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FINITE CLOSED COVERINGS OF
COMPACT QUANTUM SPACES

PIOTR M. HAJAC, ATABEY KAYGUN, AND BARTOSZ ZIELIŃSKI

ABSTRACT. We show that a projective space P∞(Z/2) endowed with the Alexandrov topology
is a classifying space for finite closed coverings of compact quantum spaces in the sense that any
such a covering is functorially equivalent to a sheaf over this projective space. In technical terms,
we prove that the category of finitely supported flabby sheaves of algebras is equivalent to the cat-
egory of algebras with a finite set of ideals that intersect to zero and generate a distributive lattice.
In particular, the Gelfand transform allows us to view finite closed coverings of compact Haus-
dorff spaces as flabby sheaves of commutative C*-algebras over P∞(Z/2). As a noncommutative
example, we construct from Toeplitz cubes a quantum projective space whose defining covering
lattice is free.

Dedicated to Henri Moscovici on the occasion of his 65th birthday.
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INTRODUCTION

Motivation. In the day-to-day practice of the mathematical art, one can see a recurrent theme
of reducing a complicated mathematical construct into its simpler constituents, and then putting
these constituents together using gluing data that prescribes how these pieces fit together con-
sistently. The (now) classical manifestation of such gluing arguments in various flavours of
geometry is the concept of a sheaf on a topological space, or more generally on a topos. Another
manifestation of such gluing arguments appeared in noncommutative geometry as the descrip-
tion of a noncommutative space via a finite closed covering. Here a covering is defined as a
distinguished finite set of ideals that intersect to zero and generate a distributive lattice [19]. This
can be considered as a noncommutative analogue of [45, Prop. 1.10].

Manifolds without boundary fit particularly well this piecewise approach because they are
defined as spaces that are locally diffeomorphic to Rn. Thus a manifold appears assembled from
standard pieces by the gluing data. The standard pieces are contractible — they are homeomor-
phic to a ball. They encode only the dimension of a manifold. All the rest, topological properties
of the manifold included, are described by the gluing data. The aim of this article is to explore the
method of constructing noncommutative deformations of manifolds by deforming the standard
pieces. This method is an alternative to the global deformation methods. Thus it is expected to
yield new examples or provide a new perspective on already known cases.

Main results. Following [19], we express the gluing data of a compact Hausdorff space as a
sheaf of algebras over a certain universal topological space, and extend it to the noncommutative
setting. This universal topological space is explicitly constructed as the infinite Z/2-projective
space P∞(Z/2) endowed with the Alexandrov topology. The advantages of this new theorem over
its predecessor [19, Cor. 4.3] are twofold. First, it considers coverings rather than topologically
unnatural ordered coverings. To this end, we need to construct more refined morphisms between
sheaves than natural transformations. Next, as P∞(Z/2) := colimitN>0PN(Z/2), it takes care of
all finite coverings at once.

Theorem 2.13. The category of finite coverings of algebras is equivalent to the category of
finitely-supported flabby sheaves of algebras over P∞(Z/2) whose morphisms are obtained by
taking a certain quotient of the usual class of morphisms enlarged by the actions of a specific
family of endofunctors.

Our second main result concerns a new noncommutative deformation of complex projective
space and the lattice generated its covering. The guiding principle of our deformation is to
preserve the gluing data of this manifold while deforming the standard pieces. We refine the
affine covering of a complex projective space to the Cartesian powers of unit discs, and replace
the algebra of continuous functions on the disc by the Toeplitz algebra commonly regarded as
the algebra of a quantum disc [24]. The main point here is that we preserve the freeness property
enjoyed by the lattive generated by the affine covering of a complex projective space:

Theorem 3.7. LetC(PN(T )) ⊂
∏N

i=0 T ⊗N be the C*-algebra of the Toeplitz quantum projective
space, and let πi : C(PN(T )) → T ⊗N , i ∈ {0, . . . , N}, be the family of restrictions of the
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canonical projections onto the components. Then the family of ideals {kerπi| 0 6 i 6 N}
generates a free distributive lattice.

Sheaves, patterns, and P -diagrams. The idea of using lattices to study closed coverings of
noncommutative spaces has already been widely studied (see [26]). The coverings are closed to
afford the C*-algebraic description. Therefore, a natural framework for coverings uses sheaf-like
objects defined on the lattice of closed subsets of a topological space, or more generally, topoi
modelled upon finite closed coverings of topological spaces. Interestingly, the original defini-
tion of sheaves by Leray was given in terms of the lattice of closed subspaces of a topological
space [27, p. 303]. This definition changed in the subsequent years into the nowadays standard
open-set formulation for various reasons.

Recently, however, a closed-set approach re-appeared in the form sheaf-like objects called
patterns [30]. We show in Proposition 1.19 that for our combinatorial models based on finite
Alexandrov spaces, the distinction between sheaves and patterns is immaterial. Another refor-
mulation of sheaves over Alexandrov spaces is given by the concept of a P -diagram. It is widely
known among commutative algebraists (e.g., see [10, Prop. 6.6] and [45, p. 174]) that any sheaf
on an Alexandrov space P can be recovered from its P -diagram (cf. Theorem 1.21). See also [17]
for a different approach.

Noncommutative projective spaces as homogeneous spaces over quantum groups. Complex
projective spaces are fundamental examples of compact manifolds without boundary. They can
be viewed as the quotient spaces of odd-dimensional spheres divided by an action of the group
U(1) of unitary complex numbers. This presentation allows for a noncommutative deforma-
tion coming from the world of compact quantum groups via Soibelman-Vaksman spheres. This
construction has been widely studied, and recently entered the very heart of noncommutative
geometry via the study of Dirac operators on the thus constructed quantum projective spaces [1].

Recall that the C*-algebra C(CPN
q ) of functions on a quantum projective space, as defined

by Soibelman and Vaksman [44], is the invariant subalgebra for an action of U(1) on the C*-
algebra of the odd-dimensional quantum sphere C(S2N+1

q ) (cf. [31]). By analyzing the space of
characters, we want to show that this C*-algebra is not isomorphic to the C*-algebra C(PN(T ))

of the Toeplitz quantum projective space proposed in this paper, unless N = 0. To this end, we
observe first that one can easily see from Definition 3.2 that the space of characters onC(PN(T ))

contains the N -torus. On the other hand, since C(CPN
q ) is a graph C*-algebra [21], its space

of characters is at most a circle. Hence these C*-algebras can coincide only for N = 0, 1. For
N = 0, they both degenerate to C, and for N = 1, they are known to be the standard Podleś and
mirror quantum spheres, respectively. The latter are non-isomorphic, so that the claim follows.

Better still, one can easily show that the space of characters of the C*-algebras of the
quantum-group projective spaces admit only one character. Indeed, these C*-algebras are ob-
tained by iterated extensions by the ideal of compact operators, i.e., for any N , there is the short
exact sequence of C*-algebras [21, eq. 4.11]:

(1) 0 −→ K −→ C(CPN
q ) −→ C(CPN−1

q ) −→ 0.
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On the other hand, any character on a C*-algebra containing the ideal K of compact operators
must evaluate to 0 on K, as otherwise it would define a proper ideal in K, which is impossible.
Therefore, not only any character onC(CPN−1

q ) naturally extends to a character onC(CPN
q ), but

also any character on C(CPN
q ) naturally descends to a character on C(CPN−1

q ). Hence the space
of characters on C(CPN

q ) coincides with the space of characters on C(CPN−1
q ). Remembering

that C(CP 0
q ) = C, we conclude the claim.

Outline. Sections 2 and 3 are devoted to the main results of this paper. Section 1 is of prelim-
inary nature. It is focused on explaining the emergence of the projective space P∞(Z/2) as the
classifying space of finite coverings. We show how finite closed coverings of compact Hausdorff
spaces naturally yield finite partition spaces with Alexandrov topology. Then we interpret them
as projective spaces PN(Z/2) and take the colimit with N → ∞. We continue with analyz-
ing in detail the topological properties of P∞(Z/2) to be ready for studying sheaves of algebras
over P∞(Z/2) — the main objects of Section 2.

In Section 1, we also present the classical complex projective space PN(C) as the colimit
of a certain diagram, so that, via the Gelfand transform, we can dualize it to the limit of the
dual diagram of C*-algebras. It is this construction that we deform (quantize) in Section 3 to
obtain the C*-algebra of our noncommutative (quantum) complex projective space as a limit
(multirestricted pullback) of C*-algebras. Since a key tool to study lattice properties of this C*-
algebra is the Birkhoff Representation Theorem, we explain it at the very beginning of Section 1.

Notation and conventions. Throughout the article we fix a ground field k of an arbitrary charac-
teristic. We assume that all algebras are over k and are associative and unital but not necessarily
commutative. We will use N and Z to denote the set of natural numbers and the ring of integers,
respectively. We will assume 0 ∈ N. The finite set {0, . . . , N} will be denoted by N for any
natural number N . However, the finite set {0, 1} when viewed as the finite field of 2 elements
will be denoted by Z/2. We will use 2X to denote the set of all subsets of an arbitrary set X . If x
is a sequence of elements from a setX , we will use κ(x) to denote the underlying set of elements
of x. The symbol |X| will stand for the cardinality of the set X .

1. PRIMER ON LATTICES AND ALEXANDROV TOPOLOGY

We first recall definitions and simple facts about ordered sets and lattices to fix notation. Our
main references on the subject are [9, 11, 40].

A set P together with a binary relation 6 is called a partially ordered set, or a poset in short,
if the relation 6 is (i) reflexive, i.e., p 6 p for any p ∈ P , (ii) transitive, i.e., p 6 q and q 6 r

implies p 6 r for any p, q, r ∈ P , and (iii) anti-symmetric, i.e., p 6 q and q 6 p implies p = q

for any p, q ∈ P . If only the conditions (i)-(ii) are satisfied we call 6 a preorder. For every
preordered set (P,6) there is an opposite preordered set (P,6)op given by P = P op and p 6op q

if and only if q 6 p for any p, q ∈ P .

A poset (P,6) is called a semi-lattice if for every p, q ∈ P there exists an element p∨q such
that (i) p 6 p ∨ q, (ii) q 6 p ∨ q, and (iii) if r ∈ P is an element which satisfies p 6 r and q 6 r
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then p∨q 6 r. The binary operation ∨ is called the join. A poset is called a lattice if both (P,6)

and (P,6)op are semi-lattices. The join operation in P op is called the meet, and traditionally
denoted by ∧. One can equivalently define a lattice P as a set with two binary associative
commutative and idempotent operations ∨ and ∧. These operations satisfy two absorption laws:
p = p ∨ (p ∧ q) and p = p ∧ (p ∨ q) for any p, q ∈ P . A lattice (P,∨,∧) is called distributive
if one has p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r) for any p, q, r ∈ P . Note that one can prove that the
distributivity of meet over join we have here is equivalent to the distributivity of join over meet.

Let (P,6) be an ordered set, and let ↑p = {q ∈ P | p 6 q} for any p ∈ P . As a natural
extension of notation, we define ↑U :=

⋃
p∈U ↑p for all U ⊆ P . The sets U ⊆ P that satisfy

U = ↑U are called upper sets or dual order ideals. The topological space we obtain from an
ordered set using the upper sets as open sets is called an Alexandrov space. Note that a set U is
open in the Alexandrov topology if and only if for any u ∈ U one has ↑u ⊆ U .

Next, let Λ be any lattice. Element c ∈ Λ is called meet irreducible if

(1) c = a ∧ b ⇒ (c = a or c = b),
(2) ∃ λ ∈ Λ : λ 66 c.

The set of meet irreducible elements of the lattice Λ is denoted M(Λ). The join irreducibles
J (Λ) are defined dually. Celebrated Birkhoff’s Representation Theorem [8] states that, if Λ is a
finite distributive lattice, then the map

(2) Λ 3 a 7−→ {x ∈M(Λ) | x > a} = M(Λ) ∩ ↑a ∈ Up(M(Λ))

assigning to a the set of all meet irreducible elements greater or equal then a is a lattice isomor-
phism between Λ and the lattice Up(M(Λ)) of upper sets of meet-irreducible elements of Λ with
the set intersection and union as its join and meet, respectively. We refer to this isomorphism as
the Birkhoff transform. Let us observe that it is analogous to the Gelfand transform: every finite
distributive lattice is the lattice of uppersets of a certain poset just as every unital commutative
C*-algebra is the algebra of continuous functions on a certain compact Hausdorff space.

1.1. Projective spaces over Z/2 as partition spaces.

In [39], Sorkin defined and investigated the order structure on the spaces here we call partition
spaces. For the lattice of subsets covering a space, the partition spaces play a role analogous to
the set of meet-irreducible elements of an arbitrary finite distributive lattice, i.e., they are much
smaller than lattices themselves while encoding important lattice properties. Sorkin’s primary
objective was to develop finite approximations for topological spaces via their finite open cov-
erings (see also [5, 14]). We will use the dual approach: we will investigate spaces with finite
closed coverings. See also [45, 46] for a more algebraic approach. We begin by analyzing prop-
erties of partition spaces.

Definition 1.1. Let X be a set and let C = {C0, . . . , CN} be a finite covering of X , i.e., let⋃
C :=

⋃
iCi = X . For any x ∈ X , we define its support suppC(x) = {C ∈ C| x ∈ C}. A

preorder ≺C on X is defined by x ≺C y if and only if suppC(x) ⊇ suppC(y). We also define an
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equivalence relation ∼C by letting x ∼C y if and only if suppC(x) = suppC(y). Note that ≺C

induces on X/∼C a partial order. This space is called the partition space associated with the
finite covering C of X .

Definition 1.2. LetX and C be as before. We use (X,≺C) to denote the setX with its Alexandrov
topology induced from the preorder relation ≺C defined above.

Example 1.3. Consider a region on the 2-dimensional Euclidean plane covered by three disks in
generic position, and the corresponding poset, as described below:

(3)

A

BC

D
E

F

G
A

F

BC

DG E
.

Here an arrow → indicates the existence of an order relation between the source and the target.

Definition 1.4. Let X be a set and C = {C0, . . . , CN} be a finite covering of X . The covering
C viewed as a subbasis for closed sets induces a topology on X . The space X together with the
topology induced from C is denoted by (X, C).

Proposition 1.5. Let X be a set and let C be a finite covering. The Alexandrov topology defined
by the preorder ≺C coincides with the topology in Definition 1.4.

Proof. We need to prove that a subset L is closed in (X, C) if and only if it is closed in (X,≺C).
By Lemma 1.18 and the definition of Alexandrov topology, we see that sets of the form L(x) =

{x′ ∈ X| x′ ≺C x} form a basis for the set of closed sets in (X,≺C). So, it is enough to prove
the same statement for L(x) for any x ∈ X . Let

(4) Cx :=
⋂

suppC(x) :=
⋂

C∈suppC(x)

C

We have x′ ≺C x in X if and only if x′ is covered by the same sets from C, or more. In other
words x′ ≺C x if and only if x′ ∈ Cx, i.e. Cx = L(x). So, both topologies share the same basis
for the closed sets. The result follows. �

Corollary 1.6. The canonical quotient map π : (X, C) → (X/∼C, ≺C) is a continuous map
which is both open and closed.

Proof. The canonical quotient map π : (X,≺C) → (X/∼C,≺C) is continuous, open and closed
since π is an epimorphism of posets, and the preorder relation ≺C on the quotient X/∼C is
induced by the preorder relation ≺C on X , and therefore upper and lower sets (basic open and
closed sets respectively) in (X,≺C) are sent to corresponding upper and lower sets in (X/∼C,≺C).
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The result follows immediately since (X, C) and the Alexandrov space (X,≺C) are homeomor-
phic. �

Lemma 1.7. Let C be a finite covering of a set X . Let X/∼C be the partition space associated
with the covering C and π : X → X/∼C be the canonical surjection on the quotient. Denote by
ΛC the lattice of subsets of X generated by the covering C and by Λπ(C) the lattice of subsets of
X/∼C generated by π(C) := {π(C)| C ∈ C}. The two lattices are isomorphic via the induced
morphism of lattices

π̂ : ΛC −→ Λπ(C), λ 7−→ π(λ),

whose inverse is given by

π̂−1 : Λπ(C) −→ ΛC, λ 7−→ π−1(λ).

Proof. Inverse images preserve set unions and intersections. Hence π̂−1 is a lattice morphism.
On the other hand, though in general images preserve only unions, here we have

(5) π(x) ∈ π(Ci) ⇔ x ∈ Ci
for any i. It follows that

π(x) ∈ π(Ci1) ∩ · · · ∩ π(Cik) ⇔ x ∈ Ci1 ∩ · · · ∩ Cik
⇒ π(x) ∈ π(Ci1 ∩ · · · ∩ Cik).(6)

In other words, π(Ci1)∩ · · · ∩π(Cik) is a subset of π(Ci1 ∩ · · · ∩Cik). As the containment in the
other direction always holds, it follows that π̂ is also a lattice morphism. Since π−1(π(Ci)) = Ci
for all i, one also sees immediately that π̂−1 is the inverse of π̂. �

Let N be the set {0, . . . , N} for any N ∈ N. The projective space over a field k is denoted
by PN(k). It is defined as the space kN+1 divided by the diagonal action of the non-zero scalars
k× := k \ {0}. For k = Z/2, we obtain

(7) PN(Z/2) := {(z0, . . . , zN) ∈ (Z/2)N+1| ∃i ∈ N, zi = 1}.

The projective space PN(Z/2) has a natural poset structure: for any a = (ai)i∈N and b = (bi)i∈N
in PN(Z/2) we write a 6 b if and only if ai 6 bi for any i ∈ N . We are ready now to compare
partition spaces with Z/2-projective spaces with Alexandrov topology. The following theorem
is a direct generalization of [19, Prop. 4.1]:

Theorem 1.8. Let C = (C0, . . . , CN) be a finite covering of X with a fixed ordering on the
elements of the covering. Let χa be the characteristic function of a subset a ⊆ N . Then the map
ξ : X → PN(Z/2) defined by

ξ(x) = χs(x) , s(x) = {i ∈ N | x ∈ Ci} ,

yields a morphism of posets ξ : (X,≺C)
op → (PN(Z/2), 6) and, consequently, a continuous

map between Alexandrov spaces. Moreover, ξ is both open and closed, and it factors through the
quotient (X/∼C,≺C)

op as ξ = ξ̂ ◦ π, where ξ̂ : (X/∼C,≺C)
op → (PN(Z/2), 6) is an embedding

of Alexandrov topological spaces.
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1.2. Topological properties of partition spaces.

Let 2N denote the set of all subsets of N = {0, . . . , N} and 2N \ {∅} denote the set of all non-
empty subsets of N . Both 2N and 2N \ {∅} are posets with respect to the inclusion relation ⊆.
For any non-empty subset a ⊆ N , one has a sequence (a0, . . . , aN) where

(8) ai =

{
1 if i ∈ a,
0 otherwise.

In other words, the sequence (a0, . . . , aN) is the characteristic function χa of the subset a ⊆ N .
The assignment a 7→ χa determines a bijection between the set of non-empty subsets of N and
the projective space PN(Z/2). Its inverse is defined as

(9) ν(z) := {i ∈ N | zi = 1}, z = (zi)i∈N ∈ (Z/2)N+1.

With this bijection, one has (ai)i∈N 6 (bi)i∈N if and only if ν((ai)i∈N) ⊆ ν((bi)i∈N). In other
words, we have the following:

Proposition 1.9. The map ν : PN(Z/2) → 2N \ {∅} is an isomorphism of posets, and thus a
homeomorphism of Alexandrov spaces.

Definition 1.10. For any i ∈ N and any non-empty subset a ⊆ N , we define open sets

AN
i = {(z0, . . . , zN) ∈ (Z/2)N+1 | zi = 1} = ↑χ{i} and AN

a :=
⋂
i∈a

AN
i = ↑χa .

For brevity, when there is no risk of confusion we omit the superscripts and write Ai and Aa

instead of AN
i and AN

a .

Lemma 1.11. For all N > 0, the map φN : PN(Z/2) −→ PN+1(Z/2) defined by

(10) φN(z0, . . . , zN) := (z0, . . . , zN , 0)

is an embedding of topological spaces.

Proof. The fact that the maps φN are injective is obvious. They are also continuous since we
have

(11) φ−1
N (AN+1

i ) =

{
AN
i if i 6 N,

∅ if i = N + 1,

and

(12) φN(PN(Z/2)) ∩ AN+1
i =

{
φN(AN

i ) if i ∈ N,
∅ otherwise,

for the open subsets in the subbasis of the Alexandrov topology. �

The maps φN : PN(Z/2) → PN+1(Z/2) form an injective system of maps of Alexandrov
spaces. Hence we can define:

Definition 1.12. P∞(Z/2) := colimitN>0PN(Z/2).
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We can represent the points of P∞(Z/2) as infinite sequences {(zi)i∈N | zi ∈ Z/2} where
the number of non-zero terms is finite and greater than zero. The canonical morphisms of the
colimit iN : PN(Z/2) → P∞(Z/2) send a finite sequence (z0, . . . , zN) to the infinite sequence
(z0, . . . , zN , 0, 0, . . .) obtained from the finite sequence by padding it with countably many 0’s.
The topology on the colimit is the topology induced by the maps {iN}N∈N.

Let Fin denote the set of all finite subsets of N. By convention 0 is an element of N. One can
extend the bijection ν : PN(Z/2) → 2N \{∅} to a bijection of the form ν : P∞(Z/2) → Fin\{∅}.
The inverse of ν is given by the assignment a 7→ χa := (ai)i∈N which is defined as

(13) ai =

{
1 if i ∈ a,
0 otherwise,

for any a ∈ Fin. The map ν : P∞(Z/2) → Fin \ {∅} is an isomorphism of posets, and therefore
the Alexandrov spaces P∞(Z/2) and Fin \ {∅} are homeomorphic.

We also have a natural poset structure on P∞(Z/2) where (ai)i∈N 6 (bi)i∈N if and only if
ai 6 bi for any i ∈ N. Therefore, we have two possibly different topologies on P∞(Z/2): one
coming from the preorder structure, and the other coming from the colimit.

Theorem 1.13. The following statements hold:

(1) The Alexandrov topology and the colimit topology on P∞(Z/2) are the same.
(2) The spaces PN(Z/2) are T0 but not T1 for any N = 1, . . . ,∞.
(3) PN(Z/2) is a connected topological space for any N = 0, 1, . . . ,∞.
(4) The topology on P∞(Z/2) is compactly generated.

Proof. For any i ∈ N and a ∈ Fin \ {∅}, we define

(14) A∞
i := ↑χ{i} and A∞

a :=
⋂
i∈a

A∞
i = ↑χa

which are open in the Alexandrov topology.

Proof of (1): Let iN : PN(Z/2) → P∞(Z/2) be the structure maps of the colimit. We need
to prove that an open set in one topology is open in the other, and vice versa. The set {A∞

a | a ∈
Fin \ {∅}} is a basis for the Alexandrov topology since each A∞

a is an upper set. Then

(15) i−1
N (A∞

a ) =

{
AN
a if a ⊆ N,

∅ if a * N

is an open set in PN(Z/2) for any N > 0 and a ∈ 2N \ {∅}. Therefore, every open set in
Alexandrov topology is open in the colimit topology. Now, assume U ⊆ P∞(Z/2) is open in
the colimit topology. We can assume every sequence in P∞(Z/2) is of the form χa for a unique
a ∈ Fin \ {∅} since z = χν(z) for any z ∈ P∞(Z/2). Now assume χa ∈ U and we have χa 6 χb
for some χb ∈ P∞(Z/2). We need to show that χb ∈ U . Since b ∈ Fin \ {∅}, we have a natural
number N = max(b) > 1. Moreover, we have an inequality

(16) i−1
N (χa) = χa 6 χb = i−1

N (χb)
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in PN(Z/2). Since i−1
N (U) is open in the Alexandrov topology of PN(Z/2), we must have χb ∈

i−1
N (U) in PN(Z/2), which in turn implies χb ∈ U .

Proof of (2): Let p, q ∈ PN(Z/2), p 6= q. Then ν(p) 6= ν(q). Let us suppose without loss
of generality that i ∈ ν(p) and i /∈ ν(q). Then q /∈ ↑p which proves that PN(Z/2) is T0. On the
other hand if p < q then for any open set U ⊆ PN(Z/2) such that p ∈ U also q ∈ U (as U is an
upper set). It follows that PN(Z/2) is not T1.

Proof of (3): Suppose there exists a non-empty subset V ( PN(Z/2) that is both open and
closed. Let χa ∈ PN(Z/2) and χb ∈ PN(Z/2) \ V . Then, because V and PN(Z/2) \ V are open,
we have χa∪b ∈ V and χa∪b ∈ PN(Z/2) \ V , which is a contradiction.

Proof of (4): In order to prove our assertion, we need to show that for any a ∈ Fin \ {∅} the
set A∞

a is compact. Let a ∈ Fin \ {∅} and suppose that U = {Ui}i∈I is an open covering of A∞
a .

Since a is finite we have χa ∈ A∞
a and since U is a covering, there exists j ∈ I such that χa ∈ Uj .

Since Uj is open in the Alexandrov topology we obtain ↑χa = A∞
a ⊆ Uj . Consequently, for any

finite subset α of Fin \ {∅}, the set
⋃
a∈α A∞

a is compact. The result follows. �

1.3. Continuous maps between partition spaces.

In the following, unless explicitly stated otherwise, N will be a finite natural number or ∞.
Accordingly, the set {0, . . . , N} will be a finite set or will be N if N = ∞. For example, a
permutation σ : {0, . . . , N} → {0, . . . , N} is either a finite permutation or an arbitrary bijection
N → N.

Let Op(P∞(Z/2)) be the lattice of open subsets of P∞(Z/2). It is obvious that any continuous
map f : PN(Z/2) → PM(Z/2) defines a morphism between lattices of open sets of the form
Xf : Op(PM(Z/2)) −→ Op(PN(Z/2)), where

(17) Xf (U) := f−1(U).

Conversely, we have the following:

Proposition 1.14. Let M and N be finite natural numbers or ∞. Let X : Op(PM(Z/2)) −→
Op(PN(Z/2)) be a lattice morphism with the property that⋃

i∈{0,...,M}

X(AM
i ) = PN(Z/2),(18a)

⋂
i∈a

X(AM
i ) = ∅, for all infinite a ⊆ {0, . . . ,M}.(18b)

Then there exists a unique continuous function fX : PN(Z/2) → PM(Z/2) such that, for all open
subsets U ⊆ PM(Z/2), we have X(U) = f−1

X (U).

Proof. We define a map fX : PN(Z/2) → PM(Z/2) as

(19) fX : z 7−→ χa, where a := {i ∈ {0, . . . ,M} | z ∈ X(AM
i )}.
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We observe that a is non-empty due to the condition (18a), and finite due to the condition (18b).
By definition, z ∈ f−1

X (AM
i ) ⇔ fX(z) ∈ AM

i ⇔ i ∈ ν(fX(z)) ⇔ z ∈ X(AM
i ). This proves both

the uniqueness and continuity of fX. �

Note that the conditions (18a) and (18b) are satisfied for Xf for any continuous f because⋂
i∈a Ai = ∅ for any infinite a, and f−1 preserves infinite unions and intersections.

Finally, in order to characterize the continuous maps of the projective spaces PN(Z/2), we
will need the following technical lemma.

Lemma 1.15. Let N and M be finite natural numbers or ∞. Let f : PN(Z/2) → PM(Z/2) be a
continuous map of Alexandrov spaces.

(1) If f is injective then |ν(z)| 6 |ν(f(z))| for any z ∈ PN(Z/2).
(2) If f is surjective then |ν(z)| > |ν(f(z))| for any z ∈ PN(Z/2).

Therefore, if f is bijective then |ν(z)| = |ν(f(z))| for any z ∈ PN(Z/2).

Proof. Observe that for any z ∈ PN(Z/2), one can compute |ν(z)| as

(20) |ν(z)| = max{n ∈ N | a1 < · · · < an < z, ai ∈ PN(Z/2)}

If f is injective, for any proper chain of elements a1 < · · · < an < z in PN(Z/2) the elements
f(ai) form a proper chain of elements f(a1) < · · · < f(an) < f(z) in PM(Z/2). Thus |ν(z)| 6
|ν(f(z))| for any z ∈ PN(Z/2). If f is surjective then for any proper chain of elements b1 <
· · · < bm < f(z) in PM(Z/2) we have a proper chain of elements a1 < · · · < am < z in PM(Z/2)

such that f(ai) = bi for i = 1, . . . ,m. This means |ν(z)| > |ν(f(z))| for any z ∈ PN(Z/2). �

Theorem 1.16. LetN andM be finite natural numbers or∞. A map f : PN(Z/2) → PM(Z/2) is
continuous if and only if f is a morphism of posets. Furthermore, a map f : PN(Z/2) → PN(Z/2)

is a homeomorphism if and only if there exists a bijection σ : N → N such that f(χa) = χσ−1(a),
for any subset a.

Proof. We will prove the first statement for N = M = ∞. Assume f is a continuous map. Then
by definition f−1(U) is open for any U ⊆ P∞(Z/2). We would like to show that f is a morphism
of posets. Assume t 6 z in P∞(Z/2). We would like to compare f(t) and f(z) which will be
equivalent to comparing the upper sets ↑f(t) and ↑f(z). Since f is continuous, the set f−1(↑f(t))

is open. Moreover, since t ∈ f−1(↑f(t)) we have z ∈ f−1(↑f(t)) because t 6 z and f−1(↑f(t))

is open. Then f(z) ∈ (f ◦ f−1)(↑f(t)) ⊆ ↑f(t), or equivalently f(t) 6 f(z). Now assume f is
a morphism of posets. In order to prove continuity, it is enough to show that f−1(Aa) is open for
any a ∈ Fin \ {∅}. So, fix a ∈ Fin \ {∅} and consider t ∈ f−1(Aa) which means χa 6 f(t).
Let z ∈ P∞(Z/2) such that t 6 z. Since f is a morphism of posets we have χa 6 f(t) 6 f(z),
i.e. z ∈ f−1(Aa) as we wanted to show.

For the second statement, we consider a bijection σ : N → N . It induces a bijection of
the form fσ : PN(Z/2) → PN(Z/2) with the inverse (fσ)

−1 = fσ−1 . Since f−1
σ (Ai) = Aσ(i) for
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all i, fσ is a homeomorphism. Conversely, assume we have a homeomorphism f : PN(Z/2) →
PN(Z/2). Consider ` ⊆ N and χ` ∈ PN(Z/2). By Lemma 1.15 the function f satisfies |ν(z)| =
|ν(f(z))| for any z ∈ PN(Z/2). This means f determines a unique permutation σ of N such that
f(χ{i}) = χ{σ−1(i)}. Suppose that we have already proven that f(χ`) = χσ−1(`) for all ` such that
0 < |`| 6 n. Pick ` ⊆ N , with |`| = n, and j ∈ N \ `. By the induction hypothesis we know
that χσ−1(`) = f(χ`) and therefore χσ−1(`) 6 f(χ`∪{j}) in PN(Z/2). Then by Lemma 1.15 we
see that |ν(f(χ`∪{j}))| = n + 1, hence f(χ`∪{j}) = χσ−1(`)∪{k} for some k /∈ σ−1(`). It remains
to prove that k = σ−1(j). By definition χσ−1(`)∪{k} ∈ Ak. Hence χ`∪{j} ∈ f−1(Ak) = Aσ(k) and
therefore σ(k) ∈ ` ∪ {j}. But as σ(k) /∈ ` we must have σ(k) = j. �

We end this subsection by introducing a monoid that acts on P∞(Z/2) by continuous maps
and is pivotal on our classification theorem. It is a monoid that labels all finite sequences that can
be formed from a given finite set.

Definition 1.17. A surjection α : N → N is called tame if

(1) α−1(i) is finite for any i ∈ N,
(2) |α−1(i)| > 1 for finitely many i ∈ N.

We denote the monoid of all such tame surjections by M.

It is clear that the composition of any two tame surjections is again a tame surjection, and that
the monoid is generated by bijections and the following tame surjection:

(21) ∂(i) =

{
i if i = 0,

i− 1 if i > 0 .

We can view elements of P∞(Z/2) as maps from N to Z/2. Then the monoid M acts
on P∞(Z/2) by pullbacks. Here the tameness property ensures that such pullbacks preserve
P∞(Z/2), and the following definition

(22) fα(χa) := α∗(χa) = χα−1(a) for all a ∈ Fin \ ∅,

guarantees that they are morphisms of posets, whence continuous in the Alexandrov topology.
Observe that this pullback representation of the monoid M is faithful.

1.4. Sheaves and patterns on Alexandrov spaces.

In [30], Maszczyk defined the topological dual of a sheaf, called a pattern, akin to Leray’s
original definition of sheaves [27, pg. 303] using closed sets instead of open sets. A pattern is
a sheaf-like object defined on the category of closed subsets Cl(X) of a topological space X
with inclusions. Explicitly, a pattern of sets on a topological space X is a covariant functor
F : Cl(X)op → Set satisfying the property that, for any given finite closed covering {Cλ}λ of
X , the canonical diagram

(23) F (X) →
∏
λ

F (Cλ) ⇒
∏
λ,µ

F (Cλ ∩ Cµ)
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is an equalizer diagram. A pattern F on a topological space is called global if for any inclusion
of closed sets C ′ ⊆ C the restriction morphism F (C) → F (C ′) is an epimorphism.

We would like to note that for compact Hausdorff spaces Leray’s definition of faisceau
continu is equivalent to the definition of a sheaf. However, in this paper we only consider sheaves
over Alexandrov spaces which are of completely different nature, and thus we cannot exchange
these two concepts. On the other hand, for any finite Alexandrov space, we show below that
the category of global patterns and the category of flabby sheaves are equivalent up to a natural
duality.

Lemma 1.18. Let (P,6) be a preordered set. A subset C ⊆ P is closed in the Alexandrov
topology of P if and only if C is open in the Alexandrov topology of the opposite preordered set
(P,6)op.

Proof. Since (P,6) = ((P,6)op)op and the statement is symmetric, we need to prove only one
implication. Assume C is closed and let x ∈ C. In order to prove that C is open in the opposite
Alexandrov topology, we need to show that y ∈ C for any y 6 x. Suppose the contrary that
y 6 x and y ∈ Cc := P \ C. Since Cc is open in the Alexandrov topology of (P,6) and y 6 x,
we must have x ∈ Cc, which is a contradiction. �

It follows that the lattice of open sets of an Alexandrov space (P,6) is isomorphic to the
lattice of closed sets of the dual Alexandrov space (P,6)op. Hence:

Proposition 1.19. Let (P,6) be a finite preordered set. The category of (flabby) sheaves on
an Alexandrov space (P,6) is isomorphic to the category of (global) patterns on the opposite
Alexandrov space (P,6)op.

Proof. Since the lattice of closed subsets of (P,6)op is isomorphic to the lattice of open subsets of
(P,6), we conclude that any (flabby) sheaf on (P,6) is a (global) pattern on (P,6)op regardless
of P being finite. Conversely, assume F is a (global) pattern on (P,6)op, and let U be an open
cover of (P,6). Since P is finite, the number of open and closed subsets of P is finite as well.
Thus U is a finite collection closed sets in (P,6)op sets covering P . Since F is a (global) pattern
on (P,6)op,

(24) F (P ) →
∏
U∈U

F (U) ⇒
∏

U,U ′∈U

F (U ∩ U ′)

is an equalizer diagram. Then we conclude immediately that F is a sheaf. �

The restriction that P is finite comes from the definition of a pattern. A pattern is a sheaf-like
object where Diagram (24) is an equalizer for only finite closed coverings, as opposed to a sheaf
where Diagram (24) is an equalizer for every (finite or infinite) open covering.

Next, we consider a poset (P,6) as a category by letting

(25) Ob(P ) = P and HomP (p, q) =

{
{p→ q} if p 6 q,

∅ otherwise.
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Then a functor X : P → k-Mod is just a collection of k-modules {Xp}p∈P together with mor-
phisms of k-modules Tqp : Xp → Xq such that (i) Tpp = idXp and (ii) Trq ◦ Tqp = Trp. Any such
object will be called a right P -module. The category of right P -modules and their morphisms
will be denoted by P -Mod. We will call a P -module flabby if each Tpq is an epimorphism. If
X : P → Algk is a functor into the category of k-algebras, then it will be referred as a right
P -algebra. The category of P -algebras and their morphisms will be denoted by AlgP .

For a topological space X and a covering O of X , we say that O is stable under finite
intersections if for any finite collection O1, . . . , On of sets from O there exists a subset O′ ⊆ O
such that

(26)
n⋂
i=1

Oi =
⋃

O′∈O′
O′.

Lemma 1.20. Let F be a sheaf of algebras on a topological space X . Then for any open subset
U ⊆ X and any open covering U of U that is stable under finite intersections, the canonical
morphism F (U) → limV ∈U F (V ) is an isomorphism.

Proof. First, we recall that F is a sheaf of algebras on a topological space X if and only if given
an open subset U and a covering U of U we have:

(1) for any s ∈ F (U), if ResUV (s) = 0 for all V ∈ U , then s = 0,
(2) for a collection of elements {sV ∈ F (V )}V ∈U indexed by U and satisfying ResVV ∩W (sV ) =

ResWV ∩W (sW ), there exists s ∈ F (U) with ResUV (s) = sV for any V ∈ U .

Now assume that F is a sheaf and U is an open covering of an open subset U that is stable under
finite intersections. Recall that

(27) lim
V ∈U

F (V ) = {(fV )V ∈U | fV ∈ F (V ) and fW = ResVW (fV ) for any V ⊇ W ∈ U}.

The canonical morphism F (U) → limV ∈U F (U) sends each element s ∈ F (U) to the sequence
(ResUV (s))V ∈U . The condition (1) implies that the canonical morphism is injective. Every ele-
ment (fV )V ∈U of limV ∈U F (V ) satisfies ResVV ∩W (fV ) = ResWV ∩W (fW ) because of the fact that
U is stable under finite intersections, and F is a sheaf. Then the condition (2) implies that the
canonical morphism is an epimorphism. �

The following result is well-known for sheaves of modules. See [10, Prop. 6.6] for a proof.
Here we prove an analogous result for sheaves of algebras.

Theorem 1.21. Let (P,6) be a poset. Then the category of sheaves of k-algebras on the Alexan-
drov space (P,6) is equivalent to the category P -algebras.

Proof. Consider an arbitrary sheaf of algebras F ∈ Sh(P ). Define a collection of k-algebras
{Fp}p∈P indexed by elements of P by letting Fp := F (↑p) for any p ∈ P . Then ↑p ⊇ ↑q
for any p 6 q. Therefore, since F is a sheaf, we have well-defined morphisms of k-modules
T Fqp : Fp → Fq for any p 6 q that satisfy (i) T Fpp = idFp for any p ∈ P , and (ii) T Frq ◦T Fqp = T Frp for
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any p 6 q 6 r in P . In other words, {Fp}p∈P is a right P -algebra. Also, given any morphism
of sheaves f : F → G, we have well-defined morphisms of algebras {fp}p∈P that fit into a
commutative diagram of the form:

(28) Fp

fp

��

TF
qp // Fq

fq

��
Gp

TG
qp

// Gq.

This means that we have a functor of the form Φ: Sh(P ) → AlgP .

Conversely, assume that we have such a collection of algebras F = {Fp}p∈P with structure
morphisms Tqp : Fp → Fq for any p 6 q satisfying the conditions (i) and (ii) described above.
We let Υ(F)(V ) = limv∈V Fv viewing P as a category as in (25). Now, for any inclusion of
open sets V ⊆ W , we have a morphism of algebras ResWV (Υ(F)) : Υ(F)(W ) → Υ(F)(V ).
By definition, it is the canonical morphism of limits limw∈W Fw → limv∈V Fv. Thus we see that
Υ(F) is a pre-sheaf.

To show that Υ(F) is a sheaf, we fix an open subset U ⊆ P and an open covering U
of U . Using the description analogous to Equation (27), one can see that for any (fu)u∈U ∈
Υ(F)(U) = limu∈U Fu we have ResUV (f) = 0 for any V ∈ U if and only if fu = 0 for any
u ∈ U . Moreover, assume that we have a collection of elements fV := (fVv )v∈V ∈ Υ(F)(V )

indexed by V ∈ U satisfying ResVV ∩WΥ(F)(fV ) = ResWV ∩WΥ(F)(fW ) for any V,W ∈ U . This
means fVz = fWz for any z ∈ V ∩W . Notice that ResVZ (fVv )v∈V = (fVz )z∈Z ∈ Υ(F)(Z) for
any open subset Z of V . Therefore, one can patch {(fVv )v∈V }V ∈U by letting f = (fu)u∈U by
forgetting the superscripts indicating which open subset we consider. Hence we can conclude
that Υ(F) indeed is a sheaf.

Next, to show that Υ is compatible with morphisms, for an arbitrary morphism f : {Fp}p∈P →
{Gp}p∈P of right P -algebras and for any open subset V ⊆ P , we define:

(29) Υ(f)(V ) := lim
v∈V

fv : Υ({Fp}p∈P )(V ) −→ Υ({Gp}p∈P )(V ).

Thus we obtain a functor of the from the category of P -algebras into the category of sheaves
of k-algebras on (P,6). One can see that Υ(Φ(F ))(V ) = limv∈V F (↑v). Since {↑v| v ∈ V }
is an open cover of V that is stable under finite intersections and F is a sheaf, it follows from
Lemma 1.20 (cf. [22, Sect. 2.2, pg.85]) that F (V ) ∼= limv∈V F (↑v). Hence we conclude that the
endofunctors id and Υ◦Φ are isomorphic. It is easy to see that Φ◦Υ is the identity functor since
any p ∈ P is the unique minimal element of the open set ↑p. The result follows. �

We end this subsection with the following direct generalization of [19, Subsect. 2.2]. It
is needed to upgrade the flabby-sheaf classification of ordered N -coverings [19, Cor. 4.3] to a
classification of arbitrary finite ordered coverings we develop in Lemma 2.9.
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Lemma 1.22. Let (Lat(A),∩,+) denote the lattice of all ideals in an algebra A. Assume that
(Ii)i∈N is a sequence of ideals such that only finitely many of them are different from A. Then,
for any open subset U ⊆ P∞(Z/2), the map given by

(30) R(Ii)i(U) :=
⋂

a∈ν(U)

∑
i∈a

Ii

defines a morphism of lattices R(Ii)i : Op(P∞(Z/2)) → Lat(A).

Proof. By Proposition 1.9, the map ν : PN(Z/2) → 2N \ {∅} given by (9) is an isomorphism of
posets. For an open subset U ⊆ PN(Z/2), we let ν(U) = {ν(z)| z ∈ U}. Since ν is a bijection
we have

(31) ν(U1 ∩ U2) = ν(U1) ∩ ν(U2) and ν(U1 ∪ U2) = ν(U1) ∪ ν(U2)

for any U1, U2 ∈ Op(P∞(Z/2)). In order to prove that R(Ii)i is a morphism of lattices, we need to
show that

(32) R(Ii)i(U1 ∩ U2) = R(Ii)i(U1) +R(Ii)i(U2), R(Ii)i(U1 ∪ U2) = R(Ii)i(U1) ∩R(Ii)i(U2),

for all U1, U2 ∈ Op(P∞(Z/2)). First note that although the intersection in formula (30) is poten-
tially infinite, the number of intersecting ideals different from A is always finite. It is also trivial
to see that the second identity in (32) is satisfied.

To prove the first identity, we see that for all upper sets α1, α2 ⊆ Fin we have

(33) α1 ∩ α2 = {a1 ∪ a2 | a1 ∈ α1, a2 ∈ α2}.

Since a1 ⊆ a1 ∪ a2 and a2 ⊆ a1 ∪ a2, we see that the left hand side contains the right hand side.
The other inclusion follows from the fact that α1 ∩ α2 ⊆ α1 and α1 ∩ α2 ⊆ α2 and a = a ∪ a.
From the distributivity of the lattice generated by ideals Ii and the fact that ν is a bijection, we
obtain: ⋂

a∈ν(U1∩U2)

∑
i∈a

Ii =
⋂

a∈ν(U1)∩ν(U2)

∑
i∈a

Ii

=
⋂

a∈ν(U1)

⋂
b∈ν(U2)

∑
i∈a∪b

Ii

=
⋂

a∈ν(U1)

∑
i∈a

Ii +
⋂

b∈ν(U2)

∑
i∈b

Ii.(34)

The result follows. �

1.5. Closed covering of PN(C) as an example of a free lattice.

In [19], a closed refinement of the affine covering of PN(C) was constructed as an example of a
finite closed covering of a compact Hausdorff space. Let us recall this construction. The elements
of this covering are given by:

(35) Vi := {[x0 : . . . : xN ] | |xi| = max{|x0|, . . . , |xN |}}, i ∈ N.
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It is easy to see that the family {Vi}i∈N of closed subsets of PN(C) is a covering of PN(C), i.e.,⋃
i Vi = PN(C). This covering is interesting because of its following property:

Proposition 1.23. The distributive lattice generated by the subsets Vi ⊂ PN(C), i ∈ N , is free.

Proof. Sets {Ai}i covering PN(Z/2) generate the free distributive lattice on N + 1 generators.
One can demonstrate this by showing that for any distributive lattice Λ generated by N + 1

elements there exists a lattice morphism from the lattice generated by Ai’s into Λ. (See, e.g., [19,
Sect. 2.2] and Proposition 1.9, cf. Lemma 1.22.) We prove the proposition by showing that this
free lattice is isomorphic with the lattice generated by Vi’s.

Let C = {V0, . . . , VN}, and ∼C be the equivalence relation from Definition 1.1. The par-
tition space (PN(C)/∼C,≺C)

op associated with the covering C is homeomorphic with PN(Z/2)

([19, Ex. 4.2]). The Ai’s subgenerate the topology of PN(Z/2) as open subsets, and the home-
omorphism between PN(Z/2) and (PN(C)/∼C,≺C)

op defines an isomorphism between the re-
spective lattices of nonempty open sets. Hence, by Lemma 1.7, the canonical surjection π :

PN(C) → PN(C)/∼C provides an isomorphism between the lattice of nonempty open sets of
(PN(C)/∼C,≺C)

op and the lattice generated by Vi’s. �

Now we use the covering {Vi}i∈N to present PN(C) as a multipushout, and, consequently,
its C*-algebra C(PN(C)) as a multipullback. To this end, we first define a family of homeomor-
phisms:

ψi : Vi −→ D×N := D × . . .×D︸ ︷︷ ︸
N times

,

[x0 : . . . : xN ] 7−→
(
x0

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xN
xi

)
,(36)

for all i ∈ N , from Vi onto the Cartesian product of N -copies of 1-disk. Inverses of ψi’s are
given explicitly by

(37) ψ−1
i : D×N 3 (d1, . . . , dN) 7−→ [d1 : . . . : di : 1 : di+1 : . . . : dN ] ∈ PN(C).

Pick indices 0 6 i < j 6 N and consider the following commutative diagram:

(38) PN(C)

D×N

44iiiiiiiiiiii
Vi

ψioo
- 


<<yyyyyyyyy
Vj

ψj //
1 Q

bbEEEEEEEEE

D×N

jjU U U U U U U U U U U U

D×j−1 × S ×D×N−j
?�

OO

Vi ∩ Vj
1 Q

bbEEEEEEEEE - 


<<xxxxxxxxxψijoo
ψji // D×i × S ×D×N−i−1.

� ?

OO

Here, for

(39) k =

{
n if m < n,

n+ 1 if m > n,
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we have

(40) ψmn := ψm|Vm∩Vn
: Vm ∩ Vn −→ D×k−1 × S ×D×N−k.

In other words, counting from 1, the 1-circle S appears on the k’th position among disks. It
follows immediately from the definition of ψi’s that the maps

(41) Υij := ψji ◦ ψ−1
ij : D×j−1 × S ×D×N−j −→ D×i × S ×D×N−i−1, i < j,

can be explicitly written as

(42) Υij(d1, . . . , dj−1, s, dj+1, . . . , dN) =

(s−1d1, . . . , s
−1di, s

−1, s−1di+1, . . . , s
−1dj−1, s

−1dj+1, . . . , s
−1dN).

One sees from Diagram (38) that PN(C) is homeomorphic to the disjoint union
⊔N
i=0D

×N
i of

N + 1-copies of D×N divided by the identifications prescribed by the the following diagrams
indexed by i, j ∈ N , i < j,

(43) D×N
i D×N

j

D×j−1 × S ×D×N−j
� ?

OO

Υij // D×i × S ×D×N−i−1.
� ?

OO

Consequently, one sees that the C*-algebra C(PN(C)) of continuous functions on PN(C) is
isomorphic with the limit of the dual diagram to Diagram (43):

(44) C(D)⊗Ni

����

C(D)⊗Nj

����

C(D)⊗j−1 ⊗ C(S)⊗ C(D)×N−j C(D)⊗i ⊗ C(S)⊗ C(D)⊗N−i−1.
Υ∗ijoo

Here the tensor product is the completed tensor product. Note that, by construction, C(PN(C)) ⊆∏N
i=0C(D)⊗Ni .

Finally, observe that the covering of PN(C) discussed above naturally gives rise to a flabby
sheafF over PN(Z/2) of unital commutative C*-algebras. Explicitly, for any openU ⊆ PN(Z/2),

(45) F (U) := C(ξ−1(U)),

where ξ : PN(C) → PN(Z/2) is the map defined in Theorem 1.8. Restriction morphisms are
defined by

(46) ResUV : F (U) −→ F (V ), f 7−→ f |ξ−1(V ).

In particular, F (Ai) is isomorphic to C(D)⊗N for all i.
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2. CLASSIFICATION OF FINITE COVERINGS VIA THE UNIVERSAL PARTITION SPACE P∞(Z/2)

The aim of this section is to establish an equivalence between the category of finite coverings
of algebras and an appropriate category of finitely-supported flabby sheaves of algebras. To this
end, we first define a number of different categories of coverings and sheaves. Then we explore
their interrelations to assemble a path of functors yielding the desired equivalence of categories.

2.1. Categories of coverings.

Let X be a topological space and C be a collection of subsets of X that cover X , i.e.,
⋃
U∈C U =

X . We allow ∅ ∈ C. Recall that such a set is called a covering of X . A covering C is called
finite if the set C is finite. A covering C of a topological space X is called closed (resp. open)
if C consists of closed (resp. open) subsets of X . Now we consider the category of pairs of the
form (X, C) where X is a topological space and C is a closed (or open) covering. A morphism
f : (X, C) → (X ′, C ′) is a continuous map of topological spaces f : X → X ′ such that for any
C ∈ C there exists C ′ ∈ C′ with the property that C ⊆ f−1(C ′). In the spirit of the Gelfand
transform, we are going to dualize this category to the category of algebras.

Let Π = {πi : A → Ai}i be a finite set of epimorphisms of algebras. We allow the case
Ai = 0 for some i. Denote by Λ the lattice of ideals generated by kerπi, where ∩ and + denote
the join and meet operations, respectively. Recall from [19] that the set Π is called a covering if
the lattice Λ is distributive and

⋂
i ker(πi) = 0. Finally, an ordered family Π = (πi : A→ Ai)i

is called an ordered covering if the set κ(Π) := {πi : A→ Ai}i is a covering. In such an ordered
sequence (πi : A→ Ai)i we allow repetitions.

In [19], for each natural number N > 1, the authors defined a category CN whose objects
are pairs (A; π1, . . . , πN) whereA is a unital algebra, and the ordered sequence (π1, . . . , πN) is an
ordered covering ofA. A morphism between two objects f : (A; π1, . . . , πN) → (A′; π′1, . . . , π

′
N)

is a morphism of algebras f : A → A′ such that f(ker(πi)) ⊆ ker(π′i), or equivalently that
ker(πi) ⊆ f−1(ker(π′i)) for any i = 1, . . . , N . This category is called the category of ordered
N -coverings of algebras.

For any natural number N > 0, there is a functor eN : CN → CN+1 which is defined as
eN(A; π1, . . . , πN) := (A; π1, . . . , πN , A → 0) on the set of objects for any (A; π1, . . . , πN) ∈
Ob(CN). The functor is defined to be identity on the set of morphisms. Moreover, observe that
for any (A,Π) and (A′,Π′) in Ob(CN), N > 0, we have

(47) HomCN+1
(eN(A,Π), eN(A′,Π′)) = HomCN

((A,Π), (A′,Π′)).

Therefore, eN is both full and faithful. Now, we define

Definition 2.1. OCovfin := colimNCN . The category OCovfin is called the category of finite
ordered coverings of algebras.

One can think of OCovfin as the category of pairs of the form (A,Π), where A is again
a unital algebra. This time Π is an infinite sequence of epimorphisms πi : A → Ai indexed
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by i ∈ N with the property that (i) all but finitely many of these epimorphisms have zero
codomain, and (ii) the underlying set κ(Π) of epimorphisms is a covering of A. A morphism
f : (A; π0, π1, . . .) → (A′; π′0, π

′
1, . . .) is a morphism of algebras f : A → A′ with the property

that ker(πi) ⊆ f−1(ker(π′i)) for any i ∈ N.

Next, recall from the beginning of this section that, in the category of topological spaces to-
gether with a prescribed finite covering, a covering is a collection of sets devoid of an ordering on
the covering sets. Thus, it is necessary for us to replace the ordered sequences of epimorphisms
in the objects of the category OCovfin, and work with finite sets of epimorphisms of algebras.

Definition 2.2. Let Covfin be a category whose objects are pairs (A,Π), where A is a unital
algebra and Π is a finite set of unital algebra epimorphisms that is a covering of the algebra A.
A morphism f : (A,Π) → (A′,Π′) in this category is a morphism of algebras f : A → A′

satisfying the condition that for any epimorphism π′i : A
′ → A′i in the covering Π′ there exists an

epimorphism πj : A → Aj in the covering Π such that ker(πj) ⊆ f−1(ker(π′i)). This category
will be called the category of finite coverings of algebras.

If f : (A,Π) → (A′,Π′) is a morphism in Covfin, we will say that f implemented by the
morphism of algebras f : A → A′. Note that the matching of the epimorphisms, or rather the
kernels, is not part of the datum defining a morphism. We also need the following auxiliary
category.

Definition 2.3. CategoryAux is a category whose objects are the same as the objects ofOCovfin.
A morphism f : (A,Π) → (A′,Π′) in Aux is a morphism of algebras f : A → A′ satisfying the
property that for every π′j appearing in the sequence Π′ there exists an epimorphism πi appearing
in the ordered sequence Π such that ker(πi) ⊆ f−1(ker(π′j)).

As before, the matching of the epimorphisms is not part of the datum defining a morphism.

Now we want prove that the categories Aux and Covfin are equivalent. Recall first that a
functor F : C → D is called essentially surjective if for every X ∈ Ob(D) there exists an object
CX ∈ Ob(C) and an isomorphism ωX : F (CX) → X in D.

Theorem 2.4. [29, IV. 4 Thm.1] Let F : C → D be a functor that is fully faithful and essentially
surjective. Then F is an equivalence of categories.

Lemma 2.5. Consider the assignment

Z(A; π0, π1, . . .) := (A; {πi| i ∈ N}) and Z(f) := f

for every object (A; π0, π1, . . .) and morphism f : (A,Π) → (A′,Π′) in the category Aux. Then
Z defines an equivalence of categories of the form Z : Aux→ Covfin.

Proof. One can see that

(48) HomAux((A,Π), (B,Θ)) = HomCovfin
((A, κ(Π)), (B, κ(Θ))).
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This implies that Z is fully faithful, and that it makes sense for the functor Z to act as identity on
the set of morphisms. Given an object (A,Π) in Covfin, one can chose an ordering on the finite
set Π and obtain an ordered sequence of epimorphisms

(49) (π0 : A→ A0, π1 : A→ A1, . . . , πN : A→ AN),

where N = |Π|. We can pad this sequence with A → 0 to get an infinite sequence Π of
epimorphisms where only finitely many epimorphisms are non-trivial. This infinite sequence has
the property that the corresponding finite set κ(Π) of epimorphisms is the set Π ∪ {A → 0}.
Since the identity morphism idA : A→ A implements an isomorphism

(50) (A,Π ∪ {A→ 0}) −→ (A,Π)

in Covfin, we conclude that Z is essentially surjective. Now the result follows from Theorem 2.4.
�

The category Aux sits in between the category OCovfin of ordered coverings and the cate-
gory Covfin of coverings:

(51) OCovfin ↪→ Aux '−−→ Covfin.

The definitions of morphisms in the categories Aux and Covfin coincide even though the classes
of objects are different. Even though the categories OCovfin and Aux share the same objects,
there are more morphisms in Aux than in OCovfin:

(52) HomOCovfin
((A,Π), (B,Π′)) ⊆ HomAux((A,Π), (B,Π′)).

Explicitly, one can describe HomAux((A,Π), (B,Π′)) as the set of morphisms of algebras f : A→
B for which there exists a sequence of epimorphisms Π′′ obtained from Π by permutations and
insertions of already existing epimorphisms, such that f is a morphism in HomOCovfin

((A,Π′′),
(B,Π′)). This can be expressed elegantly by introducing another auxiliary category Ãux where
Aux comes out as the quotient of Ãux by an equivalence relation on the morphisms (c.f. Defi-
nition 2.6 and Lemma 2.7 below).

The reason why we prefer working with ordered sequences of epimorphisms in Aux rather
then the sets of epimorphisms in Covfin is that we want to interpret coverings in the language of
sheaves. Working with sheaves inevitably introduces order on the set of epimorphisms because
of the particular nature of morphism in the category of sheaves (c.f. Lemma 2.9). Fortunately, by
Lemma 2.5, our auxiliary category Aux, where the objects are based on ordered sequences, is
equivalent to Covfin, the category of finite coverings of algebras where the objects are based on
finite sets of epimorphisms.

Let α : N → N be a tame surjection from the monoid M (Definition 1.17). Any such α
gives rise to an endofunctor α̌ : OCovfin → OCovfin defined on objects by

(53) α̌(A, (πi)i) := (A, (πα(i))i),

and by identity on the morphisms.
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Definition 2.6. Category Ãux is a category whose objects are the same as in OCovfin and Aux.
Morphisms in Ãux are pairs of the form (f, α) : (A,Π) → (A′,Π′), where α ∈M and

f : α̌(A,Π) −→ (A′,Π′)

is a morphism in OCovfin. The identity morphisms are simply (idA, idN), and the composition of
morphisms is defined as

(g, β) ◦ (f, α) = (g ◦ (β̌f), α ◦ β).

Note that we have (β ◦ α)̌ = α̌β̌.

We define an equivalence relation on Ãux as follows. We say that two morphisms (f, α),
(f ′, α′) in Hom gAux((A,Π), (A′,Π′)) are equivalent (here denoted by (f, α) ∼ (f ′, α′)) if f = f ′

as morphisms of algebras. By [29, Proposition II.8.1], we know the quotient category Ãux/∼
exists. Moreover, it is easy to see that the relation ∼ preserves the compositions of morphisms.
Hence, by the proof of [29, Proposition II.8.1], we do not need to extend the relation ∼ to form
a quotient category. We are now ready for:

Lemma 2.7. The category Aux and the quotient category Ãux/∼ are isomorphic.

Proof. We implement the isomorphism with two functors

(54) F : Ãux/∼ −→ Aux, G : Aux −→ Ãux/∼ ,

defined as identities on objects. For any equivalence class [f, α]∼ of morphisms in Ãux/∼, we
define F ([f, α]∼) := f . On the other hand, for any morphism f : (A, (πi)i∈N) → (A′, (π′i)i∈N)

in Aux, we set G(f) := [f, α]∼, where α is any element of M satisfying:

(55) α(i) =

{
i−N for i > N,

j, where j is such that kerπj ⊆ f−1(kerπ′i), for i 6 N.

Here N ∈ N is a number such that for any i > N we have π′i := A′ → 0. It is obvious that
F ◦ G = idAux and G ◦ F = id gAux/∼. One can easily see that F and G are functorial — it is
enough to note that α̌f = f as morphisms of algebras. �

2.2. The sheaf picture for coverings.

Let Sh(P∞(Z/2)) be the category of flabby sheaves of algebras over P∞(Z/2). A morphism
f : F → G in Sh(P∞(Z/2)) is a collection {fU : F (U) → G(U)}U∈Op(P∞(Z/2)) of morphisms of
algebras (indexed by the open subsets of P∞(Z/2)) that fit into the following diagram

(56) F (U)

ResU
V (F )

��

fU // G(U)

ResU
V (G)

��
F (V )

fV

// G(V )

for any chain V ⊆ U of open subsets of P∞(Z/2).
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Definition 2.8. A flabby sheaf F ∈ Ob(Sh(P∞(Z/2))) is said to have finite support if there exists
N ∈ N such that F (An) = 0 for any n > N . The full subcategory of flabby sheaves with finite
support will be denoted by Shfin(P∞(Z/2)).

Here is an alternative way of seeing sheaves with finite support on P∞(Z/2). Any sheaf of
algebras on PN(Z/2) can be extended to a sheaf of algebras on PN+1(Z/2) by the direct image
functor

(57) Sh(PN(Z/2)) 3 F 7−→ (φN)∗(F ) ∈ Sh(PN+1(Z/2))

with respect to the canonical embedding φN : PN(Z/2) → PN+1(Z/2) defined in Lemma 1.11.
Then we obtain an injective system of small categories (Sh(PN(Z/2)), jN), and we observe that
Shfin(P∞(Z/2)) is colimNSh(PN(Z/2)).

For a flabby sheaf F in Ob(Shfin(P∞(Z/2))), we will use Resi(F ) to denote the canonical
restriction epimorphism F (P∞(Z/2)) → F (Ai) for any i ∈ N. Note that, since F is a sheaf with
finite support, all but finitely many morphisms Resi(F ) are of the form F (P∞(Z/2)) → 0. The
following Lemma is a reformulation of [19, Cor. 4.3] in a new setting. The proof is essentially
the same as in [19, Prop. 2.2] using Lemma 1.22. Note that we can apply the generalized Chinese
Remainder Theorem (e.g., see [35, Thm. 18 on p. 280] and [30]) as there is always only a finite
number of non-trivial congruences.

Lemma 2.9. For any (A,Π) ∈ Ob(OCovfin) and F ∈ Shfin(P∞(Z/2)), the following assign-
ments

Ψ(A,Π) :=
{
U 7→ A/RΠ(U)

}
U∈Op(P∞(Z/2)) ∈ Shfin(P∞(Z/2)),(58)

Φ(F ) := (F (P∞(Z/2)); Res0(F ), Res1(F ), . . . , Resn(F ), . . .) ∈ OCovfin,(59)

are functors establishing an equivalence between the categoryOCovfin of ordered coverings and
the category Shfin(P∞(Z/2)) of finitely-supported flabby sheaves of algebras over P∞(Z/2).

We would like to extend the equivalence we constructed in Lemma 2.9 to an equivalence
of categories between Aux (and therefore Covfin) and a suitable category of sheaves filling the
following diagram:

(60) OCovfin

Ψ '
��

// Aux
'

��

Z

'
// Covfin

Shfin(P∞(Z/2)) // Sh???
fin (P∞(Z/2)).

As Aux is isomorphic to a quotient category, we expect Sh???
fin (P∞(Z/2)) to be a quotient of the

following category of sheaves with extended morphisms:

Definition 2.10. The objects of S̃hfin(P∞(Z/2)) are finitely-supported flabby sheaves of alge-
bras over P∞(Z/2). A morphism [f̃ , α∗] : P → Q in S̃hfin(P∞(Z/2)) is a pair consisting of a
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continuous map (see (22))

α∗ : P∞(Z/2) −→ P∞(Z/2), χa 7−→ χα−1(a),

where M3 α : N → N is a tame surjection (Definition 1.17), and a morphism of sheaves

f̃ : α∗∗P → Q.

Composition of morphisms is given by

[g̃, β∗] ◦ [f̃ , α∗] := [g̃ ◦ (β∗∗ f̃), β∗ ◦ α∗].

Lemma 2.11. Let Ψ : OCovfin → Shfin(P∞(Z/2)) and Φ : Shfin(P∞(Z/2)) → OCovfin be
functors defined in Lemma 2.9. Then the functors

Ψ̃ : Ãux −→ S̃hfin(P∞(Z/2)), Φ̃ : S̃hfin(P∞(Z/2)) −→ Ãux,

defined on objects by

Ψ̃(A,Π) = Ψ(A,Π), Φ̃(P ) = Φ(P ),

and on morphisms by

Ψ̃(f, α) = [Ψf, α∗], Φ̃[f̃ , α∗] = (Φf̃ , α),

establish an equivalence of categories between Ãux and S̃hfin(P∞(Z/2)).

Proof. We divide the proof into several steps.

(1) (α∗)−1(Ai) = Aα(i) for all i ∈ N. Indeed,

(α∗)−1(Ai) = (α∗)−1({χa | i ∈ a ⊂ N})
= {χb | α∗(χb) = χa and i ∈ a ⊂ N}
= {χb | χα−1(b) = χa and i ∈ a ⊂ N}
= {χb | i ∈ α−1(b)}
= {χb | α(i) ∈ b ⊂ N}
= Aα(i).

(2) As α is tame by assumption, α−1(a) is finite for any finite a ⊆ N. Hence α∗ is well
defined.

(3) Equality α∗ = β∗ implies α = β for any surjective maps α, β : N → N. Hence the
functor Φ̃ is well defined.

(4) α∗∗Ψ = Ψα̌. Indeed, for any (A, (πi)i) ∈ Ãux, we see that

(α∗∗Ψ)((A, (πi)i)) = α∗∗(U 7→ A/R(πi)i(U))

= U 7→ A/R(πi)i((α∗)−1(U)),

(Ψα̌)((A, (πi)i)) = Ψ̃((A, (πα(i))i))

= U 7→ A/R(πα(i))i(U).
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On the other hand, the observation that for any open U ⊆ P∞(Z/2) we have U =⋃
a s.t.

χa∈U

⋂
i∈a Ai, and the result from Step (1), yield:

R(πi)i((α∗)−1(U)) = R(πi)i((α∗)−1(
⋃
a s.t.

χa∈U

⋂
i∈a

Ai))

= R(πi)i(
⋃
a s.t.

χa∈U

⋂
i∈a

(α∗)−1(Ai))

= R(πi)i(
⋃
a s.t.

χa∈U

⋂
i∈a

Aα(i))

=
⋂
a s.t.

χa∈U

(∑
i∈a

kerπα(i)

)

= R(πα(i))i(
⋃
a s.t.

χa∈U

⋂
i∈a

Ai)

= R(πα(i))i(U).

(5) Let α, β : N → N be maps from M. Then (α ◦ β)∗ = β∗ ◦ α∗. Indeed, for any
χa ∈ P∞(Z/2), we obtain:

(β∗ ◦ α∗)(χa) = β∗(χα−1(a)) = χ(β−1◦α−1)(a) = χ(α◦β)−1(a) = (α ◦ β)∗(χa).

(6) Ψ̃ is functorial. Indeed, take any composable morphisms (f, α) and (g, β) in Ãux. Then
the previous two steps and the functoriality of Ψ yield

Ψ̃((g, β) ◦ (f, α)) = Ψ̃((g ◦ (β̌f), α ◦ β))

= (Ψ(g ◦ (β̌f)), (α ◦ β)∗)

= (Ψ(g) ◦Ψ(β̌f)), β∗ ◦ α∗)
= ((Ψg) ◦ (β∗∗Ψf), β∗ ◦ α∗)
= [Ψg, β∗] ◦ [Ψf, α∗]

= Ψ̃((g, β)) ◦ Ψ̃((f, α)).

(7) Φα∗∗ = α̌Φ. Indeed, take any P ∈ S̃hfin(P∞(Z/2)). Using the result of Step (1), we
obtain:

(Φα∗∗)(P ) = Φ(U 7→ P (α−1(U)))

= (P (P∞(Z/2)), (P (P∞(Z/2)) 7→ P ((α∗)−1(Ai)))i)

= (P (P∞(Z/2)), (P (P∞(Z/2)) 7→ P (Aα(i)))i)

= α̌((P (P∞(Z/2)), (P (P∞(Z/2)) 7→ P (Ai))i))

= (α̌Φ)(P ).
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(8) Φ̃ is functorial. The proof uses the result from the previous step, and is analogous to the
proof of Step (6).

(9) The natural isomorphism η : ΨΦ → idShfin(P∞(Z/2)) comes from a family of isomorphisms
of sheaves ηP : ΨΦP → P . The latter are given by the canonical isomorphisms be-
tween the image of an epimorphism and the quotient of its domain by its kernel (c.f. [19,
Prop. 2.2]):

ηP,U : P (P∞(Z/2))/ ker(P (P∞(Z/2)) → P (U)) −→ P (U).

To see that, for any sheaf P ,

α∗∗ηP = ηα∗∗P ,

note that α∗∗ηP : α∗∗ΨΦP = ΨΦα∗∗P −→ α∗∗P , and

(α∗∗ηP )U

:= ηP,(α∗)−1(U)

= P (P∞(Z/2))/ ker(P (P∞(Z/2)) → P ((α∗)−1(U))) −→ P ((α∗)−1(U))

= ηα∗∗P,U .

Here the first equality is just the definition of action of direct image functor on mor-
phisms.

(10) The family of maps

η̃P := [ηP , id
∗
N] : Ψ̃Φ̃P −→ P

establishes a natural isomorphism between Ψ̃Φ̃ and idfShfin(P∞(Z/2)). It is clear that η̃P ’s
are isomorphisms. We know that η is a natural isomorphism. In particular, for any
α ∈ M and any morphism f̃ : α∗∗P → Q in Shfin(P∞(Z/2)), the following diagram is
commutative:

ΨΦα∗∗P
ηα∗∗P

//

ΨΦf̃
��

α∗∗P

f̃
��

ΨΦQ
ηQ

// Q .

On the other hand, we need to establish the commutativity of the diagrams

Ψ̃Φ̃P
eηP //

eΨeΦ[f̃ ,α∗]
��

P

[f̃ ,α∗]

��

Ψ̃Φ̃Q eηQ

// Q .
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Using Equation (10) and the results of Steps (4),(7) and (9), we obtain the desired:

η̃Q ◦ (Ψ̃Φ̃[f̃ , α∗]) = [ηQ, id
∗
N] ◦ [ΨΦf̃ , α∗]

= [ηQ ◦ (ΨΦf̃), α∗]

= [f̃ ◦ ηα∗∗P , α
∗]

= [f̃ ◦ (α∗∗ηP ), α∗]

= [f̃ , α∗] ◦ [ηP , id
∗
N]

= [f̃ , α∗] ◦ η̃P .

(11) By [19, Prop. 2.2]), we have ΦΨ = idOCovfin
. Hence, it is easy to see that the family

of identity morphisms (idA, idN) in Ãux establishes a natural isomorphism between Φ̃Ψ̃

and id gAux.

�

Our next step is to define an equivalence relation on S̃hfin(P∞(Z/2)). Let [f̃ , α∗], [g̃, β∗] :

P → Q be morphisms in S̃hfin(P∞(Z/2)). We say that they are equivalent ([f̃ , α∗] ∼ [g̃, β∗]) if
f̃P∞(Z/2) = g̃P∞(Z/2) as morphisms of algebras (c.f. the equivalence relation on Ãux, Lemma 2.7).
By [29, Proposition II.8.1], we know that the quotient category Ãux/∼ exists. Moreover, it is
easy to see that the relation ∼ preserves the compositions of morphisms. Hence, by the proof
of [29, Proposition II.8.1], we do not need to extend the relation ∼ to form a quotient category.
Note that that the equivalence class of the morphism [f̃ , α∗] in S̃hfin(P∞(Z/2)) can be represented
by f̃P∞(Z/2). Therefore, the quotient functor S̃hfin(P∞(Z/2)) → S̃hfin(P∞(Z/2))/∼ is defined on
morphisms as

(61) [f̃ , α∗] 7−→ f̃P∞(Z/2).

In other words,

(62) [f̃ , α∗]∼ := f̃P∞(Z/2).

The final step to arrive our classification of finite coverings by finitely-supported flabby
sheaves is as follows:

Lemma 2.12. The functors Ψ̃ : Ãux → S̃hfin(P∞(Z/2)) and Φ̃ : S̃hfin(P∞(Z/2)) → Ãux
send equivalent morphisms to equivalent morphisms. They descend to functors between quotient
categories

(63) S̃hfin(P∞(Z/2))
eΨ //

��

Ãux

��

S̃hfin(P∞(Z/2))/∼
Ψ

// Ãux/∼,

Ãux
eΦ //

��

S̃hfin(P∞(Z/2))

��

Ãux/∼
Φ

// S̃hfin(P∞(Z/2))/∼ ,

establishing an equivalence between S̃hfin(P∞(Z/2))/∼ and Ãux/∼.
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Proof. Note that for any morphism f in OCovfin and any morphism f̃ in Shfin(P∞(Z/2)), we
have the following equalities of algebra maps:

(64) (Ψf)P∞(Z/2) = f, Φf̃ = f̃P∞(Z/2).

It follows that, if (f, α) ∼ (g, β) in Ãux, then

(65) Ψ̃(f, α) = [Ψf, α∗] ∼ [Ψg, β∗] = Ψ̃(g, β)

in S̃hfin(P∞(Z/2)). Similarly, if [f̃ , α∗] ∼ [g̃, β∗] in S̃hfin(P∞(Z/2)), then

(66) Φ̃[f̃ , α∗] = (Φf̃ , α) ∼ (Φg̃, β) = Φ̃[g̃, β∗].

�

Summarizing the results of this section, we obtain the following commutative diagram of
functors:

(67) Covfin
// S̃hfin(P∞(Z/2))/∼

Aux

Z

77ppppppppppppp ∼ // Ãux/∼

Ψ
77oooooooooooo

Shfin(P∞(Z/2))

OO

// S̃hfin(P∞(Z/2)).

OO

OCovfin

OO

Ψ
77oooooooooooo

// Ãux

OO

eΨ
77nnnnnnnnnnnnn

Using the above diagram, we immediately conclude the first main result of this article:

Theorem 2.13. For any (A,Π) ∈ Ob(Covfin), F ∈ Ob(S̃hfin(P∞(Z/2))/∼), f ∈ Mor(Covfin),
and [f̃ , α∗]∼ ∈Mor(S̃hfin(P∞(Z/2))/∼), the following assignments

(A,Π) 7−→
{
U 7→ A/RΠ(U)

}
U∈Op(P∞(Z/2)) ∈ Ob(S̃hfin(P∞(Z/2))/∼),

F 7−→ (F (P∞(Z/2)), {Res0(F ), Res1(F ), . . . , Resn(F ), . . .}) ∈ Ob(Covfin),

f 7−→ [Ψ(f), α∗f ]∼ ∈Mor(S̃hfin(P∞(Z/2))/∼),

[f̃ , α∗]∼ 7−→ f̃P∞(Z/2) ∈Mor(Covfin),

are functors establishing an equivalence of categories between the category Covfin of finite
coverings of algebras and the quotient category S̃hfin(P∞(Z/2))/∼ of the category of finitely-
supported flabby sheaves of algebras over P∞(Z/2) with extended morphisms. Here (A,Π) is
the image of (A,Π) under an equivalence inverse to Z, and αf is a tame surjection defined as
in (55).

Observe that the equivalence of the above theorem is, essentially, the identity on morphisms. This
is because, on both sides of the equivalence, morphisms considered as input data are only algebra
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homomorhisms (see (62) and Definition 2.2). They do, however, satisfy quite different conditions
to be considered morphisms in an appropriate category. Thus the essence of the theorem is to
re-intertpret the natural defining conditions on an algebra homomorphism to be a morphism of
coverings to more refined conditions that make it a morphism between sheaves. What we gain
this way is a functorial description of coverings by the more potent concept of a sheaf. We know
now that lattice operations applied to a covering will again yield a covering.

We end this section by stating Theorem 2.13 in the classical setting of the Gelfand-Neumark
equivalence [16, Lem. 1] between the category of compact Hausdorff spaces and the opposite cat-
egory of unital commutative C*-algebras. Since the intersection of closed ideals in a C*-algebra
equals their product, the lattices of closed ideals in C*-algebras are always distributive. There-
fore, remembering that the epimorphisms of commutative unital C*-algebras can be equivalently
presented as the pullbacks of embeddings of compact Hausdorff spaces, we obtain:

Corollary 2.14. The category of finite closed coverings of compact Hausdorff spaces (see the be-
ginning of this section) is equivalent to the opposite of the quotient category S̃hfin(P∞(Z/2))/∼
of finitely-supported flabby sheaves of commutative unital C*-algebras over P∞(Z/2) with ex-
tended morphisms.

3. QUANTUM PROJECTIVE SPACE PN(T ) FROM TOEPLITZ CUBES

In this section, the tensor product means the C*-completed tensor product. Accordingly, we
use the Heynemann-Sweedler notation for the completed tensor product. Since all C*-algebras
that we tensor are nuclear, this completion is unique. Therefore, it is also maximal, which guar-
antees the flatness of the completed tensor product. We use this property in our arguments.

3.1. Multipullback C*-algebra.

As a starting point for our noncommutative deformation of a complex projective space, we take
Diagram (44) from Section 1.5 and replace the algebra C(D) of continuous functions on the unit
disc by the Toeplitz algebra T algebra considered as the algebra of continuous functions on a
quantum disc [24]. Recall that the Toeplitz algebra is the universal C*-algebra generated by z
and z∗ satisfying z∗z = 1. There is a well-known short exact sequence of C*-algebras

(68) 0 −→ K −→ T σ−→ C(S1) −→ 0.

Here σ is the so-called symbol map defined by mapping z to the unitary generator u of the algebra
C(S1) of continuous functions on a circle. Note that the kernel of the symbol map is the algebra
K of compact operators.

Viewing S1 as the unitary group U(1), we obtain a compact quantum group structure on the
algebra C(S1). Here the antipode is determined by S(u) = u−1, the counit by ε(u) = 1, and
finally the comultiplication by ∆(u) = u⊗u. Using this Hopf-algebraic terminology on the C*-
level makes sense due to the commutativity of C(S1). The coaction of C(S1) on T comes from
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the gauge action of U(1) on T that rescales z by the elements of U(1), i.e., z 7→ λz. Explicitly,
we have:

(69) ρ : T −→ T ⊗C(S1) ∼= C(S1, T ), ρ(z) := z⊗u, ρ(z)(λ) = λz, ρ(t) =: t(0)⊗t(1),

Next, we employ the multiplication map m of C(S1) and the flip map

(70) C(S1)⊗ T ⊗n 3 f ⊗ t1 ⊗ · · · ⊗ tn
τn7−→ t1 ⊗ · · · ⊗ tn ⊗ f ∈ T ⊗n ⊗ C(S1)

to extend ρ to the diagonal coaction ρn : T ⊗n −→ T ⊗n ⊗ C(S1) defined inductively by

(71) ρ1 = ρ, ρn+1 = (idT ⊗n+1 ⊗m) ◦ (idT ⊗τn ⊗ idC(S1)) ◦ (ρ⊗ ρn).

Furthermore, for all 0 6 i < j 6 N , we define an isomorphism Ψij

(72) χj ◦Ψ ◦ χ−1
i+1 : T ⊗i ⊗ C(S1)⊗ T ⊗N−i−1 Ψij−→ T ⊗j−1 ⊗ C(S1)⊗ T ⊗N−j .

Here χj is given by

(73) idT ⊗j−1 ⊗τ−1
N−j : T ⊗N−1 ⊗ C(S1)

χj−→ T ⊗j−1 ⊗ C(S1)⊗ T ⊗N−j

and Ψ by

(idT ⊗N−1 ⊗(S ◦m)) ◦ (ρN−1 ⊗ idC(S1)) : T ⊗N−1 ⊗ C(S1)
Ψ−→ T ⊗N−1 ⊗ C(S1).(74)

Before proceeding further, let us prove the unipotent property of Ψ, which we shall need later
on.

Lemma 3.1. Ψ ◦Ψ = idT ⊗N−1⊗C(S1)

Proof. For any
⊗

16i<N ti ⊗ h ∈ T ⊗N ⊗ C(S1), we compute:

(Ψ ◦Ψ)

( ⊗
16i<N

ti ⊗ h

)
= Ψ

( ⊗
16i<N

t
(0)
i ⊗ S(

∏
16i<N

t
(1)
i h)

)

=
⊗

16i<N

t
(0)
i ⊗ S

(
(
∏

16i<N

t
(1)
i )S(

∏
16i<N

t
(2)
j h)

)

=
⊗

16i<N

t
(0)
i ⊗ S

(
(
∏

16i<N

(t
(1)
i )S(t

(2)
i ))S(h)

)
=
⊗

16i<N

ti ⊗ h.(75)

�

Finally, to justify our construction of a quantum complex projective space, observe that the
map Ψij can be easily seen as an analogue of the pullback of the map Υij of (42).
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Definition 3.2. We define the C*-algebra C(PN(T )) as the limit of the diagram:

0 . . . i . . . j . . . N

T ⊗N . . . T ⊗N

σj

��

. . . T ⊗N

σi+1

��

. . . T ⊗N

. . . . . . T ⊗j−1 ⊗ C(S1)⊗ T ⊗N−j T ⊗i ⊗ C(S1)⊗ T ⊗N−i−1
Ψijoo . . . . . . .

Here σk := idT ⊗k−1 ⊗σ ⊗ idT ⊗N−k . We call PN(T ) a Toeplitz quantum complex projective
space.

Note that by definition C(PN(T )) ⊆
∏N

i=0 T ⊗N . We will denote the restrictions of the
canonical projections on the components by

(76) πi : C(PN(T )) −→ T ⊗N , ∀ i ∈ {0, . . . , N}.

Since these maps are C*-homomorphisms, the lattice generated by their kernels is automatically
distributive. On the other hand, it follows from Lemma 3.4 that any element in the Toeplitz cube
T ⊗n can be complemented into a sequence that is an element of C(PN(T )). This means that
the maps (76) are surjective. Hence they form a covering of C(PN(T )). By Theorem 2.13, this
covering gives rise to the following sheaf of C*-algebras:

(77) Op(P∞(Z/2)) 3 U F7−→ C(PN(T ))/Rπ(U).

In particular, F (Ai) ∼= T ⊗N and F (Ai ∩ Aj) ∼= T ⊗j−1 ⊗ C(S1) ⊗ T ⊗N−j for all i and j.
Furthermore, F (Ai ∪ Aj) is isomorphic to the pullback of two copies of T ⊗N :

(78) F (Ai ∪ Aj)

wwoooooooooooo

''OOOOOOOOOOOO

T ⊗N

σj ''OOOOOOOOOOOO T ⊗N

Ψij◦σi+1wwoooooooooooo

T ⊗j−1 ⊗ C(S1)⊗ T ⊗N−j .

The construction of PN(T ) is a generalization of the construction of the mirror quantum
sphere [20, p. 734], i.e., P1(T ) is the mirror quantum sphere:

(79) C(P1(T )) := {(t0, t1) ∈ T × T | σ(t0) = S(σ(t1))}.

Removing S from this definition yields the C*-algebra of the generic Podleś sphere [32]. The
latter not only is not isomorphic with C(P1(T )), but also is not Morita equivalent to C(P1(T )).
We conjecture that, by similar changes in maps Ψij , also forN > 1 we can create non-equivalent
quantum spaces.
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3.2. The defining covering lattice of PN(T ) is free.

The goal of this subsection is to demonstrate that the distributive lattice of ideals generated by
kerπi’s is free. To this end, we will need to know whether the tensor products T ⊗N of Toeplitz
algebras glue together to form PN(T ) in such a way that a partial gluing can be always extended
to a full space. The following result gives the sufficient conditions:

Proposition 3.3. [12, Prop. 9] Let {Bi}i∈{0,...,N} and {Bij}i,j∈{0,...,N},i6=j be two families of C*-
algebras such that Bij = Bji and let {πij : Bi → Bij}ij be a family of surjective C*-algebra
maps. Also, let πi : B → Bi, 0 6 i 6 N , be the restrictions of the canonical projections on the
components, where B := {(bi)i ∈

∏
iBi | πij(bi) = πji (bj)}. Assume that

(1) πij(kerπ
i
k) = πji (kerπ

j
k),

(2) the isomorphisms πijk : Bi/(kerπ
i
j + kerπik) −→ Bij/π

i
j(kerπik) defined as

bi + kerπij + kerπik 7−→ πij(bi) + πij(kerπik)

satisfy
(πikj )−1 ◦ πkij = (πijk )−1 ◦ πjik ◦ (πjki )−1 ◦ πkji .

Then, if for I ( {0, . . . , N} there exists an element (bi)i∈I ∈
∏

i∈I Bi such that πij(bi) = πji (bj)

for all i, j ∈ I , there also exits (ci)i∈{0,...,N} ∈
∏

i∈{0,...,N}Bi such that πij(ci) = πji (cj) for all
i, j ∈ {0, . . . , N} and ci = bi for all i ∈ I .

In the case of quantum projective spaces PN(T ), we can translate algebras and maps from
Proposition 3.3 as follows:

Bi = T ⊗N , Bij = T ⊗j−1 ⊗ C(S1)⊗ T ⊗N−j, where i < j,(80)

πij =

{
σj when i < j,

Ψji ◦ σj+1 when i > j.
(81)

It follows that

(82) kerπij =

{
kerσj = T ⊗j−1 ⊗K ⊗ T ⊗N−j when i < j,

kerσj+1 = T ⊗j ⊗K ⊗ T ⊗N−j−1 when i > j.

Since ρ(K) ⊆ K ⊗ C(S1) and Ψ is an isomorphism by Lemma 3.1, it follows that

(83) Ψ(T ⊗j−1 ⊗K ⊗ T ⊗N−j−1 ⊗ C(S1)) = T ⊗j−1 ⊗K ⊗ T ⊗N−j−1 ⊗ C(S1).

Now we can formulate and prove the following:

Lemma 3.4. If (bi)i∈I ∈
∏

i∈I⊆{0,...,N} T ⊗N satisfies πij(bi) = πji (bj) for all i, j ∈ I , i 6= j, then
there exists an element b ∈ C(PN(T )) such that πi(b) = bi for all i ∈ I .

Proof. It is enough to check that the assumptions of Proposition 3.3 are satisfied. For the sake of
brevity, we will omit the tensor symbols in the long formulas in what follows. We will also write
S instead of C(S1). Here we prove the first condition of Proposition 3.3:
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(1) πji (kerπ
j
k) = (χj ◦Ψ ◦ χ−1

i+1 ◦ σi+1)(kerσk+1)

= (χj ◦Ψ ◦ χ−1
i+1)(T iST k−i−1KT N−k−1) = χj(T k−1KT N−k−1S)

= T k−1KT j−k−1ST N−j = σj(kerσk) = πij(kerπik), when i < k < j.

(2) πji (kerπ
j
k) = (χj ◦Ψ ◦ χ−1

i+1 ◦ σi+1)(kerσk) = (χj ◦Ψ ◦ χ−1
i+1)(T iST k−i−2KT N−k)

= χj(T k−2KT N−kS) = T j−1ST k−j−1KT N−k = σj(kerσk) = πij(kerπik),
when i < j < k.

(3) πji (kerπ
j
k) = (χj ◦Ψ ◦ χ−1

i+1 ◦ σi+1)(kerσk+1)

= (χj ◦Ψ ◦ χ−1
i+1)(T kKT i−k−1ST N−i−1) = χj(T kKT N−k−2S) = T kKT j−k−2ST N−j

= σj(kerσk+1) = πij(kerπ
i
k), when k < i < j.

For the second condition, note first that for any multivalued map f : Bj → Bi, we define the
function

[f ]ijk : Bj/(kerπji + kerπjk) −→ Bi/(kerπij + kerπik),

bj + kerπji + kerπjk 7−→ f(bj) + kerπij + kerπik.(84)

whenever the assignement (84) is unique. In particular, since the condition (1) of Proposition 3.3
is fulfilled, we can write the map φijk := (πijk )−1 ◦ πjik as [(πij)

−1 ◦ πji ]
ij
k . Explicitly, in our case,

this map reads:

(85) φijk =

{
[σ−1
j ◦ χj ◦Ψ ◦ χ−1

i+1 ◦ σi+1]
ij
k when i < j,

[σ−1
j+1 ◦ χj+1 ◦Ψ ◦ χ−1

i ◦ σi]ijk when i > j.

We need to prove that

(86) φijk = φikj ◦ φ
kj
i , for all i, j, k.

Since (φijk )−1 = φjik , one can see readily that it is enough to limit ourselves to the case when
i < k < j. Indeed, e.g., if i < j < k then the equation (86) follows directly from φikj = φijk ◦φ

jk
i .

Next, let us denote the class of (t1 ⊗ · · · ⊗ tN) =
⊗

16n6N tn ∈ T ⊗N in T ⊗N/(kerπji + kerπjk)

by [
⊗

16n6N tn]
j
ik. Then, using the Heynemann-Sweedler notation for completed tensor product,

we compute:

φijk ([
⊗

16n6N

tn]
j

ik
) = [σ−1

j ◦ χj ◦Ψ ◦ χ−1
i+1 ◦ σi+1]

ij
k ([

⊗
16n6N

tn]
j

ik
)

= [(σ−1
j ◦ χj ◦Ψ)(

⊗
16n6N
n6=i+1

tn ⊗ σ(ti+1))]
i

jk

= [(σ−1
j ◦ χj)(

⊗
16n6N
n6=i+1

t(0)n ⊗ S(σ(ti+1)
∏

16m6N
m6=i+1

t(1)m ))]
i

jk

= [
⊗

16n6j
n6=i+1

t(0)n ⊗ (σ−1 ◦ S)(σ(ti+1)
∏

16m6N
m6=i+1

t(1)m )⊗
⊗

j+16s6N

t(0)s ]
i

jk
.(87)
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Applying the above formula twice (with changed non-dummy indices), we obtain:

(φikj ◦ φ
kj
i )([

⊗
16n6N

tn]
j

ik
) = φikj ([

⊗
16n6j
n6=k+1

t(0)n ⊗ (σ−1 ◦ S)(σ(tk+1)
∏

16m6N
m6=k+1

t(1)m )⊗
⊗

j+16s6N

t(0)s ]
k

ji
)

= [
⊗

16n6k
n6=i+1

t(0)n
(0) ⊗ (σ−1 ◦ S)(σ(t

(0)
i+1)((σ−1 ◦ S)(σ(tk+1)

∏
16m6N
m6=k+1

t(1)m ))(1)
∏

16w6N
w 6=i+1
w 6=k+1

t(0)w
(1))

⊗
⊗

k+26r6j

t(0)n
(0) ⊗ ((σ−1 ◦ S)(σ(tk+1)

∏
16m6N
m6=k+1

t(1)m ))(0) ⊗
⊗

j+16s6N

t(0)s
(0)]

i

jk
.(88)

Now, as σ−1 : C(S1) → T /K is colinear, S is an anti-coalgebra map, and ∆ is an algebra
homomorphism, we can move the Heynemann-Sweedler indices inside the bold parentheses:

[
⊗

16n6k
n6=i+1

t(0)n
(0) ⊗ (σ−1 ◦ S)(σ(t

(0)
i+1)S(σ(tk+1)

(1)
∏

16m6N
m6=k+1

t(1)m
(1))

∏
16w6N
w 6=i+1
w 6=k+1

t(0)w
(1))

⊗
⊗

k+26r6j

t(0)n
(0) ⊗ (σ−1 ◦ S)(σ(tk+1)

(2)
∏

16m6N
m6=k+1

t(1)m
(2))⊗

⊗
j+16s6N

t(0)s
(0)]

i

jk
.(89)

Here we can renumber the Heynemann-Sweedler indices using the coassociativity of ∆. We can
also use the anti-multiplicativity of S to move it inside the bold parentheses in the first line of the
above calculation. Finally, we use the commutativity of C(S1) in order to reshuffle the argument
of σ−1 ◦ S in the first line to obtain:

[
⊗

16n6k
n6=i+1

t(0)n ⊗ (σ−1 ◦ S)(σ(t
(0)
i+1)S(t

(1)
i+1)S(σ(tk+1)

(1))
∏

16w6N
w 6=i+1
w 6=k+1

(t(1)w S(t(2)w )))

⊗
⊗

k+26r6j

t(0)n ⊗ (σ−1 ◦ S)(σ(tk+1)
(2)t

(2)
i+1

∏
16m6N
m6=k+1
m6=i+1

t(3)m )⊗
⊗

j+16s6N

t(0)s ]
i

jk
.(90)

We can simplify the expression in the bold parentheses in the first line using h(1)S(h(2)) = ε(h)

and ε(h(1))h(2) = h. This results in:

[
⊗

16n6k
n6=i+1

t(0)n ⊗ (σ−1 ◦ S)(σ(t
(0)
i+1)S(t

(1)
i+1)S(σ(tk+1)

(1)))

⊗
⊗

k+26r6j

t(0)n ⊗ (σ−1 ◦ S)(σ(tk+1)
(2)t

(2)
i+1

∏
16m6N
m6=k+1
m6=i+1

t(1)m )⊗
⊗

j+16s6N

t(0)s ]
i

jk
.(91)

By the colinearity of σ, we can substitute in the above expression

σ(t
(0)
i+1)⊗ t

(1)
i+1 7→ σ(ti+1)

(1) ⊗ σ(ti+1)
(2),

σ(tk+1)
(1) ⊗ σ(tk+1)

(2) 7→ σ(t
(0)
k+1)⊗ t

(1)
k+1,(92)
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to derive:

[
⊗

16n6k
n6=i+1

t(0)n ⊗ (σ−1 ◦ S)(σ(ti+1)
(1)S(σ(ti+1)

(2))S(σ(t
(0)
k+1)))

⊗
⊗

k+26r6j

t(0)n ⊗ (σ−1 ◦ S)(t(1)k+1σ(ti+1)
(3)
∏

16m6N
m6=k+1
m6=i+1

t(1)m )⊗
⊗

j+16s6N

t(0)s ]
i

jk
.(93)

Applying again the antipode and counit properties yields the desired

[
⊗

16n6k
n6=i+1

t(0)n ⊗ (σ−1 ◦ S)(S(σ(t
(0)
k+1)))

⊗
⊗

k+26r6j

t(0)n ⊗ (σ−1 ◦ S)(t(1)k+1σ(ti+1)
∏

16m6N
m6=k+1
m6=i+1

t(1)m )⊗
⊗

j+16s6N

t(0)s ]
i

jk

=[
⊗

16n6k
n6=i+1

t(0)n ⊗ t
(0)
k+1 ⊗

⊗
k+26r6j

t(0)n ⊗ (σ−1 ◦ S)(t(1)k+1σ(ti+1)
∏

16m6N
m6=k+1
m6=i+1

t(1)m )⊗
⊗

j+16s6N

t(0)s ]
i

jk

=[
⊗

16n6j
n6=i+1

t(0)n ⊗ (σ−1 ◦ S)(σ(ti+1)
∏

16m6N
m6=i+1

t(1)m )⊗
⊗

j+16s6N

t(0)s ]
i

jk

=φijk ([
⊗

16n6N

tn]
j

ik
).(94)

�

As an immediate consequence of Birkhoff’s Representation Theorem (see our primer on
lattices for more details), one sees that two finite distributive lattices are isomorphic if and
only if their posets of meet irreducibles are isomorphic. In particular, consider a free distribu-
tive lattice generated by λ0, . . . , λN . It is isomorphic to the lattice of upper sets of the set of
all subsets of {0, . . . , N} (e.g., see [19, Sect.2.2]). The elements of the form

∨
i∈I λi, where

∅ 6= I ( {0, . . . , N}, are all distinct and meet irreducible. The first property can be deduced
from the upper-set model of a finite free distributive lattice, and the latter holds for any finite
distributive lattice. Indeed, suppose the contrary, i.e., that there exists a meet-irreducible element
whose any presentation

∨
a∈α
∧
i∈a λi is such that there is a set a0 ∈ α that contains at least two

elements. Now, the finiteness allows us to apply induction, and the distributivity combined with
irreducibility allows us to make the induction step yielding the desired contradiction. Further-
more, using again the upper-set model of a finite free distributive lattice, one can easily check
that the partial order of its meet-irreducibles elements is given by

(95)
∨
i∈I

λi 6
∨
j∈J

λj if and only if I ⊆ J, ∀ I, J 6= ∅, I, J ( {0, . . . , N}.
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Summarizing, we conclude that in order to prove that a given finitely generated distributive lattice
is free it suffices to demonstrate that the joins of generators

{∨
i∈I λi

}
∅6=I({0,...,N} are all distinct,

meet irreducible, and satisfy (95).

Lemma 3.5. For any nonempty subsets I, J ⊆ {0, . . . , N}, the ideals
⋂
i∈I kerπi are all distinct,

and we have ⋂
i∈I

kerπi ⊇
⋂
j∈J

kerπj if and only if I ⊆ J.

Proof. The “if”-implication is obvious. For the “only if”-implication, take 0 6= x ∈ K⊗N and,
for any nonempty I ⊆ {0, . . . , N}, define

(96) xI := (xi)i∈{0,...,N} ∈
⋂
i∈I

kerπi, where xi :=

{
x if i /∈ I,
0 if i ∈ I.

Let I, J ⊆ {0, . . . , N} be nonempty, and assume that I \ J is nonempty. Then it follows that

(97) xJ ∈

(⋂
j∈J

kerπj

)
\

(⋂
i∈I

kerπi

)
6= ∅.

This means that
⋂
j∈J kerπj 6⊆

⋂
i∈I kerπi, as desired. It follows that

⋂
i∈I kerπi are all distinct.

�

Lemma 3.6. The ideals
⋂
i∈I kerπi are all meet (sum) irreducible for any ∅ 6= I ( {0, . . . , N}.

Proof. We proceed by contradiction. Suppose that
⋂
i∈I kerπi is not meet irreducible for some

∅ 6= I ( {0, . . . , N}. By Lemma 3.5,
⋂
i∈I kerπi 6= {0} because I 6= {0, . . . , N}. Hence there

exist ideals

(98) aµ =
∑
J∈Jµ

⋂
j∈J

kerπj, Jµ ⊆ 2{0,...,N}, µ ∈ {1, 2},

such that

(99)
⋂
i∈I

kerπi = a1 + a2, and a1, a2 6=
⋂
i∈I

kerπi.

In particular, aµ ⊆
⋂
i∈I kerπi, µ ∈ {1, 2}. On the other hand, if I ∈ Jµ, then aµ ⊇

⋂
i∈I kerπi.

Hence aµ =
⋂
i∈I kerπi, contrary to our assumption. It follows that, if

⋂
i∈I kerπi is not meet

irreducible, then

(100)
⋂
i∈I

kerπi =
∑
J∈J

⋂
j∈J

kerπj , for some J ⊆ 2{0,...,N} \ {I}.

Suppose next that I \ J0 is nonempty for some J0 ∈ J , and let k ∈ I \ J0. Then

(101) {0} = πk

(⋂
i∈I

kerπi

)
= πk

(∑
J∈J

⋂
j∈J

kerπj

)
⊇ πk

(⋂
j∈J0

kerπj

)
.



FINITE CLOSED COVERINGS OF COMPACT QUANTUM SPACES 37

However, by Lemma 3.5 we see that (
⋂
j∈J0

kerπj)\kerπk is nonempty. Hence πk(
⋂
j∈J0

kerπj)

is not {0}, and we have a contradiction. It follows that for all J0 ∈ J the set I \ J0 is empty, i.e.,
∀ J0 ∈ J : I ( J0.

Finally, let m ∈ {0, . . . , N} \ I , and let

(102) T Im := t1⊗· · ·⊗tN , where 0 6= tn ∈
{

K if m < n ∈ I or m > n− 1 ∈ I,
T \ K if m < n /∈ I or m > n− 1 /∈ I.

Note that πmk (T Im) = 0 if and only if k ∈ I . Hence, by Lemma 3.4, there exists pm ∈ π−1
m (T Im) ∩⋂

i∈I kerπi. Next, we define

(103) σmI := f1 ⊗ · · · ⊗ fN , where fn :=

{
idT if m < n ∈ I or m > n− 1 ∈ I,
σ if m < n /∈ I or m > n− 1 /∈ I,

so that σmI (πm(pm)) 6= 0. On the other hand, by our assumption (100), and the property that
J0 ) I for all J0 ∈ J , we have

(104) 0 6= pm ∈
⋂
i∈I

kerπi ⊆
∑
J)I

⋂
j∈J

kerπj.

Furthermore, for any x ∈ C(PN(T )), we have

(105) σmI (πm(x)) = 0 if πmk (πm(x)) = 0 for some k /∈ I.

Now, for any J ) I , we choose kJ ∈ J \ I , so that

(106) πmkJ
(πm(

⋂
j∈J)I

kerπj)) ⊆ πkJ
m (πkJ

(kerπkJ
)) = {0}.

Combining this with (105), we obtain σmI (πm(
⋂
j∈J)I kerπj)) = {0} for all J ) I . Conse-

quently, σmI (πm(
∑

J)I
⋂
j∈J kerπj)) = {0}, which contradicts (104), and ends the proof. �

Summarizing, Lemma 3.5 and Lemma 3.6 combined with the Birkhoff Representation The-
orem yield the second main result of this paper:

Theorem 3.7. LetC(PN(T )) ⊂
∏N

i=0 T ⊗N be the C*-algebra of the Toeplitz quantum projective
space, defined as the limit of Diagram (3.2), and let

πi : C(PN(T )) −→ T ⊗N , i ∈ {0, . . . , N},

be the family of restrictions of the canonical projections onto the components. Then the family
of ideals {kerπi| 0 6 i 6 N} generates a free distributive lattice.

3.3. Other quantum projective spaces. In the Introduction, we compare our construction of
quantum complex projective spaces with the construction coming from quantum groups. Let us
complete this picture and end by describing other noncommutative versions of complex projec-
tive spaces that we found in the literature.
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3.3.1. Noncommutative projective schemes. Projective spaces à la Artin-Zhang [4] and Rosen-
berg [33] are based on Gabriel’s Reconstruction Theorem [15, Ch. VI] (cf. [34]) and Serre’s
Theorem [36, Prop. 7.8] (cf. [18, Vol. II, 3.3.5]). The former theorem describes how to recon-
struct a scheme from its category of quasi-coherent sheaves. The latter establishes how to obtain
the category of quasi-coherent sheaves over the projective scheme corresponding to a conical
affine scheme. First, one constructs a graded algebra A of polynomials on this conical affine
scheme and then, according to Serre’s recipe, one divides the category of graded A-modules by
the subcategory of graded modules that are torsion. Such graded algebras corresponding to pro-
jective manifolds have finite global dimension, admit a dualizing module, and their Hilbert series
have polynomial growth. All this means that they are, so called, Artin–Schelter regular alge-
bras, or AS-regular algebras in short [2] (cf. [3]). This property makes sense for algebras which
are not necessarily commutative, so that we think about noncommutative algebras of this sort
as of generalized noncommutative projective manifolds. One important subclass of such well-
behaving algebras are Sklyanin algebras [38]. Among other nice properties, they are quadratic
Koszul, have finite Gelfand-Kirillov dimension [37], and are Cohen-Macaulay [28]. Another
class of AS-regular algebras worth mentioning is the class of hyperbolic rings [33], which are
also known as generalized Weyl algebras [6], or as generalized Laurent polynomial rings [13].

3.3.2. Quantum deformations of Grassmanian and flag varieties. In [41], Taft and Towber de-
velop a direct approach to quantizing the Grassmanians, or more generally, flag varieties. They
define a particular deformation of algebras of functions on the classical Grassmanians and flag va-
rieties using an explicit (in terms of generators and relations) construction of affine flag schemes
defined by Towber [42, 43]. Their deformation utilizes q-determinants [41, Defn. 1.3] (cf. [23,
pg. 227] and [25, pg.312]) used to construct a q-deformed version of the exterior product [41,
Sect. 2]. This yields a class of algebras known as quantum exterior algebras [7]. These quantum
exterior algebras are different from Weyl algebras or Clifford algebras. They provide counter
examples for a number of homological conjectures for finite dimensional algebras, even though
they behave well cohomologically. See [7, Sect. 1] for more details.
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Math.
[19] P. M. Hajac, U. Krähmer, R. Matthes, and B. Zieliński. Piecewise principal comodule algebras. Preprint at
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