
INSTITUTE OF MATHEMATICS
of the

Polish Academy of Sciences
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Abstract

The aim of this paper is to review and clarify some facts concern-
ing the uniform convergence of statistics like X̄n and random variables
like

√
n(X̄n − µ(θ))/σ(θ). We consider convergence in distribution or

in probability, uniform with respect to a family of probability distribu-
tions. It seems that these concepts are appropriate tools for asymp-
totic theory of mathematical statistics, but in reality they are rather
rarely used or even mentioned. Little in this paper is new, we focus
on relations between known results. We examine a few rather para-
doxical examples which hopefully shed some light on the subtleties of
the underlying definitions and the role of asymptotic approximations
in statistics.

1 Definitions

Consider a statistical space (Ω,F , {Pθ : θ ∈ Θ}). Let us say that a ran-
dom variable is a function Z : Θ × Ω → R such that for every θ ∈ Θ the
mapping Z(θ) : ω 7→ Z(θ, ω) is (F ,B(R))-measurable. As usual, the argu-
ment ω will most often be supressed, while the argument θ will be explicitly
written to avoid misunderstanding. Thus we write e.g. Pθ(Z(θ) ∈ B) =
Pθ {ω : Z(θ, ω) ∈ B} for B ∈ B(R). A random variable T which does not
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depend on θ (i.e. T : Ω → R) is called a statistic. A random variable which
does not depend on ω is called a deterministic function. This terminology
might not be quite orthodox but we find it convenient.

1.1 Definition. Let Z1(θ), . . . , Zn(θ), . . . be a sequence of random variables.
Let F be a continuous cumulative distribution function on R. The sequence
Zn(θ) converges to F in distribution uniformly in θ ∈ Θ if

sup
θ∈Θ

sup
−∞<x<∞

|Pθ (Zn(θ) ≤ x)− F (x)| → 0 (n →∞),

We will then write

Zn(θ) ⇒d F.

More explicitly, Definition 1.1 stipulates that

∀ε∃n0∀n≥n0∀θ∀x |Pθ {ω : Zn(θ, ω) ≤ x} − F (x)| < ε.

Let us emphasize that Definition 1.1 assumes that F does not depend on θ
and it is continuous.

1.2 Definition. A sequence Z1(θ), . . . , Zn(θ), . . . of random variables con-
verges to 0 in probability uniformly in θ ∈ Θ if

sup
θ∈Θ

Pθ (|Zn(θ)| > ε) → 0 (n →∞),

for every ε > 0. We will then write

Zn(θ) ⇒pr 0 or Zn(θ) = oup(1).

Explicitly,

∀ε∀η∃n0∀n≥n0∀θ Pθ {ω : |Zn(θ, ω)| > ε} < η.

Definition 1.2 is not a special case of 1.1, because the probability distribution
concentrated at 0 has discontinuous c.d.f. However, a standard definition of
uniform convergence generalizes both Definitions 1.1 and 1.2. We defer a
discussion on this to Appendix B.
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1.3 Definition. A sequence Z1(θ), . . . , Zn(θ), . . . of random variables is uni-
formly bounded in probability if

lim sup
n→∞

sup
θ∈Θ

Pθ (|Zn(θ)| > m) → 0 (m →∞).

We will then write

Zn(θ) = Oup(1).

Uniform boundedness in probability is equivalent to

∀ε∃m∃n0∀n≥n0∀θ Pθ {ω : |Zn(θ, ω)| > m} < ε.

We can now proceed to uniform versions of two fundamental statistical con-
cepts, consistency and asymptotic normality. Consider a function g : Θ → R
and a sequence T1, . . . , Tn, . . . of statistics (Tn : Ω → R is regarded as an
estimator of g(θ)).

1.4 Definition. Statistic Tn is a uniformly consistent estimator of g(θ) if

Tn − g(θ) = oup(1).

1.5 Definition. Statistic Tn is a uniformly
√

n-consistent estimator of g(θ)
if

√
n [Tn − g(θ)] = Oup(1).

1.6 Definition. Statistic Tn is a uniformly asymptotically normal (UAN)
estimator of g(θ) if there exists a function σ : Θ → R such that

√
n

σ(θ)
[Tn − g(θ)] ⇒d Φ,

where Φ is the c.d.f. of the standard normal distribution.
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2 Properties

Some well-known properties of the op, Op and →d concepts are clearly inher-
ited by their uniform analogues, oup, Oup and ⇒d. However, a little caution
is sometimes necessary. To show that we are not cheating, we will first be
very explicit in our derivations. To make the text legible, we will quickly
stop being so explicit. In what follows, Zn(θ), Rn(θ) etc. denote random
variables, while Tn, Xn etc. stand for statistics.

2.1 Lemma. If Zn(θ) ⇒pr 0 and % : R → R is a Borel measurable function
such that limz→0 %(z) = 0 then % (Zn(θ)) ⇒pr 0.

Proof. For every ε > 0 there is a δ > 0 such that |z| ≤ δ implies |%(z)| ≤ ε.
Hence

Pθ(|%(Zn(θ))| > ε) ≤ Pθ((|Zn(θ)| > δ).

It follows from the assumption that the supremum of the RHS with respect
to θ tendss to 0.

2.2 Lemma. If Xn(θ) = Oup(1) and Rn(θ) = oup(1) then Xn(θ)Rn(θ) =
oup(1).

Proof. Fix ε, η > 0. Choose n0 and m such that supθ Pθ(|Xn(θ)| > m) < η
for n ≥ n0. Then choose n1 such that supθ Pθ(|Rn(θ)| > ε/m) < η for n ≥ n1.
For n ≥ max(n0, n1) we thus have

Pθ(|Xn(θ)Rn(θ)| > ε) ≤ Pθ(|Xn(θ)| > m)+Pθ(|Rn(θ)| > ε/m) < 2η,

for all θ.

An important special case obtains if Rn(θ) = rn(θ) are deterministic func-
tions. Then Rn(θ) ⇒pr 0 reduces to ordinary uniform convergence rn(θ) ⇒ 0.

2.3 Lemma. If Xn(θ) ⇒d F for some c.d.f. F then Xn(θ) = Oup(1).
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Proof. Fix an ε > 0 and choose m such that 1 − F (m) + F (−m) < ε. For
sufficiently large n, say n ≥ n0 we have supθ |Pθ(Xn(θ) ≤ x)− F (x)| < ε for
all x. Therefore for n ≥ n0,

Pθ(|Xn| > m) ≤ Pθ(Xn(θ) ≤ −m) + 1− Pθ(Xn(θ) ≤ m)

≤ |Pθ(Xn(θ) ≤ −m)− F (−m)|+ F (−m)

+ 1− F (m) + |F (m)− Pθ(Xn(θ) ≤ m)|
< ε + F (−m) + 1− Φ(m) + ε < 3ε,

for all θ, which proves our assertion.

2.4 Corollary. Let rn be a sequence of deterministic functions and assume
that Zn(θ) ⇒d F . If rn(θ) are uniformly bounded then rn(θ)Zn(θ) = Oup(1).
If rn(θ) ⇒ 0 then rn(θ)Zn(θ) = oup(1).

Note that the condition rn(θ) ⇒ 0 is essential. The following example illus-
trates the situation.

2.5 EXAMPLE. Suppose Tn ∼ N(θ, θ2/n) under Pθ, with θ ∈ Θ = R. Then
Tn is clearly UAN, because (

√
n/θ)[Tn−θ] ∼ N(0, 1). However, Tn is not uni-

formly consistent. The reason is that θ/
√

n → 0 pointwise but not uniformly,
θ/
√

n 6⇒ 0.

2.6 Lemma (A uniform version of Slucki’s Theorem). If Xn(θ) ⇒d F and
Rn(θ) ⇒pr 0 then Xn(θ) + Rn(θ) ⇒d F

Proof. Let us begin with the following self-evident inequalities:

Pθ (Xn + Rn ≤ x) ≤ Pθ (Xn ≤ x + δ) + Pθ (Rn < −δ)

Pθ (Xn + Rn ≤ x) ≥ Pθ (Xn ≤ x− δ)− Pθ (Rn > δ) .

It follows that∣∣Pθ (Xn + Rn ≤ x)− F (x)
∣∣ ≤ sup

x

∣∣Pθ (Xn ≤ x + δ)− F (x + δ)
∣∣

+ sup
x
|F (x + δ)− F (x)|

+ Pθ (|Rn| > δ) .

The contribution of the middle term on the RHS can be made arbitrarily
small in view of the uniform continuity of F . The first term goes uniformly
to 0 because Xn(θ) ⇒d F and the third term – because Rn(θ) ⇒pr 0.
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2.7 Lemma (A uniform version of the δ-method). Let h : R → R be a Borel
function differentiable at µ. Assume that h and µ do not depend on θ. If

√
n

σ(θ)
[Zn(θ)− µ] ⇒d Φ,

h′(µ) 6= 0 and σ(θ) ≤ b < ∞ for all θ ∈ Θ then

√
n

σ(θ)h′(µ)
[h(Zn(θ))− h(µ)] ⇒d Φ.

Proof. By the definition of derivative, h(z)−h(µ) = h′(µ)(z−µ)+%(z)(z−µ),
where %(z) → 0 as z → µ. We can write

√
n

σ(θ)h′(µ)
[h(Zn(θ))− h(µ)] =

√
n

σ(θ)
[Zn(θ)− µ]

+
r(Zn(θ))

h′(µ)

√
n

σ(θ)
[Zn(θ)− µ]

:= Vn(θ) + Rn(θ)Vn(θ).

By assumption, Vn(θ) ⇒d Φ. Corollary 2.4 implies that Zn(θ) − µ ⇒pr 0
(note that σ(θ)/

√
n ⇒ 0 because σ(θ) is bounded). Then it follows from

Lemma 2.1 that Rn(θ) ⇒pr 0. The conclusion now follows from Lemma 2.2
and Lemma 2.6.

A Appendix: a uniform CLT

In this appendix, we follow Borovkov [1] (Appendix IV, par. 4, Th. 5). How-
ever, in contrast with Borovkov, we consider only a fixed limit law N(0, 1).
Borovkov does not mention that his sufficient condition for UAN for i.i.d.
summands (Condition A.2 below) is also necessary.

We consider a sequence of random variables X1(θ), . . . , Xn(θ), . . . defined on
a statistical space (Ω,F , {Pθ : θ ∈ Θ}). Let Φ be the c.d.f. of N(0, 1).
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A.1 Theorem. Let us assume that for every θ, random variables X1(θ), . . . ,
Xn(θ), . . . are i.i.d. with EθXi(θ) = µ(θ) and finite variance VarθXi(θ) =
σ2(θ). Let Sn(θ) =

∑n
i=1 Xi(θ). Write X(θ) = X1(θ) and

X̃(θ) =
X(θ)− µ(θ)

σ(θ)

for the standardized single variable. Then

(A.2) sup
θ

EθX̃(θ)2I(|X̃(θ)| > a) → 0 (a →∞)

is a necessary and sufficient condition for

(A.3)
Sn(θ)− nµ(θ)

σ(θ)
√

n
⇒d Φ.

Proof. The crucial point is to notice that the uniform convergence (A.3), i.e.

sup
θ

sup
−∞<x<∞

∣∣∣∣Pθ

(
Sn(θ)− nµ(θ)

σ(θ)
√

n
≤ x

)
− Φ(x)

∣∣∣∣→ 0.

is equivalent to the following statement: for every sequence θn of elements of
Θ we have

(A.4) sup
−∞<x<∞

∣∣∣∣Pθn

(
Sn(θn)− nµ(θn)

σ(θn)
√

n
≤ x

)
− Φ(x)

∣∣∣∣→ 0.

Therefore if we let

Xnk =
Xk(θn)− µ(θn)

σ(θn)
√

n
, (k = 1, . . . , n),

we can use the classical Lindeberg-Feller theorem for triangular arrays (e.g.
Borovkov [1] or Dudley [2]). It should be emphasized that theorems for tri-
angular arrays allow the rows to be defined on different probability spaces.
Clearly, we have

∑n
k=1 Xnk = Sn(θn)/(σ(θn)

√
n), EθnXnk = 0,

∑n
k=1 EθnX2

nk =
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1 and maxn
k=1 EθnX2

nk = 1/n → 0. It remains to check the Lindeberg condi-
tion. If (A.2) holds then

Ln :=
n∑

k=1

EθnX2
nkI(|Xnk| > ε) = EθnX̃(θn)2I(|X̃(θn)| > ε

√
n) → 0,

so the Lindeberg condition is fulfilled and (A.4) follows. Conversly, if (A.2)
does not hold then for some sequence (θn) we have Ln 6→ 0. The Feller’s
theorem (e.g. [2], note to par. 9.4) implies that (A.4) is not true.

A.5 REMARK. The condition (A.2) follows from the following “Lyapunov
type” condition

sup
θ

Eθ|X̃(θ)|2+δ < ∞.

Indeed, EθX̃(θ)2I(|X̃(θ)| > a) ≤ a−δEθ|X̃(θ)|2+δ.

A.6 EXAMPLE (CTG for the Bernoulli scheme, [4]). Let X = X1, . . . , Xn, . . .
be i.i.d. with Pθ(X = 1) = θ = 1 − Pθ(X = 0). The parameter space is
Θ =]0, 1[. We have

X̃(θ) =
X − θ√
θ(1− θ)

.

It is easy to see that for θ sufficiently close to 0,

EθX̃(θ)2I(|X̃(θ)| > a) ≥ Eθ

(
X − θ√
θ(1− θ)

)2

I(X = 1) = 1− θ,

so the condition (A.2) is not satisfied. Therefore,∑n
i=1 Xi − θ√
θ(1− θ)

6⇒d Φ (0 < θ < 1).

Thus the CLT for the Bernoulli scheme (de Moivre-Laplace Theorem) is not
uniform.
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However, if we restrict the parameter space to a compact subset of ]0, 1[ (say
[δ, 1− δ]) it is easy to see that the CLT becomes uniform. Indeed,

EθX̃(θ)4 =
1 + 2θ2 − 3θ4

θ2(1− θ)2
.

Theorem A.1 combined with Remark A.5 yields immediately a uniform CTG:∑n
i=1 Xi − nθ√
nθ(1− θ)

⇒d Φ (δ ≤ θ ≤ 1− δ).

A.7 EXAMPLE (CTG for the Negative Binomial scheme, [4]). Suppose Y =
Y1, . . . , Yn, . . . are i.i.d. and have the geometric distribution, Pθ(Y = k) =
θ(1− θ)k−1 for k = 1, 2, . . ..

We will use the following elementary facts about the geometric distribution
(see mathworld.wolfram.com for example):

µ(θ) = Eθ(Y ) =
1

θ
, σ2(θ) = Varθ(Y ) =

1− θ

θ2

m4(θ) = Eθ(Y − µ(θ))4 =
(1− θ)(θ2 − 9θ + 9)

θ4
.

Just as in the previous example we can show that∑n
i=1 θYi − n√
n(1− θ)

6⇒d Φ (0 < θ < 1),

because the uniform convergence fails for θ close to 1.

If the parameter space is Θ =]0, 1−δ] with δ > 0 then a uniform CTG follows
again from Theorem A.1 and Remark A.5. Now we have

Ỹ (θ) =
θY − 1√

1− θ
and EθỸ (θ)4 =

θ2

1− θ
+ 9.

Consequently,∑n
i=1 θYi − n√
n(1− θ)

⇒d Φ (0 < θ < 1− δ).
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B Appendix: a general definition of uniform

convergence in distribution

Definition 1.1 can be generalized in the following way (e.g. Borovkov [1],
Chapter II, par. 37, Def. 2). Let Z1(θ), . . . , Zn(θ), . . . be a sequence of
random variables defined on a statistical space (Ω,F , {Pθ : θ ∈ Θ}). Let
{Fθ : θ ∈ Θ} be a family of probability distributions.

B.1 Definition. Uniform convergence in distribution Zn(θ) ⇒d Fθ holds if
for every continuous and bounded function h,

sup
θ

∣∣∣∣Eθh(Zn(θ))−
∫

hdFθ

∣∣∣∣→ 0.

If we take Fθ = Φ, we reduce Definition 1.1 to a special case of B.1. Moreover,
if we take Fθ = δ0 = I[1,∞[, i.e. the c.d.f. of a probability concentrated at zero,
then Zn(θ) ⇒d δ0 is equivalent to Zn(θ) ⇒pr 0, as defined by 1.2. However,
some caution is necessary. There are some nuances related to the uniform
convergence to laws which depend on θ. The apparent analogue of 1.1, i.e.

sup
θ∈Θ

sup
−∞<x<∞

|Pθ (Zn(θ) ≤ x)− Fθ(x)| → 0 (n →∞),

is not equivalent to Zn(θ) ⇒d Fθ.

We freely identify probability laws with their c.d.f.’s – thus writing ⇒d N(0, 1)
instead of ⇒d Φ and so on.

B.2 EXAMPLE. Consider the Bernoulli scheme, just as in Example A.6. Let
X = X1, . . . , Xn, . . . be i.i.d. with Pθ(X = 1) = θ = 1 − Pθ(X = 0). The
parameter space is Θ =]0, 1[. Let X̄n =

∑n
i=1 Xi/n. On the one hand we

know that
√

n√
θ(1− θ)

[X̄n − θ] 6⇒d N(0, 1),

see also [5]. On the other hand Theorem 2 in par. 37, Chapter II in [1]
implies that

√
n[X̄n − θ] ⇒d N (0, θ(1− θ)) .
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[5] Zieliński R. (2004). Effective WLLN, SLLN and CLT in statistical mod-
els, Appl. Math. 31, 1, 117–125.

11


