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Abstract

A problem of determining the optimal stopping time of the risk process as

well as the corresponding payoff in the model with disruption and interest

rates is examined. The solution is derived in the model which allows for

change in distributions of considered random variables (which represent claim

amounts and inter-occurrence times between losses) occurring according to

some unobservable process. References to previously examined models as well

as numerical examples emphasizing the efficiency of the method are provided.
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1. Introduction

The following model has been often investigated in collective risk theory. An

insurance company with a given initial capital u0 receives premiums, which flow at a

constant rate c > 0, and has to pay for claims which occur according to some point

process at times T1 < T2 < ..., limTn = ∞. The risk process (Ut)t∈R+ is defined as the

difference between the income and the total amount of claims up to time t.

Many of past articles have been concentrating on solving the problem of optimal

stopping of the risk process in such models. In his classical work [6], Jensen provided a
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method of finding an optimal stopping time maximizing the expected net gain E(Uτ∗) =

sup{EUτ : τ ∈ C}, where C was a class of feasible stopping times. The reasoning he

applied is based on smooth semi-martingale representation of the risk process.

Such approach turned out to be unprofitable when some utility function of the

risk process had to be considered. In [4] the authors solved this problem applying

dynamic programming methodology and proposed an effective method of determining

the optimal stopping times in such situations. Muciek made an effort to adapt this

solution to insurance practice introducing in [8] an extension of this model. He

investigated the optimal stopping times under the assumption that the capital of the

company can be invested and claims can increase at some given interest rates.

Both introduced models proved to be still quite restrictive as they enforced

throughout the entire period of observation only one distribution for random variable

describing inter-occurrence times between losses and one for the random variable

describing amounts of subsequent losses. Although in [7] a solution to the problem

of double optimal stopping was presented, the investigated model still did not take

into consideration the possibility of disruption. Allowing for such disruption could

make the derived stopping rule more interesting in terms of insurance practice, as

based on the observed realization of the process and not only on arbitrary manage-

ment decisions. Hence, Pasternak-Winiarski in [9] introduced a model in which the

mentioned distributions changed according to some unobservable random variable and

solved the corresponding optimal stopping problem.

The main motivation for the research described in this article was to combine

the findings of the models from [8] and [9] and determine the optimal stopping rule in

the model allowing for the widest class of investigated processes making the derived

stopping rules more versatile and interesting, also in terms of insurance practice.

2. The model and the optimal stopping problem

Let (Ω,F , P ) be a probability space. On this space we introduce the following

random variables and processes:

1) Unobservable random variable κ with values in N0 = N∪{0} and having geometrical
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distribution with parameters p, π0 ∈ [0, 1] :

P (κ = 0) = π0,

P (κ = n) = (1− π0)p(1− p)n−1, n ∈ N.

2) Claim counting process with jumps at times 0 < T1 < T2 < ....

3) A sequence of random variables Sn = Tn − Tn−1, n = 1, 2, ..., T0 = 0. Sn represents

the inter-occurrence time between n−1th and nth loss. Sn depends on the unobservable

random time κ (as in the disorder problem considered in [13]) and is defined as follows:

Sn = W ′
nI{n≤κ} + W ′′

n I{n>κ}.

W ′
n, n ∈ N is a sequence of i.i.d. random variables with cumulative distribution function

(c.d.f.) F1 (satisfying the condition F1(0) = 0) and density function f1. Similarly

W ′′
n , n ∈ N forms a sequence of i.i.d. random variables with c.d.f. F2 (F2(0) = 0) and

density function f2. We assume additionally that f1 and f2 are commonly bounded by

a constant C ∈ R+. Furthermore we impose that W ′
i and W ′′

j are independent for all

i, j ∈ N0.

4) A sequence Xn, n ∈ N0 of random variables representing successive losses. They

also depend on the random variable κ:

Xn = X ′
nI{n<κ} + X ′′

nI{n≥κ},

where X ′
n, n ∈ N0 is a sequence of i.i.d. random variables with c.d.f. H1 (H1(0) = 0)

and density function h1 whereas X ′′
n , n ∈ N0 forms a sequence of i.i.d. random variables

with c.d.f. H2 (H2(0) = 0) and density function h2. X ′
i and X ′′

j are independent for

all i, j ∈ N0.

We assume that random variables W ′
n,W ′′

n , X ′
n, X ′′

n , κ are independent.

Let u0 > 0 represent the initial capital and c > 0 be a constant rate of income from

the insurance premium. We take into account the dynamics of the market situation

introducing the interest rate at which we can invest accrued capital (constant α ∈
[0, 1]). As a consequence of inflation we can observe the growth of claims. In this

model we assume that they increase at rate β ∈ [0, 1].

As a capital assets model for the insurance company we take the risk process

Ut = u0e
αt +

t∫

0

ceα(t−s)ds +
N(t)∑

i=0

Xie
βTi , X0 = 0 (1)
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The return at time t is defined by the process

Z(t) = g1(Ut)I{Us>0,s<t}I{t<t0},

where g1 is a utility function and the constant t0 is a fixed time which denotes the end

of the investment period. For simplicity we define

g(u, t) = g1(u)I{t≥0}.

Then

Z(t) = g(Ut, t0 − t)
N(t)∏

i=1

I{UTi
>0}. (2)

We fix the number of claims that may occur in our model, K. We will need the

following family of σ−fields generated by all events up to time t > 0 :

F(t) = σ(Us, s ≤ t) = σ(X1, T1, ..., XN(t), TN(t))

Let us now denote

Fn = F(Tn) and Gn = Fn ∨ σ(κ).

In our calculations we will extensively make use of conditional probabilities πn = P (κ ≤
n|Fn), n ∈ N0 as well as θn = P (κ = n + 1|Fn), n ∈ N0.

We will now define the optimization problem, which will be solved in subsequent

sections. Let T be the set of all stopping times with respect to the family {F(t)}t>0.

For n = 0, 1, 2, ...k < K we denote by Tn,K such subsets of T that satisfy the condition

τ ∈ Tn,K ⇔ Tn ≤ τ ≤ TK a.s.

We will be seeking the optimal stopping time τ∗K such that

E(Z(τ∗K)) = sup{E(Z(τ)) : τ ∈ T0,K}.

In order to find τ∗K we first consider optimal stopping times τ∗n,K such that

E(Z(τ∗n,K)|Fn) = ess sup {E(Z(τ)|Fn) : τ ∈ Tn,K}.

Then using the standard methods of dynamic programming we will obtain τ∗K = τ∗0,K .

After finding τ∗K for fixed κ we concentrate on solving the optimal stopping

problem in the situation when an un unlimited number of claims is attainable i.e.

we find such τ∗ that

E(Z(τ∗)) = sup {E(Z(τ)) : τ ∈ T }.
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τ∗ will be defined as a limit of finite horizon stopping times τ∗K .

In order to clarify in more detail the structure of the stopping rule which we will

derive in this paper we illustrate it briefly below. First, we find a special set of functions

R∗i (·, ·, ·) , i = 0, ..., K. Then, at time T0 = 0, with U0 = u0, we calculate R∗0 (U0, T0, π0).

If till time T0+R∗0 (U0, T0, π0) first claim has not yet been observed, we stop. Otherwise,

when the first claim occurs at time T1 < T0 + R∗0 (U0, T0, π0) , we calculate the value

R∗1 (U1, T1, π1) and wait for the next claim till the time T1 + R∗1 (U1, T1, π1) , etc. In

other words, the optimal stopping times derived in this model, can be interpreted as

constituting a threshold rule.

3. Solution for the finite horizon problem

In this section we will find the form of optimal stopping rules in the finite horizon

case, i.e. optimal in the class where K is finite and fixed. First, in Theorem 1, we will

derive dynamic programming equations satisfied by

Γn,K = ess sup {E(Z(τ)|Fn) : τ ∈ Tn,K}.

Then, in Theorem 2, we will find optimal stopping times τ∗n,K and τ∗K and corresponding

optimal conditional mean rewards and optimal mean rewards, respectively.

For notation simplicity we define

µN(t) =
N(t)∏

i=1

I{UTi
>0}, µ0 = 1. (3)

A simple consequence of these notations and formula (2) is that

ΓK,K = Z(TK) = µKg(UTK
, t0 − TK). (4)

Crucial role in subsequent reasoning is played by two Lemmas which are given

below. The first one defines recursive relation between conditional probabilities πn as

well as θn, essential in our further considerations. The second one is a representation

theorem for stopping times (to be found in [3]).

Lemma 1. There exist functions ξ1 : [0, 1]×(0,∞)×(0,∞) → [0, 1], ξ2 : [0, 1] → [0, 1]

such that

πn = ξ1(πn−1, Xn, Sn), θn = ξ2(πn),
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and

ξ1(t, x, s) =
f2(s)h2(x)t + pf1(s)h2(x)(1− t)

f2(s)h2(x)t + pf1(s)h2(x)(1− t) + f1(s)h1(x)(1− p)(1− t)
,

ξ2(t) =
η1(t) + η3(t)t− (1 + η1(t))t

1 + η1(t)− η2(t)

for

η1(t) =

∞∫

0

∞∫

0

ξ1(t, x, w)dH1(x)dF1(w),

η2(t) =

∞∫

0

∞∫

0

ξ1(t, x, w)dH2(x)dF1(w),

η3(t) =

∞∫

0

∞∫

0

ξ1(t, x, w)dH2(x)dF2(w).

Proof. The nature of the proof is purely technical so it will be omitted here. The

reasoning is based upon the Bayes formula and is similar to the one presented in [13].

Lemma 2. If τ ∈ Tn,K , then there exists a positive Fn - measurable random variable

Rn such that min(τ, Tn+1) = min(Tn + Rn, Tn+1).

For simplicity of further calculations we will also introduce functions

d : [0,∞)× [0,∞) → [0,∞),

D : [0,∞)× [0,∞)× [0,∞) → (−∞,∞) and

D̂ : [0,∞)× [0,∞)× [−∞,∞) → (−∞,∞)

defined as follows

d(t, r) :=
( c

α
+ u0

) (
eα(t+r) − eαt

)
,

D(t, r, x) := d(t, r)− xeβ(t+r),

D̂(t, r, u) := e−β(t+r)(u + d(t, r)).

Theorem 1. (a) For n = K − 1, K − 2, ..., 0 we have

Γn,K = ess sup{µng(UTn + d(Tn, Rn)), t0 − Tn −Rn)(F2(Rn)πn + F1(Rn)(1− πn))

+E(I{Rn≥Sn+1}Γn+1,K |Fn) : Rn ≥ 0 and Rn is Fn-measurable}, (5)
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where F = 1− F

(b) For n = K, K − 1, ..., 0 we have

Γn,K = µnγK−n(UTn , Tn, πn) a.s. , (6)

where the sequence of functions {γj : R × [0,∞) × [0, 1] → R}j=0,...,K is defined

recursively as follows:

γ0(u, t, π) = g(u, t0 − t)

γj(u, t, π) = sup
r≥0

{g(u + d(t, r), t0 − t− r)(F2(r)π + F1(r)(1− π))

+ξ2(π)

r∫

0

D̂(t,w,u)∫

0

γj−1(u + D(t, w, x), t + w, ξ1(π, x, w))dH2(x)dF1(w)

+(1− π − ξ2(π))

r∫

0

D̂(t,w,u)∫

0

γj−1(u + D(t, w, x), t + w, ξ1(π, x, w))dH1(x)dF1(w)

+π

r∫

0

D̂(t,w,u)∫

0

γj−1(u + D(t, w, x), t + w, ξ1(π, x, w))dH2(x)dF2(w)}.

where ξ1, ξ2 are the functions defined in Lemma 1.

Proof. (a) Let τ ∈ Tn,K and 0 ≤ n < K < ∞. Lemma 2 implies that

An := {τ < Tn+1} = {Tn + Rn < Tn+1} = {Rn < Sn+1} =

({
Rn < W ′

n+1

} ∩ {κ > n}) ∪ ({
Rn < W ′′

n+1

} ∩ {κ ≤ n}) = A1
n ∪A2

n.

Thus,

E(Z(τ)|Fn) = E(Z(τ)IA1
n
|Fn) + E(Z(τ)IA2

n
|Fn) + E(Z(τ)IAn

|Fn) = a1
n + a2

n + bn.

(7)

We will now calculate a1
n. First, we transform the given form of Z(τ) using (2) and (3)

a1
n = µnE(I{Rn<W ′

n+1}I{κ>n}g(Uτ , t0 − τ)|Fn).

As Rn < W ′
n+1 = Sn+1 it is obvious that since Tn till τ no loss had been observed.

Therefore, as Ut+Rn − U(t) = d(t, Rn) we can rewrite Uτ as follows

a1
n = µnE(I{Rn<W ′

n+1}I{n<κ}g(UTn + d(Tn, Rn), t0 − Tn −Rn)|Fn).
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= µng(UTn + d(Tn, Rn), t0 − Tn −Rn)E(I{Rn<W ′
n+1})E(I{κ>n}|Fn)

= µng(UTn + d(Tn, Rn), t0 − Tn −Rn)F1(Rn)(1− πn). (8)

Similarly one can show that

a2
n = µng(UTn

+ d(Tn, Rn), t0 − Tn −Rn)F2(Rn)πn. (9)

If we additionally define τ ′ := max(τ, Tn+1), then it is easy to see that τ ′ ∈ Tn+1,K

and:

bn = E(Z(τ)IAn
|Fn) = E(E(Z(τ ′)I{Sn+1≤Rn}|Fn+1)|Fn) = E(I{Sn+1≤Rn}E(Z(τ ′)|Fn+1)|Fn).

(10)

The formulas (7)-(10) imply that

E(Z(τ)|Fn)

= µng(UTn + d(Tn, Rn), t0 − Tn −Rn)(F2(Rn)πn + F1(Rn)(1− πn))

+E(I{Sn+1≤Rn}E(Z(τ ′)|Fn+1)|Fn).

Now, following the standard reasoning of optimal stopping theory, we get the dy-

namic programming equation for Γn,K , n = K, K − 1, ..., 0, given in (a), with ΓK,K =

µKg(UTK , t0 − TK).

(b) We will prove (b) using the backward induction method. First, one should

note that (6) is satisfied for n = K, as (4) gives

ΓK,K = µKg(UTK , t0 − TK) = µKγ0(UTK , TK , πK). (11)

Let n = K − 1. It is easy to observe that

{RK−1 ≥ SK} = ({RK−1 ≥ W ′
K} ∩ {κ ≤ K}) ∪ ({RK−1 ≥ W ′′

K} ∩ {κ > K})

= ({RK−1 ≥ W ′
K} ∩ {κ = K}) ∪ ({RK−1 ≥ W ′′

K} ∩ ({κ > K}))

∪ ({RK−1 ≥ W ′
K} ∩ {κ ≤ K − 1}) := B1

K ∪B2
K ∪B3

K .

The above equality implies that:

ΓK−1,K = µK−1 ess sup
{

g(UTK−1 +d(TK−1, RK−1), t0−TK−1−RK−1)F2(RK−1)πK−1
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+g(UTK−1 + d(TK−1, RK−1), t0 − TK−1 −RK−1)F1(RK−1)(1− πK−1)

+E
((
IB1

K
+ IB2

K
+ IB3

K

)
ΓK,K |FK−1

)
: RK−1 ≥ 0 and RK is FK-measurable}.

Let us present the calculations only for the set B1
K - the remaining summands

under the conditional expectation can be transformed in a similar way. Taking (11)

into consideration, rewriting µK as µK−1I{UTK−1+d(TK−1,SK)−XKeβ(TK−1+SK)>0} and

applying the definitions of random variables SK , XK and the process UTK
we get that

E
(
IB1

K
ΓK,K |FK−1

)
= µK−1×

×E(IB1
K
I{UTK−1+D(TK−1,W ′

K ,X′′
K)>0}g(UTK−1+D(TK−1,W

′
K , X ′′

K), t0−TK−1−W ′
K)|FK−1)

The independence of random variables W ′
K and X ′′

K from FK−1 along with the defini-

tion of conditional probability θK implies that

E
(
IB1

K
ΓK,K |FK−1

)
= µK−1ξ2(πK−1)×

×
RK−1∫

0

D̂(TK−1,w,UTK−1)∫

0

g(UTK−1 + D(TK−1, w, x), t0 − TK−1 − w)dH2(x)dF1(w)

Analogical calculations for B2
K and B3

K complete the backward induction step for

n = K − 1.

Let 1 ≤ n < K − 1 and suppose that Γn,K = µnγK−n(UTn , Tn, πn).

From (a) we have

Γn−1,K = ess sup
{

µn−1g(UTn−1 + d(Tn−1, Rn−1), t0 − Tn−1 −Rn−1)F2(Rn−1)πn−1

+µn−1g(UTn−1 + d(Tn−1, Rn−1), t0 − Tn−1 −Rn−1)F1(Rn−1)(1− πn−1)

+E
((
IB1

n∪B2
n∪B3

n

)
µnγK−n(UTn , Tn, πn)|Fn−1

)
: Rn−1 ≥ 0, Rn−1 is Fn−1-measurabe

}
.

(12)

Since µn = µn−1I{UTn−1+D(Tn−1,Sn,Xn)>0}, similarly to the calculations presented

above we derive the formula for conditional expectation from (12) related to IB1
n
.

We get

E
(
IB1

n
µnγK−n(UTn , Tn, πn)|Fn−1

)

= µn−1E(IB1
n
I{UTn−1+D(Tn−1,W ′

n,X′′
n )>0}γK−n(UTn , Tn, πn)|Fn−1)
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= µn−1E(I{κ=n}E(I{Rn−1≥W ′
n}I{UTn−1+D(Tn−1,W ′

n,X′′
n )>0}×

×γK−n(UTn−1+D(Tn−1,W
′
n, X ′′

n), Tn−1+W ′
n, ξ1(πn−1, X

′′
n ,W ′

n))|Gn−1)|Fn−1) = ξ2(πn−1)×

×
Rn−1∫

0

D̂(Tn−1,w,UTn−1 )∫

0

γK−n(UTn−1+D(Tn−1, w, x), Tn−1+w, ξ1(πn−1, x, w))dH2(x)dF1(w).

Analogical calculations for B2
n and B3

n complete the proof of the theorem.

We will now concentrate on the problem of finding optimal stopping time τ∗K .

To this end, as it was proved in [4], we have to analyze properties of the sequence of

functions γn.

Let B = B[(−∞,∞) × [0,∞) × [0, 1]] be the space of all bounded continuous

functions on (−∞,∞)× [0,∞)× [0, 1], B0 = {δ : δ(u, t, π) = δ1(u, t, π)I{t≤t0}, δ1 ∈ B}.
On B0 we define a norm:

‖ δ ‖α= sup
u,0≤t≤t0,π

{
(

t

t0

)α

| δ(u, t, π) |},

where α > 1 is an arbitrary constant, such that χ = Ct0
α−1 ∈ (0, 1) (the properties of

similar norms were considered in [5]).

For any δ ∈ B0, u ∈ R, t, r ≥ 0 and π ∈ [0, 1] we define:

φδ(r, u, t, π) = g(u + d(t, r), t0 − t− r)(F2(r)π + F1(r)(1− π))

+ξ2(π)

r∫

0

D̂(t,w,u)∫

0

δ(u + D(t, w, x), t + w, ξ1(π, x, w))dH2(x)dF1(w)

+(1− π − ξ2(π))

r∫

0

D̂(t,w,u)∫

0

δ(u + D(t, w, x), t + w, ξ1(π, x, w))dH1(x)dF1(w)

+π

r∫

0

D̂(t,w,u)∫

0

δ(u + D(t, w, x), t + w, ξ1(π, x, w))dH2(x)dF2(w). (13)

We will now make use of the properties of the c.d.f.’s F1 and F2. They imply

that if g1 is continuous and t 6= t0 − r, then φδ(r, u, t, π) is continuous with respect to

(r, u, t, π). Therefore we make the following

Assumption 1. The function g1(·) is bounded and continuous.
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For any δ ∈ B0 we define an operator Φ as follows:

(Φδ)(u, t, π) = sup
r≥0

{φδ(r, u, t, π)}. (14)

Lemma 3. For π ∈ [0, 1] and for every δ ∈ B0 we have:

(Φδ)(u, t, π) = max
0≤r≤t0−t

{φδ(r, u, t, π)}.

Furthermore, there exists a function rδ satisfying (Φδ)(u, t, π) = φδ(rδ(u, t, π), u, t, π).

Proof. When r > t0 − t and δ ∈ B0 then g(u + cr, t0 − t − r) = 0 and the equality

(13) can be rewritten in the following way

φδ(r, u, t, π) = ξ2(π)

t0−t∫

0

D̂(t,w,u)∫

0

δ(u + D(t, w, x), t + w, ξ1(π, x, w))dH2(x)dF1(w)

+(1− π − ξ2(π))

t0−t∫

0

D̂(t,w,u)∫

0

δ(u + D(t, w, x), t + w, ξ1(π, x, w))dH1(x)dF1(w)

+π

t0−t∫

0

D̂(t,w,u)∫

0

δ(u + D(t, w, x), t + w, ξ1(π, x, w))dH2(x)dF2(w).

Hence, Assumption 1 and the fact that F1 and F2 are continuous functions in the

compact interval [0, t0] imply the form of Φ.

It is easy to note that for i = 0, 1, 2, ...,K−1, u ∈ R, t ≥ 0, π ∈ [0, 1] the sequence

γi(u, t, π) can be rewritten according to a following pattern

γi+1(u, t, π) =





(Φγi)(u, t, π) if u ≥ 0, t ≤ t0,

0 otherwise.

From Lemma 3 we know that there exist functions rK−1−i := rγi , such that

γi+1(u, t, π) =





φγi(rK−1−i(u, t, π), u, t, π) if u ≥ 0, t ≤ t0,

0 otherwise.

To determine the form of optimal stopping times τ∗n,K we define following random

variables:

R∗i = ri(UTi , Ti, πi)

and

σn,K = min{K, inf{i ≥ n : R∗i < Si+1}}.
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Theorem 2. Let

τ∗n,K =





Tσn,K
+ R∗σn,K

if σn,K < K,

TK if σn,K = K,
and τ∗K = τ∗0,K .

Then for any 0 ≤ n ≤ K we have

Γn,K = E(Z(τ∗n,K)|Fn) a.s. and Γ0,K = E(Z(τ∗K)).

Proof. This is a straightforward consequence of the definition of random variables

R∗i , σn,K and Theorem 1.

4. Solution for the infinite horizon problem

Lemma 4. The operator Φ : B0 → B0 defined by (14) is a contraction in the norm

‖ · ‖α

Proof. Let δ1, δ2 ∈ B0. Then by Lemma 3 there exist %i := rδi(u, t, π) ≤ t0 − t, i =

1, 2, such that (Φδi) = φδi(%i, u, t, π). It is obvious that φδ2(%2, u, t, π) ≥ φδ2(%1, u, t, π).

Hence,

(Φδ1)(u, t, π)− (Φδ2)(u, t, π) ≤ φδ1(%1, u, t, π)− φδ2(%1, u, t, π)

= ξ2(π)

%1∫

0

D̂(t,w,u)∫

0

(δ1−δ2)(u+D(t, w, x), t+w, ξ1(π, x, w))
(

t + w

t0

)α (
t0

t + w

)α

dH2(x)dF1(w)

+(1−π−ξ2(π))

%1∫

0

D̂(t,w,u)∫

0

(δ1−δ2)(u+D(t, w, x), t+w, ξ1(π, x, w))
(

t + w

t0

)α (
t0

t + w

)α

dH1(x)dF1(w)

+π

%1∫

0

D̂(t,w,u)∫

0

(δ1−δ2)(u+D(t, w, x), t+w, ξ1(π, x, w))
(

t + w

t0

)α (
t0

t + w

)α

dH2(x)dF2(w)

≤ (t0)αξ2(π)

t0−t∫

0

‖δ1 − δ2‖α

(
1

t + w

)α

dF1(w)

+(t0)α(1− π − ξ2(π))

t0−t∫

0

‖δ1 − δ2‖α

(
1

t + w

)α

dF1(w)

+(t0)απ

t0−t∫

0

‖δ1 − δ2‖α

(
1

t + w

)α

dF2(w).
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As analogical estimation can be carried through for (Φδ2)(u, t, π) − (Φδ1)(u, t, π) and

we have assumed that the density functions f1 and f2 are commonly bounded by a

constant C we get:

|(Φδ2)(u, t, π)− (Φδ1)(u, t, π)| ≤

≤ (t0)αC‖δ1−δ2‖α(ξ2(π)+1−π−ξ2(π)+π)

t0−t∫

0

(
1

t + w

)α

dw < (t0)α C

α− 1
||δ1−δ2||α

(
t0
tα

)

As a straightforward consequence

‖(Φδ2)(u, t, π)− (Φδ1)(u, t, π)‖α <
Ct0

α− 1
||δ1 − δ2||α ≤ χ||δ1 − δ2||α,

where χ < 1.

Applying Banach’s Fixed Point Theorem we get following Lemma:

Lemma 5. There exists γ ∈ B0 such that

γ = Φγ and lim
K→∞

||γK − γ||α = 0.

The thesis of Lemma 5 will turn out to be useful in the crucial part of the proof of

Theorem 3, describing the optimal stopping rule in the case of infinite horizon.

Theorem 3. Assume that the utility function g1 is differentiable and nondecreasing

and Fi have commonly bounded density functions fi for i = 1, 2. Then:

(a) for n = 0, 1, ... the limit τ̂n := lim
K→∞

τ∗n,K exists and τ̂n is an optimal stopping rule

in T ∩ {τ ≥ Tn}.
(b) E(Z(τ̂n)|Fn) = µnγ(UTn , Tn, πn) a.s.

Proof. (a) It is obvious that τ∗n,K ≤ τ∗n,K+1 a.s for n ≥ 0. Hence, the stopping rule

τ̂n: Tn ≤ τ̂n = lim
K→∞

τ∗n,K ≤ t0 exists. We only have to prove the optimality of τ̂n, to

which aim we will apply arguments similar to those used in [1], [2] and [4].

Let ξ(t) = (t, Ut, Yt, Vt, πN(t), N(t)), where Yt = t − TN(t) and Vt = µN(t) =
N(t)∏
i=1

I{UTi
>0}, t ≥ 0. Then, one can show that ξ = {ξ(t) : t ≥ 0} is a Markov process

with the state space R+ × R × R+ × {0, 1} × [0, 1] × N0. One can see that the return

Z(t) can be described as a function, say g̃, of ξ(t). Then, we can calculate a strong
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generator of ξ in the form

(Ag̃)(t, u, y, v, π, n) = v





πn


eαt(u0α + c)g′(u)− f2(y)

F2(y)


g1(u)−

ue−βt∫

0

g1(u− eβtx)dH2(x)







+(1− πn)


eαt(u0α + c)g′(u)− f1(y)

F1(y)


g1(u)−

ue−βt∫

0

g1(u− eβtx)dH1(x)







+ ξ2(πn)
f1(y)
F1(y)




ue−βt∫

0

g1(u− eβtx)dH2(x)−
ue−βt∫

0

g1(u− eβtx)dH1(x)








, (15)

where the expression above is well defined as we can assume fi(t̃i0) = 0 for t̃i0 :=

sup
t≤t0

{Fi(t) < 1}.

Obviously Mt := g̃(ξ(t)) − g̃(0) −
t∫
0

(Ag̃)(ξ(s))ds, t ≥ 0, is a martingale with

respect to the filtration σ(ξ(s), s ≤ t), which is the same as F(t). As Tn and τ∗n,K are

stopping times satisfying the condition Tn ≤ τ∗n,K , a.s., we can apply optional sampling

theorem and get

E(Mτ∗n,K
|ξ(Tn)) = MTn a.s.,

E


g̃(ξ(τ∗n,K))− g̃(0)−

τ∗n,K∫

0

(Ag̃)(ξ(s))ds|ξ(Tn)


 = g̃(ξ(Tn))−g̃(0)−

Tn∫

0

(Ag̃)(ξ(s))ds,a.s.,

and finally

E
(
g̃(ξ(τ∗n,K))|ξ(Tn)

)− g̃(ξ(Tn)) = E




τ∗n,K∫

Tn

(Ag̃)(ξ(s))ds|Fn


 a.s. (16)

We will now calculate the limit of the expression from the right hand side of the

equality (16) with K → ∞. Firstly, applying the form of the generator from (15) we

get

(Ag̃)(ξ(s)) = µN(s)





πN(s)


eαs(u0α + c)g′(U(s)) +

f2(s− TN(s))
F2(s− TN(s))




U(s)e−βs∫

0

g1(U(s)− eβsx)dH2(x)− g1(U(s))







+(1−πN(s))


eαs(u0α + c)g′(U(s)) +

f1(s− TN(s))
F1(s− TN(s))




U(s)e−βs∫

0

g1(U(s)− eβsx)dH1(x)− g1(U(s))









Optimal stopping of a risk process with disruption and interest rates 15

+ ξ2(πN(s))
f1(s− TN(s))
F1(s− TN(s))




U(s)e−βs∫

0

g1(U(s)− eβsx)dH2(x)−
U(s)e−βs∫

0

g1(U(s)− eβsx)dH1(x)








(17)

Inserting to (16) the formula for infinitesimal generator given in (17) we get

E
(
g̃(ξ(τ∗n,K))|ξ(Tn)

)− g̃(ξ(Tn)) = E
(
I1
n,K |Fn

)− E (
I2
n,K |Fn

)
a.s.

where

I1
n,K =

τ∗n,K∫

Tn

((
eαs(u0α + c)g′(U(s)) +

(
f2(s− TN(s))
F2(s− TN(s))

+
ξ2(πN(s))

πN(s)

f1(s− TN(s))
F1(s− TN(s))

)
×

×
U(s)e−βs∫

0

g1(U(s)− eβsx)dH2(x)


 πN(s)+


eαs(u0α + c)g′(U(s)) +

f1(s− TN(s))
F1(s− TN(s))

(
1− ξ2(πN(s))

1− πN(s)

) U(s)e−βs∫

0

g1(U(s)− eβsx)dH1(x)




(
1− πN(s)

)

 µN(s)ds,

I2
n,K =

τ∗n,K∫

Tn

(
πN(s)

f2(s− TN(s))
F2(s− TN(s))

+ (1− πN(s))
f1(s− TN(s))
F1(s− TN(s))

)
g1(U(s))µN(s)ds.

Note that I2
n,K is a nonnegative random variable. As πN(s) + ξ2(πN(s)) ≤ 1, I1

n,K is

also a nonnegative random variable. Moreover, it can be shown that I2
n,K is bounded.

Applying Monotone Convergence Theorem, the properties of conditional expectation

and the fact that lim
K→∞

τ∗n,K = τ̂n we get

lim
K→∞

E




τ∗n,K∫

Tn

(Ag̃)(ξ(s))ds|Fn


 = E




τ̂n∫

Tn

(Ag̃)(ξ(s))ds|Fn


 a.s.

On the other hand, Dynkin formula implies also that

E




τ̂n∫

Tn

(Ag̃)(ξ(s))ds|Fn


 = E (g̃(ξ(τ̂n))|Fn))− g̃(ξ(Tn) a.s.

Hence,

lim
K→∞

E
(
g̃(ξ(τ∗n,K))|Fn

)
= E (g̃(ξ(τ̂n))|Fn) a.s. (18)
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To complete this part of the proof we only have to show that τ̂n is an optimal stopping

time in the class T ∩ {τ : τ ≥ Tn}. To that end let us assume that τ is some other

stopping rule in T ∩ {τ : τ ≥ Tn}. Then, as τ∗n,K is optimal in Tn,K , we have for any

K,

E
(
g̃(ξ(τ∗n,K))|Fn

) ≥ E (g̃(ξ(τ ∧ TK))|Fn) a.s.

A similar argumentation to one that led to formula (18) reveals that

E (g̃(ξ(τ̂n))|Fn) ≥ E (g̃(ξ(τ))|Fn) a.s.

The proof of (a) is now complete.

(b) As it was shown in part (b) of Theorem 1 a following equality stands

E
(
g̃(ξ(τ∗n,K))|Fn

)
= µnγK−n(UTn , Tn, πn).

Then Lemma 5 and (18) imply

E (Z(τ̂n)|Fn) = lim
K→∞

E
(
g̃(ξ(τ∗n,K))|Fn

)
= lim

K→∞
µnγK−n(UTn , Tn, πn) = µnγ(UTn , Tn, πn) a.s.

what completes the proof of the Theorem.

5. Numerical examples

In order to provide the reader with a complete overview of the stopping rules

in the suggested model a numerical example will be given. For the sake of simplicity,

to focus the attention of the reader on the method itself rather than on strenuous

calculations, we will assume that the rates of inflation α as well as claim severity

growth β are equal to zero. The application of the example below to a model with

non-zero rates is straightforward.

Let us assume that the observation period is equal to 1 year (t0 = 1), c = 1 is the

constant rate of income from the insurance premium and the fixed number of claims

that may occur in our model, K, is 1. Moreover, let us assume that the probability p

defining the distribution of κ is equal to 1
2 .

We impose that W ′
1 and W ′′

1 are uniformly distributed over the interval [0, t0]. The

claim severity distribution changes from H1(x) = ex−1
4 I{x∈[0,ln5]} for X ′

1 to H2(x) =
ex−1

8 I{x∈[0,ln9]} for X ′′
1 . As EX ′ < EX ′′ it is obvious that the examples reflects a
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situation of deteriorating market conditions. Three models will be investigated:

Model I. In this scenario the insurance company does not apply any optimal stopping

rules. Hence, the observation ends along with first claim or when the time t0 is reached,

whichever happens first.

Model II. In this scenario the company applies the optimal stopping rule suggested in

the articles [4] and [8]. Hence, having no possibility to anticipate potential distribution

changes the company assumes that S1 = W ′
1 and X1 = X ′

1. In such case

Φδ(r, u, t) = eu+r(1− r)I{t+r<1} +
1
4

∫ r

0

∫ u+s

0

δ(u + s− x, t + s)exdxds

As K = 1 we execute only one step of iterative procedure and we get that

γ1(u, t) = Φγ0(u, t) = max
0≤r≤1

{eu+r(1− r)I{t+r<1} +
1
4

∫ r

0

eu+s(u + s)I{t+s<1}ds}

Standard calculations reveal that in such case

τ∗0,1 = R∗0I{R∗0<T1} + T1I{R∗0≥T1}, where R∗0 = min{1
3
u0, 1}.

Model III. In the third scenario, the company can utilize the suggested model with

disruption. It is easy to see that under the assumptions stated above we have

ξ1(π, x, s) =
π + 1
3− π

, ξ2(π) =
(1− π)2

3− π
,

Φδ(r, u, t, π) = eu+r(1−r)I{t+r<1}+
5− 3π

24− 8π

∫ r

0

∫ u+s

0

δ(u+s−x, t+s,
π + 1
3− π

)exdxds,

γ1(u, t, π) = Φγ0(u, t, π) = max
0≤r≤1

{eu+r(1−r)I{t+r<1}+
5− 3π

24− 8π

∫ r

0

eu+s(u+s)I{t+s<1}ds}.

It is easy to notice that

τ∗0,1 = R∗0I{R∗0<T1} + T1I{R∗0≥T1}, where R∗0 = min{ 5− 3π0

19− 5π0
u0, 1}.

Below we enclose the results of simulations for different values of initial capital u

and probability π0. The presented numbers are averaged returns for the company over

10000 trajectories generated in each scenario.
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Returns for π0 = 0.5 and p = 0.5

Initial Model Model Model

capital I II III

0,2 0,311 1,222 1,222

0,4 0,474 1,496 1,497

0,6 0,687 1,831 1,836

0,8 0,978 2,252 2,258

1 1,323 2,759 2,777

1,2 1,741 3,408 3,437

1,4 2,248 4,176 4,243

1,6 2,808 5,055 5,219

1,8 3,486 6,041 6,387

2 4,295 7,151 7,817

2,2 5,26 8,335 9,51

2,4 6,41 9,484 11,483

2,6 7,832 10,595 13,83

2,8 9,539 11,353 16,622

3 11,645 11,645 19,858

3,2 14,254 14,254 23,596

3,4 17,431 17,431 27,857

3,6 21,212 21,212 32,588

3,8 26,084 26,084 38,373

4 31,658 31,658 43,858

4,2 38,81 38,81 50,297

4,4 47,349 47,349 56,278

4,6 57,844 57,844 62

4,8 71,016 71,016 71,016

Returns for u0 = 1 and p = 0.5

π0 Model Model Model

I II III

0,04 1,699 2,842 2,837

0,08 1,664 2,838 2,831

0,12 1,619 2,82 2,819

0,16 1,598 2,823 2,82

0,2 1,561 2,806 2,809

0,24 1,532 2,811 2,812

0,28 1,506 2,801 2,806

0,32 1,464 2,794 2,8

0,36 1,434 2,783 2,792

0,4 1,407 2,784 2,791

0,44 1,374 2,777 2,79

0,48 1,34 2,768 2,784

0,52 1,306 2,764 2,785

0,56 1,271 2,758 2,772

0,6 1,238 2,754 2,77

0,64 1,208 2,748 2,772

0,68 1,178 2,732 2,762

0,72 1,142 2,727 2,76

0,76 1,119 2,723 2,764

0,8 1,078 2,715 2,76

0,84 1,054 2,712 2,751

0,88 1,019 2,706 2,753

0,92 0,988 2,694 2,746

0,96 0,965 2,702 2,745

1 0,919 2,687 2,742

It is easy to see that the scenarios where the optimal stopping rules have been

applied offer significantly higher returns regardless of the initial probability π0. The

model with disruption is better in the situations when the probability of distribution
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change at t = 0 is higher than 0.2, whereas it somewhat fails when π0 is low. However,

this can easily be justified. As the model III is bound to deal with more complex

market situations and covers a brighter spectrum of processes, the simplicity of model

II prevails in the environment for which it was originally designed (as low probability

of disruption in the first step in a model with only one claim observed in fact reflects

the environment with no disruption). We believe however that with greater values of

K this effect would not be observed.

The analysis of company’s returns for different values of initial capital confirms

the considerable advantage of the models with optimal stopping rules over ”passive”

models. As the stopping moment in models II and III is defined by a minimum of

observation period and an increasing function of initial capital u0 it is obvious that

from some initial capital forth (u0 = 3 in case of model II and u0 = 4 5
7 in case of model

III) all the models will give the same returns. This fact underlines the advantages of

optimal stopping models especially in the situation when company’s initial capital is

low and the insolvency probability is substantial.

6. Final remarks

A diligent reader will take notice of the fact that this work does not only introduce

a new model and solves the problem of optimal stopping of the risk process within

this scheme. It also widens the spectrum of the processes for which we can apply

stopping rules derived in the models from [4], [7] and [8]. Authors assumed there that

distribution of the random variable describing inter-occurrence times between losses,

F , fulfills the condition F (t0) < 1. As it was shown in this article, such assumption is

irrelevant, provided that F ′(t) is bounded. A simple change of norm allows to apply

the Fixed Point Theorem.

References

[1] Boshuizen, F.A. and Gouweleeuw, J.M.(1993). General Optimal Stopping

Theorems for Semi-Markov Processes. Adv.Appl.Prob. 25, 825–846.

[2] Boshuizen, F.A. and Gouweleeuw, J.M.(1995). A Continuous-time Job Search



20 ELZBIETA FERENSTEIN AND ADAM PASTERNAK-WINIARSKI

Model: General Renewal Process. Commun.Statist.Stoch.Models 11, 349–369.

[3] Davis M.H.A.(1993). Markov Models and Optimization. Chappman and Hall.

[4] Ferenstein, E. and Sierocinski,A.(1997). Optimal Stopping of a Risk Process.

Appl.Math. 24, 335–342.

[5] Goebel, K. and Kirk, W.A.(1990). Topics in Metric Fixed Point Theory

Cambridge Univ. Press.

[6] Jensen, U.(1997). An Optimal Stopping Problem in Risk Theory. Scand. Actuarial

J. 1997, 149–159.

[7] Karpowicz, A. and Szajowski, K.(2007). Double Optimal Stopping of a

Risk Process. Stochastics: An International Journal of Probability and Stochastics

Processes 79, 155–167.

[8] Muciek, B.K.(2002). Optimal Stopping of a Risk Process: Model with Interest

Rates. J.Appl.Prob. 39, 261–270.

[9] Pasternak-Winiarski, A.(2007). Optimal Stopping of a Risk Process. Masterthe-

sis,

[10] Peskir, G. and Shiryayev, A.(2006). Optimal Stopping and Free-Boundary

Problems. Birkhäuser Verlag.
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