z ( I )(D;UJ)(D] luj) = Uij Uj
k=1 =0

for j =1,...,n. Thus

n n
Dz = (Z a;D}7) Huk =
j=1 k=1
n n
= Z ozjujD;j H up =
7j=1 k=1, k#j
n n n n
= ([T w) > osC II w07 II w)=
k=1 j=1 k=1, k#j k=1, k#j
n n

Proposition 2.2. Suppose that all assumptions of Proposition 2.1 are sat-
isfied. Then there are R; € Rp, such that R;jaj € dom (Q,(ﬂ]j))*1 (j=1,..n)
and

(2.6) iy =EY(R7a;)  (j=1,...,n).



Proof. By our assumptions, a; = D;jL%)ﬂj for j = 1,...,n. Hence there
are R; € Rp, such that L%)ﬂj = R;jaj (cf. PR[3]), ie. u; = E,EZ)L,(%)@ =
EY (R} a). n

Proposition 2.3. Suppose that all assumptions of Proposition 2.1 are sat-

isfied and vy = ... = r, = 1. Then the operator D defined by (2.2) satisfies the
Leibniz condition.

Proof. Let z,y € dom D. Clearly, x,y € dom D whenever z,y €
-, dom Dj. Since D,...,D,, satisfy the Leibniz condition, we get

n

D(zy) = Z a;Dj(zy) = Z a;j(xDjy+yD,z) =
j=1 j=1

n n
= xz ajDjy + yz ajDjx = xDy + yDx.
j=1 j=1

Proposition 2.4. Suppose that all assumptions of Proposition 2.1 are satis-
fied. Let

(2.7) Up ={]] ur:ur €kerDLNI(X) (k=1,...,n)} (n€N).
k=1

Then selectors L of the multifunction ) induced by D satisfy the equality DLx = a
for x € U,.

Proof. By Equation (2.4), we have Dz = ax, where z € I(X). Thus, by
definition, DLx = x~'Dx = a for any selector L of (. |

This, and Proposition 2.3 together imply

Corollary 2.1. Suppose that all assumptions of Proposition 2.1 are satisfied.
Ifry=..=r,=1and U, € Lg(D) then U,, € L(D).

Proposition 2.5. Suppose that all assumptions of Proposition 2.1 are sat-

isfied and a = 0. Then there are R; € Rp, such that R;jaj € dom (Q%))*1
(j=1,...,n) and

(2.8) x = %z”: uju; = %z”: quﬁg)(R;jaj) € ker D,
j=1 j=1
where u; € ker D; NI(X) (7 =1,...,n).
Proof. By our assumptions and Proposition 2.1, Dz = ax = 0 and x = u;u;
(j =1,..,n). Hence x = %z”: uju;. This, and Proposition 2.2 together imply

j=1
(2.8). ]



Proposition 2.6. Suppose that all assumptions of Proposition 2.1 are satis-
fied and a € I(X). Then the equation

(2.9) Dx=y, yeX

has a solution

n

(2.10) z=y(Y ;D LYu;) "

j=1
Proof. By our assumptions, ax = Dz = y. Since a € I(X), we get x = a~'y.
Propositions 2.1 and 2.2 together imply that

n

r=aly=y(Y aja;) =y(} Dy L)
j=1

j=1
[
Corollary 2.2. Suppose that all assumptions of Proposition 2.1 are satisfied,
ry=..=r, =1and a € I(X). Then the equation (2.9) has a solution
(2.11) e=y(Y aD; Y LPw)
j=1 k=1, k#j

Proof. Proposition 2.6 and the Leibniz condition together imply that

n

L= y(Z O‘ijng) H ukz)_l = y(Z a;D; Z ng)uk)_l.
j=1 k=1, k#j j=1 k=1, k#j

Some more generalized approaches to problems with linear combinations of
right invertible operators of order one have on vectors fields and magnifolds have
been given by VIRSIK V[1] and MULTARZYNSKI M[1], M[2].

3. Trigonometric elements and mappings.
We shall show now an approach to the trigonometric identity in Leibniz D-

algebras with unit e (but not necessarily with logarithms). Clearly, without addi-
tional assumptions we cannot expect too much.

Proposition 3.1. Suppose that X € L(D), z € dom D? and z, Dz are not
zero divisors. If 22 + (Dx)? = e then

(3.1) ax + BDx € ker (D?* 4+ 1) whenever a, 3 € F.
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Proof. Let y = —Dz. Then Dy = —D?z and

0 = De = D[z* + (Dx)?] = 22Dz + 2(Dx)D*x = 2(Dz)(x + D*z) = 2y(z — Dy).

Since y = —Dx is not a zero divisor, we have x — 2y = 0. Hence Dy =
and y = —Dz = —D?y, which implies y € ker (D? + I). On the other hand,
r = Dy = —D?z, which implies = € ker (D? + I). |

Proposition 3.2. Suppose that all assumptions of Proposition 3.1 are satis-
fied. If Condition (3.1) hold for x and Dz and u = x* + (Dx)? then u € ker D.

Proof. Let u = 2% 4+ (Dx)?. Then Du = 2xDxz + 2(Dx)D?*x = 2(Dz)(x +
Dzx) = 2(Dx)(D? + I)z = 0, which implies u € ker D. |

Corollary 3.1. Suppose that all assumptions of Proposition 3.1 are satisfied,
Condition (3.1) holds for x and Dx, F € Fp N M(X), Fx = e, FDx = 0 and
u = 2%+ (D). Then u = e, i.e. x°> + (Dz) = e.

Proof. Since F' is a multiplicative initial operator and Fx = e, FDxz = 0, we
find u = F[2? + (Dx)?] = (Fx)? + (FDx)? =e> + 0 =e. |

Proposition 3.3. Suppose that all assumptions of Proposition 3.1 and Con-
dition (3.1) are satisfied, F € Fp N M(X) and Fx = e. Then FDz = 0.

Proof. By our assumptions, e = Fe = F[z? + (Dx)?| = (Fz)? + (FDx)? =
e + (FDz)?, which implies (FDz)? = 0. Hence FDx = 0. |

Proposition 3.4. Suppose that all assumptions of Proposition 3.1 are satis-
fied. If x4 € ker (D +4il) and x = L (24 +2_), y = 5 (x4 — z_), then

(i) z,y € ker (D? +1I), Dz = —y, Dy =z and 1(z £ y) € ker (D* Fil);

(i) 2> + y* = z42_ € ker D.

Proof. Points (i) is proved by checking. In order to prove (ii), observe that,
by the Leibniz condition and our assumptions,

D(zyx_ )=z, Dxr_+x_Dzx,y =iz x_ —ixsx_ =0.

Observe that x4 are eigenvectors of the operator D corresponding to the
eigenvalues i, respectively.

Here and in the sequel we assume that [ is an algebraically closed field of
scalars. For instance, F = C. The following results are slightly stronger (with
some proofs slightly simpler than in PR[2]):

Definition 3.1. Let X be a linear space over F. If A € [ is an eigenvalue of
an operator D € R(X) then every eigenvector z corresponding to A is said to be
an exponential element (shortly: an exponential). 0J
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This means that x is an exponential if and only if ) # 0 and z € ker(D —
).

Proposition 3.5. Let X be a linear space (over F). Suppose that D € R(X).
If0 # z) € ker(I — AR) for an R € Rp and a A € F then x) € ker(D — \I), i.e.
T IS an exponential.

Proof. By our assumption, (D — A )z = (D — ADR)xzx = D(I — AR)z) =
0. |

By an easy induction we prove

Proposition 3.6. Suppose that X is a linear space (over F), D € R(X) and
{A\} C F is a sequence of eigenvalues such that \; # \; for i # j. Then for an
arbitrary n € N the exponentials zy, ,...,x, are linearly independent.

Proposition 3.7 Suppose that X is a linear space (over F), D € R(X), F'is
an initial operator for D corresponding to an R € Rp and x) is an exponential.
Then x), is an eigenvector for R corresponding to the eigenvalue 1/\ if and only if
Fxy =0, ie. if R is not a Volterra operator.

Proof. Sufficiency. Since Dz = Ax) and Fx) =0, we get z) = x\ — Fx) =
(I — F)xx = RDx) = ARx). Hence x) € ker(I — AR). Since x) # 0, we conclude
that x is an eigenvector for R corresponding to 1/A.

Necessity. Suppose that 1/ is an eigenvalue of R and the corresponding
eigenvector x is an exponential. Then Fzy = (I — RD)zy = (I — AR)z) =
—AR—3I)zy =0. n

Theorem 3.1. Suppose that X is a linear space (over F), D € R(X), ker D #
{0}, R € Rp and A € vgpR. Then

(i) X is an eigenvalue of D and the corresponding exponential is
(3.2) zy = ex(z), where ey = (I —AR)™', z € ker D;

whenever ey = (I — AR)~! exists, is said to be an exponential operator;
(ii) the dimension of the eigenspace X, corresponding to the eigenvalue \ is
equal to dimension of the space of constants, i.e. dim X = dim ker D # 0;

(iii) if A # 0 then there exist non-trivial exponentials: ex(z) # 0.

(iv) exponentials are uniquely determined by their initial values, i.e. if F is
an initial operator for D corresponding to R then Flex(z)] = z;

(v) if R is a Volterra operator then every A € F is an eigenvalue of D, i.e. for
every \ € [F there exist exponentials.

Proof. (i) By definition, (I — AR)ex(z) = (I — AR)(I — AR)™'z = z, where
z € ker D. Thus e)(z) = z+ ARex(z), which implies Dey(z) = Dz + ADRex(z) =
ey (2).
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(ii) Since by our assumptions, the operator ey = I — AR is invertible, dim X
= dim {ex(2) : z € ker D} = dim {(/ — AR) "1z : ker D} = dim ker D # 0.

(iii) If A # 0 and ex(2) = (I — AR)"'2 = 0 then z = (I — AR)ex(z) = 0, This
contradicts our assumption that ker D # {0}.

(iv) By definitions and (i), we have Fex(z) = (I—RD)ex(z) = (I-AR)ex(z) =

(v) If R € V(X) then vpR = F {0}. Clearly, for A\ = 0 the operator I — AR is
also invertible. Hence, by (i), every scalar A is an eigenvalue of D. |

Definition 3.2. Let F = C. Suppose that X is a linear space (over C,
D e R(X),ker D # {0} and R € Rp NV (X). Then the operators

1 1
(3.3) cy = §(€>\i + €_>\i), Sy = Z(BM — 6_)\1) ()\ S R)

are said to be cosine and sine operators, respectively (or: trigonometric operators).
Elements cy(2), sx(z), where z € ker D, are said to be cosine and sine elements,
respectively (or: trigonometric elements). 0

Theorem 3.2. Suppose that all assumptions of Definition 3.2. are satisfied.
Then

(3.4) cx= T +NR)H™ syx=ARI+XNR)' (AeR)
(35) Dcy = —Xsy, Dsy = Acy ()\ S R)

(3.6) co(z) =2, s0(2) =0, Fsx(z)=0 forzekerD, XeR.

Moreover, whenever z € ker D, A\ € R, the element c)(z) is even with respect to A
and the element sy is odd with respect to \.

Proof. By the first Formula of (3.4), for A € R we get

[(I-XNiR) '+ (I+XiR) ] = %(I—)\z‘R)_l(I+)\iR)_1(I+)\z'R+I—)\iR) =

N —

C)\ =

1
=5+ NRYH 72T = (I+ N2R*)7.

A similar proof for s). By definitions, if A € R, then

1
Decy = §D(€M + 6_)\1) =

1 1 A
= §(Ai€,\i + )\2.67,\1') = 5)\i(6,\i + G,Ai) = _Z(e/\i + G,Ai) = —)\8)\.
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Since DR = I, we have Dsy = ADR(I + \2R?)™! = \(I + \>R?)~! = Xc,.

Let z € ker D. Let A = 0. Then ¢y(z) = 2, so(2) = 0. Since FR = 0, for
every A € R we have Fsy(z) = A\FR(I + \2R?)~! = 0. Let 2z € ker D. Then

c-a(2) = [T+ (AR 7'(2) = (I + MR*) ™'z = ea(2);

s_a(2) = “AR[L + (-A)R?)7](2) = ~AR(I + X°R*) ™'z = —5,(2).

Consider now trigonometric elements in algebras. It is easy to verify

Proposition 3.6. Suppose that D € A(X)N R(X), ker D # {0} and R €
Rp NV (X). Then

(3.6) [ex(2)]? + [sa(2)]* = exi(2)e—xi(2) for all z € ker D, A € R,

(3.7)  Dlexi(2)e—xi(2)] = cpz+ fplexi(2),e—xiz) for all z € ker D, X € R.

Corollary 3.2. Suppose that X is a Leibniz D-algebra ker D # {0} and
ReRpNV(X). Then

(3.8) Dlexi(z)e_xi(2)] =z forall z€ker D, X € R,
Proof. Since X is a Leibniz D-algebra, we have ¢cp = 1 and fp = 0. Hence
Formulae (3.6) and (3.7) implies (3.8). [
An immediate consequence of Corollary 3.2 is

Corollary 3.3. Suppose that X is a Leibniz D-algebra ker D # {0} and
R € Rp NV (X). Then the Trigonometric Identity holds, i.e.

(3.9) [ex(2)]? + [sa(2)]2 =2 forall z € ker D, X € R.

Proposition 3.7. (cf. PR[3]). Suppose that X € Lg(D), \g = Re €
dom Q71 for every R € Rp and X € vgpR. Then there are (L, E) € G[S] such that

E(M\g)=(I - R) 'z =exz €ker(D — XI) for all z € ker D.

Proof. Let R € Rp be fixed. Elements of the form v = eyz = (I —AR) 'z are
well-defined for all z € ker D and (D — A)u = D(I — AR)u = Dz = 0. Moreover,
Du = Au = ule = uNDRe = uD()\g), which implies that A\g € dom Q! and there
are (L, E) € G[Q] such that ey = u = E(\g). |
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Definition 3.3. (cf. PR[3]). Suppose that F = C, X € Lg(D) and E; =
dom Q71! is symmetric, i.e. —x € E; whenever x € E;. Let (L, E) € G[2]. Write

(310) Cz— %[E(ix) b E(—iz)], Sz= —[B(iz)— E(—iz)] for iz € Ey.
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The mappings C' and S are said to be cosine and sine mappings or trigonomet-
ric mappings. Elements C'z and Sx are said to be cosine and sine elements or
trigonometric elements. 0

Clearly, trigonometric mappings and elements have such properties as the
classical cosine and sine functions. Namely, we have (proofs can be found in

PRI[3]):

Proposition 3.8. (cf. PR[3]). Suppose that all assumptions of Definition
3.3 are satisfied. Let (L, E) € G[Q}]. Then trigonometric mappings C and S are
well-defined for all ix € E; and have the following properties:

(i) The de Moivre formulae hold:
E(iz) = Cx +iSz, E(—ix)=Cz—iSz for iz € E;.
In particular, if X is a commutative Leibniz algebra then

(3.11) (Cx +iSz)" = C(nx) +iS(nx) forix € E; and n € N;

(ii) C and S are even and odd functions of their argument, respectively, i.e.
C(—z) =Czx, S(—x) = =Sz for ix € E; and C(0) = z € ker D {0}, S(0) =0. In
particular, for all ix € Eq

(3.12) (Cz)? + (Sz)? = = [E(iz) E(—iz) + E(iz)E(iz)].

N =

(iii) The mappings C’, S’ defined as follows: C'x = C(z + z), S’z = S(x + 2)
for iz € Ey, z € ker D also satisfy assertions (i)-(ii).

(iv) For all iz € dom Q!

(3.13) (Cx)* + (Sx)* = E(iz)(E(—iz);

(3.14) DCzx = —(Sz)Dx, DSz = (Cx)Dx

Corollary 3.4. (cf. PR[3]). Suppose that all assumptions of Proposition 3.8
are satisfied and X is a Leibniz D-algebra with unit e. Then the Trigonometric
Identity holds, i.e.
(3.15) (Cx)* + (Sz)*> =e whenever iz € E;.

13



The following question arises: Do exist non-Leibniz algebras with the Trigono-
metric Identity (3.15) ? The answer to this question is negative, i.e. non-Leibniz
algebras with the Trigonometric Identity (3.15) do not exist (cf. PR[6]). In other
words: The Leibniz condition is necessary and sufficient for the Trigonometric
Identity to hold.

In order to apply trigonometric mappings, we shall make use of the following
condition:

[Cla  F =C, neN is arbitrarily fixed, X € Lg(D"), 1 = Q

and dom Q;l is symmetric, i.e. —x € dom (2,, whenever x € dom (2,,.
Suppose now that Condition [Clz holds and X € L(D). Suppose that A € C,

R € Rp, g = Re and \ig € dom Q. If (L1, Fq) € G[4] and (Lo, Es) € G[Qs]
then

(3.16) ker(D? + 1) = {z1 E(\ig) + 20 E(=\ig) : 21, 2 € ker D} =
242
5 ): 2, 2" € ker D}.

The assumption that Ai,—Ai € vcR ensures that \ig, —Aig € dom Qfl. In this
case, —\? € vcR2.

={20(\g) +2S(\g) : 2,z € ker D} = {(2"g + 2') Ea(

4. Fourier-like problems for right invertible operators.

We will apply properties of trigonomeric mappings and elements in order to
find non-trivial solutions of some homogeneous initial and boundary value prob-
lems for difference of two right invertible operators (of the first and second order).

Proposition 4.1. Let X € L(D;), ker D; # {0}, i=1,2, ker D1 N ker Dy
= Ce = {\e}rec. Suppose that © = uv, where u € ker Do, v € ker D;. Then

(4.1) (Dy — D3z = u(Dy + N21)v —v(D? + N2 I)v  for all A € C {0}.
Proof. By our assumptions, Dou = 0, Dyv = 0 and both operators Dy, Do
satisfy the Leibniz condition. This and Leibniz Formula (1.5) together imply that
(Dy — D)x = (D3 — D?)(uv) = Dy(uv) — D3 (uv) =

= uDyv + vDyu — uD3v — 2(Dyu)(D1v) — vDiu = uDov — vD3u =
= w(Dyv + N*v) — N2uv — vD1u = u(Dy + N2 1)v — v(D7 + N1 )u.

Proposition 4.1 immediately implies

14



Corollary 4.1. Let X € L(D;), ker D; # {0}, i = 1,2, ker D1 N ker Dy
= Ce = {Xe}rcc. Suppose that x = uv, where u € ker Dy, v € ker D;. Then
(Dy — D?)x = 0 if and only if u(Ds + A2I)v — v(D? + X2I)v = 0 for all A € C {0}.

Corollary 4.2. Let X € L(D;), ker D; # {0}, i = 1,2, ker D1 N ker Dy =
Ce = {\e}rec and z = uv, where u € ker Do, v € ker Dy. Then (Dy — D3)z = 0
if and only if u € I(ker Ds), v € I(ker D) and there is a A € C {0} such that

(4.2) u ' D?u = vDyv = —\e.

Proof. Equalities (4.2) hold if and only if (D? + A2I)u = 0, (D + A2I)v = 0.
This, and Corollary 4.1 together imply that (Dy—D?)x = 0 if and only if Equalities
(4.2) hold. |

Theorem 4.1. Suppose that X € L(D;), ker D; # {0}, i = 1,2,
ker D1 N ker Dy = Ce = {Ae}rcc and almost averaging Fy, Fy € Fp,, F» € Fp,
correspond to Ry, Ry € Rp,, R2 € Rp,, respectively. Suppose, moreover, that
x = uv, where u € I(ker Ds), v € I(ker D;) and there is are a \ € vc Ry such that
Equalities (4.2) hold and a u such that Fyu = 0. Then the homogeneous initial
value problem

(4.3) (Dy — D¥)z =0,

with the homogeneous boundary condition

(4.4) Fox =0, Fiz=0

and with the homogeneous initial condition

(4.5) Fyr=0

is ill posed, since it has a non-trivial solution x = uv, where v is an eigenvector of

R, corresponding to the eigenvalue -\2.

Proof. By Corollary 4.3, elements u, v are invertible by our assumption, hence
they are not zero divisors and x = wwv is a non-trivial solution of the equation
(Dy — D3)x = 0. Since X € vcRo, Equalities (4.2) implies that v € ker (Dy + A\21)
= ker Do(I + N2I)Ry, i.e. v =—A"2Ry, u € ker (D? + \2I). Since FoRy = 0, we
have Fyu = 0. Since u € ker Dy, v € ker D7 and initial operators Fy, Fy, F5 are
almost averaging, we find Fyz = Fy(uwv) = vFyu = 0, Fy(uv) = vFiu = 0, Fha =
Fy(uww) = uFyv = u(—=A—2)F3Rov = 0 (for FoRe = 0). |

Theorems 4.1 and 3.2 together imply

Corollary 4.3. Suppose that X € L(D;), ker D, # {0}, i = 1,2,
ker D1 N ker Dy = Ce = {Ae}rec and almost averaging Fy, Fy € Fp,, F» € Fp,
correspond to Ry, R1 € Rp,, R2 € Rp,, respectively. Suppose, moreover, that
xr = uv, where u € I(ker Ds), v € I(ker D;) and there are a A € vcRy such that
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Equalities (4.2) hold and a zy € ker Dy such that Fyu = Fysx(z9) = 0. Then the
initial value problem (4.3)-(4.5) is ill posed and its non-trivial solution is x = uv,
where u = sx(20), sx = ARo(N2I + R3), Fyu = 0 for a 29 € ker D;, v is an
eigenvector of Ry corresponding to the eigenvalue - \2.

Theorem 4.3. Suppose that X € L(D1)NL(D), Condition [C]|q is satisfied
with respect to the multifunction Q" induced by Dy, (L\V, EMY e q[oiV)],
SW) is a sine mapping induced by Efl), Fy, Fi1, F5 are almost averaging initial
operators corresponding to Ry, Ry € Rp,, R2 € Rp,, respectively, g1 = Roe,
there exist a \ such that i\ € vcRy, iAg; € dom (le))*l, SM(Ag1) € ker Dy
and F1SM(\g;) = 0. Then the initial value problem (4.3)-(4.5) is ill-posed and

its non-trivial solution is x = uv, where u = S (\g;) € ker Dy, v € ker Dy is an
eigenvector of Ry corresponding to the eigenvalue —)\2, i.e. 0 # v € ker(I +\?Ry).

Proof. Let x = uv. Then, by our assumptions, (Da+A21)v = Da(I+M2Ry)v =
0. Since both operators Dy and D satisfy the Leibniz condition and u € ker Ds,
we can apply Corollary 4.1 in a similar way, as before. Since Fy, F, Fs are almost

averaging and FOEgj)(j:i)\gl) = e (cf. PR[3]), we find

1
Fox = Fy(uv) = vFpu = UFOS(l)()\gl) = v;FO[E(l)(i)\gl) — E(l)(—z’)\gl)] =
i

1 1
= fv[FoE(l)(i)\gl) — FOE(l)(—z')\gl)] = fv(e —e)=0;
1 1

Fix = Fy(w) = vFiu= vFls(l)()\gl) =0;
Fox = Fy(uwv) = uFov = uFy (=N Ryv) = —N?uF;Rov = 0.
|
Theorem 4.4. Suppose that X € L(D1)NL(D3), Condition [C]|q is satistied
with respect to the multifunction le) induced by Dj, (Lgl),Efl)) € G[le)],
CW is a cosine mapping induced by Egl), Fy, 1, F5 are almost averaging initial

operators corresponding to Ry, Ry € Rp,, R2 € Rp,, respectively, g1 = Roe,

there exist a A such that i\ € vc Ry, iAg1 € dom (le))*l, C(l)()\gl) € ker D, and
FoCM(\g1) = 0. Then the initial value problem (4.3), (4.4),

(4.6) FlDJZ' =0

is ill-posed and its non-trivial solution is x = uv, where u = CV)(\gy) € ker Dy,
v is an eigenvector of Ry corresponding to the eigenvalue —)\?, ie. 0 # v €
ker(I + )\2R2).

Proof. Let x = wv. Then, by our assumptions, u € ker Dy, DCM(\gy) =
—ASW(Ag1). Thus, in a similar manner as in the proof of Theorem 4.1, we prove
that (Dy — D)z = 0, Foxr = 0, Fox = 0. Condition Fyz = 0 follows from the

16



fact that (as before) Fj is almost averaging, hence Fix = vFju = vFlC(l)()\gl) =
+oF; DSW(A) = 0. |

Corollary 4.5. Suppose that all assumptions of Theorem 4.2 are satisfied
and Fy = Fy, hence also Ry = Ry. Then equation (4.3) has a non-trivial solution
r = uv, where u = C(l)()\gl) € ker Do, v is an eigenvector of Ry corresponding to
the eigenvalue —\2. This solution satisfies the homogeneous initial conditions

(4.7) For =0, FyDr=0, Fyr=0.

Hence the problem (4.3),(4.7) is ill-posed.

Theorem 4.3. Suppose that X € L(D1)NL(D3), Condition [C]|q is satisfied
with respect to the multifunction Q§2) induced by Do, (L§2), E£2)) € G[Qf)], S,

C®) are sine and cosine mappings induced by Efz), Fy, Fy, F5 are almost averaging

initial operators corresponding to Ry, Ry € Rp,, R2 € Rp,, respectively, ga =

Rye, there exist a A such that i\ € vcRa, —\2gs € dom (Qgg))_l, 20,21 € ker D1,
29 € ker Do NI(X) and

(4.8) u =205 (\ga) + 210P (\gs) € I(X).

If v = 22E§2)(—)\2gg) € ker Dy then x = uv € I(X) is a non-trivial solution of
Equation (4.3).

Proof. By the Leibniz condition, v = 2, E\* (=A2gs) € I(X). Then
(D3 + A21)v = Dy[zEP (=X2g5) + A%] =

= A2 E®(=Aga) DaRge + A20 = =220 + A2 = 0.
By Formulae (3.16), u € ker(D3 4+ A\21), in a similar manner, as in the proof of
Corollary 4.1, we get
(Dy — D)z = (D1 — D3)(uv) = uDov — vD?u = u(—\?v) — u(—=\?v) = 0.

Theorem 4.4. Suppose that X € L(D1)NL(D5), Condition [C]|q is satisfied
with respect to the multifunctions Q\” induced by D;, (L{”, E\) € g[a{V], §@
are sine mappings induced by Efi) (i =1,2), Fy, F1, Fy, F3 are almost averaging
initial operators corresponding to Ry, R1 € Rp,, Re, Rs € Rp,, respectively, g1 =
Rpe, go = Roe, there exist a A such that i\ € vc Ry N vcRs, iAg; € dom (Qgi))*l,
SW(N\g;) € ker Dj (j # i; 4,7 = 1,2) and F1.SM(\gy) = 0, F35®)S(\g2) = 0.
Then the equation

(4.9) (D3 — D3z =0
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has a non-trivial solution & = uv, where u = S"(\g;) € ker Do, v = S (\gy) €
ker D1. This solution satisfies the homogeneous boundary conditions

(4.10) Foxr =0, Fx=0, Fyxr=0 F3x=0.

Hence the problem (4.9)-(4.10) is ill-posed.

Proof. Let x = uv. By definition, D3u = —\?u, D3v = —\?v. Hence, in a
similar way, as in the proof of Corollary 4.1, we find

(D} — D3)x = (Dy — D3)(uww) = vDiu — uD3v = —\?uv + \uv = 0.

By our assumptions, Fiu = 0, Fs3v = 0 and u € ker Do, v € ker Dy. Since F}
and F3 are almost averaging, we get Fix = Fy(ww) = vFiu = 0, Fsz = F3(uwv) =
uF3v = 0. As in the proof of Theorem 4.1, we find Fyx = Fy(uv) = vFyu =
vFySM (Agy) = 0. Similarly, Fox = Fy(uv) = ulhv = F5,53) (\gy) = 0. |

Theorem 4.5. Suppose that X € L(D1)NL(D2), Condition [C|z is satisfied
with respect to the multifunction le) induced by D, (Lgl),Efl)) € G[le)],
S is a sine mapping induced by Efl), Fy, F1, Fs, F5 are almost averaging initial
operators corresponding to Ry, Ry € Rp,, Ra, R3 € Rp,, respectively, g1 = Rye,
there exist a A such that i\ € vcRp, iAg1 € dom (le))_l, u = SM(\g) €
ker Do, FlS(l)()\gl) = 0 and 0 # v € ker D is an eigenvector of the operator

Ry R3 corresponding to the eigenvalue —\?. Then Equation (4.9) has a non-trivial
solution x = uv which satisfies the homogeneous mixed boundary conditions

(4.11) Fox = 0, Fla: = 0, FQJZ’ = 0, Fngx =0.

Hence the problem (4.9),(4.11) is ill-posed.

Proof. Following the proofs of Theorems 4.1 and 4.2, we prove that x = uv
and Fyx = Fix = 0. By our assumptions, Dou = 0, FhoRs = 0, F3R3 = 0,
v = —A2RyR3, hence Dyv = —A?>R3v. Since Fy and Fj are almost averaging, we
get
Fox = Fy(uwv) = uFyv = ~N2uFyRyRsv = 0,

Fngw = F3D2(UU) = Fg(uDQU —+ UDQU) =
= Fy(uDyv) = uF3Dov = =N uF3R3v = 0.
|

Corollary 4.5. Suppose that all assumptions of Theorem 4.5 are satisfied and
F5 = Fy, hence R3 = Ry. Then Equation (4.9) has a non-trivial solution x = uwv,
where 0 # v € ker D is an eigenvector of the operator R3 corresponding to the
eigenvalue —\2. This solution satisfies the homogeneous boundary conditions

(4.12) Fox =0, Fa=0
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and the homogeneous initial conditions
(413) FQQ}' = 0, F2D2.13 =0.

Hence the problem (4.9), (4.12), (4.13) is ill-posed.

We should point out that we do not assume any right inverse under consider-
ation to be a Volterra operator.

Under appropriate assumptions the Sylvester inertia law holds in algebras
with logarithms (cf. PR[9]). We therefore can say that Equation (4.3) is parabolic-
like and Equation (4.9) is hyperbolic-like whenever X is an algebra with loga-
rithms. Indeed, these equations have forms (Dy — Df)x = 0, (D3 — D)z = 0 of
the classical canonic parabolic and hyperbolic equations, respectively (cf. Po[1]).

Clearly, a linear combination of solutions x, ~of any problem considered above
corresponding to the eigenvalues \,,, is again a solution of that problem. Even
more. Consider Equation (4.3). If we are given \; € vc Ry such that A\; # A for
Jj#k (j,k=1,..,n;n € N) then the corresponding eigenvectors vy, (j =1,...,n)
are linearly independent and a linear combination

n n
Xr = E Ozjab\j = E ajuAijj,
Jj=1 Jj=1

where o € C, 2y = uy, vy, u, € ker (D} +A3) (j = 1,...,n), is again a solution
of Equation (4.3). A similar conclusion can be obtained for Equation (4.9).

Through this paper we have assumed several times that Fyiu = 0, where u
was a sine element. However, under appropriate assumptions (X is a complete
linear space over C, D is closed) in a complex extension of X, exponentials, sine
and cosine elements are 2mwe-periodic:

Eli(x + 2me)] = E(ix), C(x + 2me) = Cz, S(x + 2me) = Sz,

whenever these elements are well-defined (cf. PR[3], Chapter 9). If it is the case,
we conclude that

Fiu= F1S(\g) = F1S(\g + 2me) = F15(A\g) = S(0) =0,

whenever g = Re, R € Rp, A € vcR.
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ABSTRACT
FOURIER-LIKE METHODS FOR EQUATIONS WITH SEPARABLE VARI-
ABLES

D. Przeworska-Rolewicz (Warszawa)

It is well known that a power of a right invertible operators is again right
invertible, as well as a polynomial in a right invertible operator under appropriate
assumptions. However, a linear combination of right invertible operators (in par-
ticular, their sum and/or difference) in general is not right invertible. It will be
shown how to solve equations with linear combinations of right invertible opera-
tors in commutative algebras using properties of logarithmic and antilogarithmic
mappings. The used method is, in a sense, a kind of the variables separation
method. We shall obtain also an analogue of the classical Fourier method for
partial differential equations.

Key words: algebraic analysis, commutative algebra with unit, Leibniz condi-
tion, logarithmic mapping, antilogarithmic mapping, right invertible operator, sine
mapping, cosine mapping, initial value problem, boundary value problem, Fourier
method
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