INSTITUTE OF MATHEMATICS m

of the
Polish Academy of Sciences P AN
ul. Sniadeckich 8, P.O.B. 21, 00-956 Warszawa 10, Poland http://www.impan.pl

IM PAN Preprint 713 (2010)

Danuta Przeworska-Rolewicz

Shifts and Periodicity in Algebraic Analysis

Published as manuscript

Received 23 February 2010



SHIFTS AND PERIODICITY IN ALGEBRAIC ANALYSIS

D. Przeworska-Rolewicz (Warszawa)

Shifts and periodicity for functional-differential equations and their generalizations
have been examined by the author in several papers in various aspects (cf. for instance,
PRI[4]-PR[7] and following papers). Here we would like to give a comprehensive survey
(without proofs) of some of these results in order to recall the most important properties
of considered shifts. In particular, there is shown that the so-called true shifts in complete
linear metric spaces are hypercyclic and that a necessary and sufficient condition for true
shifts in commutative algebras to be multiplicative is that the generating operator D
satisfies the Leibniz condition. A consequence of this fact is that in commutative Leibniz
algebras with logarithms the operator D is uniquely determined by an isomorphism acting
on %. There are also studied generalized periodic and exponential-periodic solutions of
linear and some nonlinear equations with shifts and generalizations of the classical Birkhoff
theorem and Floquet theorem. These results are obtained by means of tools given by
Algebraic Analysis (cf. PR[4]). A generalization of binomial formula of Umbral Calculus
is shown in Section 7 (cf. ROMAN and RoTAa RR][1]). Section 11 contains a perturbation
theorem for linear differential-difference equations with non-commensurable deviations and
some its consequences.

1. Basic notions of Algebraic Analysis.

We recall here the following notions and theorems (without proofs; cf. PR[4], PR|[7],
PRI[10]).

Let X be a linear space (in general, without any topology) over a field F of scalars of
the characteristic zero. Write

e [(X) is the set of all linear operators with domains and ranges in X;
e dom A is the domain of an A € L(X);

o ker A = {x € dom A: Az = 0} is the kernel of an A € L(X);

o Loy(X)={Ae€ L(X):dom A= X}.

An operator D € L(X) is said to be right invertible if there is an operator R € Lo (X)
such that RX C dom D and DR = I, where I denotes the identity operator. The operator
R is called a right inverse of D. By R(X) we denote the set of all right invertible operators
in L(X). Let D € R(X). Let Rp C Lo(X) be the set of all right inverses for D, i.e.
DR = I whenever R € Rp. We have

dom D = RX ® ker D, independently of the choice of an R € Rp.

Elements of ker D are said to be constants, since by definition, Dz = 0 if and only if
z € ker D. The kernel of D is said to be the space of constants. We should point out that,
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in general, constants are different than scalars, since they are elements of the space X. If
two right inverses commute each with another, then they are equal. Let

Fp={F¢cLy(X): F*=F;FX =ker D and 3per, FR=0}.

Any F € Fp is said to be an initial operator for D corresponding to R. One can prove
that any projection F’ onto ker D is an initial operator for D corresponding to a right
inverse R’ = R — F’R independently of the choice of an R € Rp.

If two initial operators commute each with another, then they are equal. Thus this
theory is essentially noncommutative.

An operator F' such that FF.X C ker D is initial for D if and only if there isan R € Rp
such that

(1.1) F=1—-RD ondom D.

Even more. Write Rp = {R,},cr. Then, by (1.1), we conclude that Rp induces in a
unique way the family Fp = {F,}yer of the corresponding initial operators defined by
means of the equality F, = I — RyD on dom D (y € I'). Formula (1.1) yields (by a
two-lines induction) the Taylor Formula:

(1.2) I=) R'FD*+ R"D" on dom D" (n € N).
k=0

It is enough to know one right inverse in order to determine all right inverses and all
initial operators. Note that a superposition (if exists) of a finite number of right invertible
operators is again a right invertible operator.

The equation Dx = y (y € X) has the general solution x = Ry + z, where R € Rp
is arbitrarily fixed and z € ker D is arbitrary. However, if we put an initial condition:
Fx = xy, where F' € Fp and zg € ker D, then this equation has a unique solution
r = Ry + xg.

If T'e L(X) belongs to the set A(X) of all left invertible operators, then ker T" = {0}.
It D € T(X) = A(X) N R(X) then Fp = {0} and Rp = {D~'}.

If P(t) € F[t] (i.e. P(t) is a polynomial with scalar coefficients, where F is the field of
scalars under consideration) then all solutions of the equation

(1.3) PD)z =y, yeX,
can be obtained by a decomposition of a rational function induced by P(t) into vulgar
fractions. Omne can distinguish subspaces of X with the property that all solutions of

Equation (1.3) belong to a subspace Y whenever y € Y (cf. von Trotha T[1], PR]6]).

2



If X is an algebra over F with a D € L(X) such that z,y € dom D implies zy, yx €
dom D, then we shall write D € A(X). If X is commutative then A(X) will be denoted
by A(X). If D € A(X) then we can write

(1.4) fo(z,y) = D(zy) — cp[rDy + (Dz)y] for z,y € dom D,

where cp is a scalar dependent on D only. Clearly, fp is a bilinear (i.e. linear in each
variable) form which is symmetric when X is commutative, i.e. when D € A(X). This
form is called a non-Leibniz component. Non-Leibniz components have been introduced
for right invertible operators D € A(X) (cf. PR[1]). If D € A(X) then the product rule
in X can be written as follows:

D(zy) = cplaDy + (Dx)y|] + fp(x,y) for z,y € dom D.
If D € A(X) and if D satisfies the Leibniz condition:
(1.5) D(zy) = Dy + (Dx)y for z,y € dom D,

then X is said to be a Leibniz algebra. It means that in Leibniz algebras ¢cp = 1 and
fp = 0. The Leibniz condition implies that xy € dom D whenever z,y € dom D. If X is
a Leibniz algebra with unit e then e € ker D, i.e. D is not left invertible.

Non-Leibniz components for powers of D € A(X) are determined by recurrence (equiv-
alent) formulae. Namely, for all ¥ € N, x,y € dom D¥ such that fp(z,y) € dom D¥ we
have zy € dom D* and

D¥(zy) = & [xD*y + (D¥z)y] + fl()k)(x,y), where fg) = fp and for k=2,3, ...

(1.7) W (2,y) = B [(Dx)DF Ly + (DF'z)Dy] +

+ CkD_l[fD(wa Dk_ly) + fD(Dk_l,T,y)] + Df(Dk_l)(xmy)?

ie.
cpr =c and  fpr = gc) for ke N.

Moreover, fl()k) are bilinear mappings of dom D* xdom D* into dom D* (k € N).

Observe that, by definition, g ) is a bilinear mapping of dom D¥xdom D into
dom D* (k=2,3,...).

Suppose that D € A(X) and p # 0 is an arbitrarily fixed scalar. Then pD € A(X)
and

(1.8) CpD = CD, f;]g =pF l(jk) for k € N.
If Dy, Dy € A(X), the superposition D = D Dy exists and Dy Do € A(X), then
(1.9) ¢p.Dy, = Cp,Cp, and for x,y € dom D =dom Dy N Dy
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fD1D2 (.T, y) = fD1 (I,y) + leDz (x7y) + +CD1CDz[<D1x)D2y + (DQx)Dly]‘

For higher powers of D in Leibniz algebras, by an easy induction from Formulae (1.6)
and the Leibniz condition, we obtain the Leibniz formula:

n

(1.10) D" (xy) = Z (Z) (D*z)D" %y for x,y € dom D" (n € N),
k=0

i.e.
n—1 n

A1) for(ay) = @)+ > (k><D%>D"-ky, 2,y € dom D" (n € N).
k=1

By M (X) we shall denote the set of all multiplicative mappings in X, i.e.
(1.12) M(X)={A: X - X : A(zy) = (Az)(Ay) for z,y € X}.

Let X be an algebra with unit e. Then A is an algebra isomorphism if it is a structure
preserving invertible mapping, i.e. A € Lo(X)NZ(X)N M(X). If it is the case then A1
is also an algebra isomorphism. Moreover, Ae = e. Write

(1.13) wpA={0#NeF:I—-XA is invertible} for A€ L(X).

It means that 0 # A € vpA if and only if % is a regular value of A.

By V(X)) we denote the set of all Volterra operators belonging to L(X), i.e. the set of
all operators A € L(X) such that I — \A is invertible for all scalars A. Clearly, A € V(X)
if and only if vypA = F \ {0} (cf. Formula (1.13)).

Note 1.1. Nguyen Van Mau (cf. N[1]) has shown that there is a right invertible
singular integral operator which has no Volterra right inverses. U

Let X be a Banach space. Denote by QN (X) the set of all quasinilpotent operators
belonging to L(X), i.e. the set of all bounded operators A € Ly(X) such that

lim {/||A"z| = 0 for xeX.

It is well-known that QN (X) € V(X). If F = C then QN(X) = V(X) N B(X), where
B(X) is the set of all bounded operators belonging to L(X).

Definition 1.1. (cf. BPR[1], PR[5], also PR[7]). Let X be a complete linear metric
space over a field F of scalars. Let A € L(X) be continuous. Let £ C dom A C X be
a subspace. Let w be a non-empty subset of vpA. The operator A € L(X) is said to be
w-almost quasinilpotent on E if

(1.14) lim A"A"z =0 forall Ncw, x € E.
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The set of all operators w-almost quasinilpotent on the set E will be denoted by
AQN(E;w). If w = vpA then we say that A is almost quasinilpotent on E. The set
of all almost quasinilpotent operators on E will be denoted by AQN (E). 0

Theorem 1.1. (cf. PR[5], also PR[10]). Let E be a subspace of a complete linear
metric space X over F. If A € L(X), E C dom A and () # w C vpA, then the following
conditions are equivalent:

(i) A is w-almost quasinilpotent on FE;

(ii) for every A € w, x € E the series y - \"A"x is convergent and

(1.15) (I —XA) 1z = Z A"A"x (A €Ew, x € E);

n=0

(iii) for every A € w, x € E, m € N the series (";”211))\”14”:1: is convergent
and
= —1
(1.16) (I —XA) "z = Z (n ;njl ))\”A”x (Aew, x€ E, meN).

n=0

For given D € R(X), R € Rp we shall consider (cf. T[1], PR[6]) the following
subspaces

e the space of smooth elements

Dy = ﬂ dom D¥, where dom D° = X;
kENg

e the space of D-polynomials

S=|Jker D"; S=P(R)=lin {R*2:z €ker D, k €Ny} C Do,
neN

which, by definition, is independent of the choice of an R € Rp;

e the space of exponentials

E(R)= |J ker(D-X)=
AEvr R

=lin {(I -AR) 'z:2€ker D, A\€vpR or A=0} C Dy,

which is independent of the choice of the right inverse R, provided that R is a Volterra
operator;



e the space of D-analytic elements in a complete linear metric space X (F = C or
F =R)

Ap(D) ={x € Do 2 =Y  R'"FD"z} ={x € Dy : lim R"D"z =0},

n=0
where F' is an initial operator for D corresponding to an R € Rp .

Clearly, by definitions, we have S, F(R) C Ds. If X is a complete linear metric space
then S C Agr(D) C Dyo.

2. Shifts in linear spaces.

Let X be a linear space over an algebraically closed field ' of scalars. Recall that
an operator 1" € Lo(X) is said to be algebraic on X if there is a polynomial P(t) € F[t]
such that P(T)x = 0 for all z € X, i.e. P(T) = 0 on X. The operator T is algebraic
of the order N if deg P(t) = N and there is no polynomial P’(t) € F[t] of degM < N
such that P/(T) = 0 on X (we assume here and in the sequel that any polynomial under
consideration is normalized, i.e. its coefficient of the term of the highest degree is equal
1). If it is the case, then P(t) is said to be a characteristic polynomial of T and its roots
are called characteristic roots of T'. An operator T is algebraic on X of the order N with
the characteristic polynomial

Pty=J] t—t)”, tj#teifj#k r+..+rm=N
j=1

if and only if X is the direct sum of the principal spaces of the operator T' corresponding
to the eigenvalues tq, ..., tn:

X=X1®..0 Xy, where (T —1t;)"x; =0 for z; € X;,

X;=PX, Pj=PT)

and P, ..., Py are disjoint projectors giving the partition of unit:

PP, =0;Py (jk=1,..,N), Y P=I

Jj=1

which are polynomials in 7" uniquely determined for a given S (cf. PR[2]). If ry = ... = rp,
i.e. if the characteristic roots are single, then these projectors are of the form

t— ty
tj —t

N
P; = P;(T), where P;(t)= H
k=1,k#j

and X; = P; X are eigenspaces of T' (cf. PR|2|, also PR[4], PR|15]).
J J g
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Definition 2.1. (cf. PR3], PR[4]). Suppose that X is a linear space over C, D €
R(X) and S € Lo(X) commute with D: SD = DS on dom D. Let N € N be arbitrarily
fixed. If

(2.1) Xev ={zeX:SNx=a}#0

then any element x € Xgn is said to be S¥-periodic. O

Clearly, S is an involution of order N on the space Xgn: SY = I on Xg~. Thus there
are N disjoint projectors P; giving partition of unit, i.e.

N
(2.2) PP =6xP; (j=1,..N); Y Pi=I,
j=0
such that
=
(2.3) SP;=P;S=¢'P; (j=1,..,N), S= N e’ Pj, where € = 2™/ N,
j=0
Formulae (2.2) and (2.3) together imply that
(24) Xgn :X(l)@"-@X(N)? where X(j) :PjXSN (jIl,...,N)
(2.5) Sz = ij(j), where x(jy = Pjz, v € Xgv  (j=1,...,N).
Projectors P; are of the form
| V-l
— —jk gk -
(2.6) Pj=+ kz_o eIkgk (j=1,..N).

O

Definition 2.2. Suppose that X is a linear space over F, D € R(X), ker D # {0} and
F is an initial operator for D corresponding to an R € Rp.Then a family {S} }her C Lo(X)
of linear operators is family of R-shifts if

hk—i
(k— ).

k
(2.7) So=1, SpRFF=>)" R'F  for k € N.
j=0

O

Theorem 2.1. Suppose that X is a linear space over F, D € R(X), ker D # {0}, F is
an initial operator for D corresponding to an R € Rp and {Sp,}rer is a family of R-shifts
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defined by (2.7). Then R-shifts are D-invariant, i.e. S,D = DS} on dom D whenever
h € R.

Theorem 2.2. Suppose that all assumptions of Theorem 2.1 are satisfied. Write

1
(2.8) Fy=FS_p, Dyp=D—F

1
R) =(I+F,+ ERFh)R for h e R\ {0}

(2.9) En={zeX:Sa=a}#0, EY=E,Nndom D (heR).

Then Dy, € R(X), Fy is an initial operator for Dy corresponding to the right inverse

(1)
h

Ry, = R — F,R. Moreover, the operator R?L maps the space E;, onto the space E;’ and

(2.10) DWRY =1 onEy, RID,=1 onEY, ie D;'=R).

Definition 2.3. Suppose that all conditions of Definition 2.1 are satisfied. Let m € N.
An operator A € Ly(X) is said to be S™-periodic if S A = AS™. O

Clearly, if D € A(X), Az = az for an a € X and S is multiplicative, then S™(Azx) =
S™(az) = (S™a)S™x. Thus A is S™-periodic if and only if a € Xgm (m € N).

3. True shifts in linear metric spaces.

We begin with

Definition 3.1. (cf. PR[5], also PR[10]). Suppose that X is a complete linear metric
locally convex space (F = C or F = R), D € R(X) is closed, ker D # {0} and F is a
continuous initial operator for D corresponding to a right inverse R almost quasinilpotent
on ker D. Let A(R) =Ry or R. If {Sh}ream) C Lo(X) is a family of continuous linear
operators such that Sy = I and for h € A(R) either

k

Rk=i
SLRFF = ZO = j)!RJF for k € Ny
]:

or

Sp(I—=AR)'F =eM(I —AR)"'F  for \ € urR,

then S), are said to be true shifts. The family {Sp}rcar) is a semigroup (or group) with
respect to the superposition of operators as a structure operation. [l

Observe that, by definitions, there are such true shifts which are R-shifts and R-shifts
which are true shifts.

Theorem 3.1. (cf. PR[5], also PR[10]). Suppose that all conditions of Definition
3.1 are satisfied, {Sh}nea(r) is a strongly continuous semigroup (group) of true shifts and
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either P(R) = X or E(R) = X. Then D is an infinitesimal generator for {Sh}nca(r),

hence dom D = X and S, D = DS} on dom D. Moreover, the canonical mapping K
defined as

(3.1) ke = {z" () hreaw), where z"(t)=FSux (ze€X)
is an isomorphism (hence separate points) and

d
p=2<
T

t
it HR://{, kFr = kx|,
0

and (kSpx)(t) =2"(t+h) forxze X, t,he AR).

Theorem 3.2. Suppose that all conditions of Definition 3.1 are satisfied, E(R) = X
and {Sph}neam) is a family of true shifts. Then the canonical mapping defined by (3.1) is
a topological isomorphism.

Theorem 3.3. (cf. PR[5], also PR[10]). Suppose that all conditions of Definition
3.1 are satisfied and {Sh}nrea(r) is a family of true shifts. Then for all h € A(R) and
x € Ar(D) the series

o0 hn
Py = —D"x (where we write e = g —')
n=0 n=0 G

is convergent,
(3.2) Spr =e"Px for x € Ar(D)

and e"” maps Ar(D) into itself (cf. also Formula(9.1)).

This implies the Lagrange-Poisson formula for a right invertible operator D:
(3.3) Ap=e"P —T on Ar(D), where Ap =S, —1 (h € A(R))

(cf. PR[10]). Note that (under assumptions of Theorem 3.1) vp(RpSypR) = vp R whenever
F' is an initial operator for D corresponding to R and S} are true shifts. This means that
the family {Rp}hcam) = {R — FSLR}ream) of right inverses induced by shifts have the
same regular values as R (cf. BPR[1]).

Definition 3.2. Let X be a linear metric space. Let T' € L(X) and z € X. The set
O(T :z) ={T"z : n € Ny = NU{0}} is said to be the orbit of x with respect to T (cf.
Rolewicz R[1]). A continuous linear operator 7" acting in X is said to be hypercyclic if
there is an element = € X (called later hypercyclic vector), such that its orbit O(T : x) is
dense in X (cf. Shapiro S[1]). O

Recall the classical Birkhoff Theorem (cf. B[2]):
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Theorem 3.4. There exists an entire function ® with the property: for every entire
function f, every compact subset ) C C and every € > 0 there exists a u € C such that

max [f(A) = @A+ p)| <e.

Looking over the proof, it is easy to observe that Theorem 3.4 can be formulated in a
little stronger way. Namely, we have

Theorem 3.4’. (generalized Birkhoff theorem). Let either h € R or h € Ry. There
exists an entire function ® with the property: for every entire function f, every compact
subset 2 C C and every ¢ > 0 there exists a positive integer n such that

max lf(A) = (A +nh)| <e.

In other words, the generalized Birkhoff theorem says that in the space of all entire
functions equipped with the topology induced by uniform convergence on compact sets the
usual shift operator (S, f)(t) = f(t+ h) (t,h € C) is hypercyclic and there is an entire
function ® which is a hypercyclic vector for Sj,.

It will be shown that this property is much more general. Namely, true shifts generated
by a right invertible operator D are hypercyclic and the corresponding hypercyclic vectors
are D-analytic elements. In particular, the operator e"” is hypercyclic, whenever D €
L(X) is right invertible. In order to prove it, we need the following

Theorem 3.5. (cf. Rolewicz R[1]). Let Y be a complete linear metric space with the
F-norm | - |. Let Y = (Y), be the space of all sequences y = {y,}, yn €Y (n € N) with

the standard norm -

IR N 78
HyHS_nZl m 1 |yn|
Define the forward shift S acting in Y as follows: S{y,} = {yn+1}. Then for every a > 0

there is a y, such that O(aS : y,) = Y, i.e. the forward shift S is hypercyclic in ) and the
corresponding hypercyclic vector is y,.

Theorem 3.6. (cf. PR[8]). Suppose that all conditions of Definition 3.2 are satisfied
and {Sp}neam) is a family of true shifts. Let h € A(R) be arbitrarily fixed. Then Sy, is a
hypercyclic operator and there is a x € Ag(D) which is a hypercyclic vector for S,.

Corollary 3.1. (cf. PR[8]). Suppose that all conditions of Definition 3.2 are satisfied
and {Sh}rear) is a family of true shifts. Let h € A(R) be arbitrarily fixed. Then the

operator e"P is hypercyclic and there is a x € Ar(D) which is a hypercyclic vector for
hD
e,

4. Multiplicative true shifts.

We shall consider now true shifts in the case when X is not only a linear metric space,
but also a commutative algebra. Then we have
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Theorem 4.1. (cf. PR[10]). Let all conditions of Definition 3.1 be satisfied and let
D € A(X). Let {Sh}neam) be a family of true shifts. Let Ap(D) = {z,y € Ar(D) : zy €
Agr(D)}. Then for all z,y € Agr(D), h € A(R)

Si(an) — (Sha)(Si) = 3 g D"(en) = 3 (1) D)D"yl
n k=0

=0

Theorem 4.2. (cf. PR[10]). Let all conditions of Definition 3.1 be satisfied and
let D € A(X). Let {Sh}necamr) be a family of true shifts. Then S, are multiplicative on
ARr(D) for allh € A(R): Sp(xy) = (Shx)(Swy) for all x,y € Ar(D), if and only if D| 4, (p)
satisfies the Leibniz condition, i.e. D(zy) = xDy + yDz.

Note that in Leibniz algebras xy € Ar(D) whenever x,y € Ar(D). Thus in this case
Ar(D) = Ag(D) and we have

Corollary 4.1. (cf. PR[6]). Let all conditions of Definition 3.1 be satisfied and let
D € A(X). Let {Sh}rcam) be a family of true shifts. If the restriction D|4,p) satisfies
the Leibniz condition, then S}, are multiplicative on Ar(D) for all h € A(R).

Theorem 4.3. Suppose that X is a complete linear metric locally convex space
(F = C or F = R) and a Leibniz D;- algebra (i = 1,2), D; € R(X) are closed, ker D; # {0}
and F; are continuous initial operators for D; corresponding to a right inverse R; almost
quasinilpotent on ker D;, respectively. Let A(R) = Ry or R. Suppose that {S;n}neam)
are strongly continuous semigroups (groups) of true shifts for D; (i = 1,2) respectively,
and either P(R;) = X or E(R;) = X fori=1,2. Let k1,K2 be the canonical mappings
for Dy, Ds, respectively. Then k; are algebra isomorphisms on Ag,(D;) (i =1,2) and

d
(4.1) mlDlmfl =3 = /ingm;l on X.

Corollary 4.1. Suppose that all assumptions of Theorem 4.3 are satisfied. Then

the operators satisfying the Leibniz condition are uniquely determined as % up to isomor-
phisms determined by the canonical mappings.

It means that true shifts are, indeed, true.
5. True shifts in commutative algebras with logarithms.

Suppose that D € A(X). Let a multifunction Q : dom D — 24°m D be defined as
follows:

(5.1) Qu={x €dom D : Du=uDzx} for ué€ dom D.
The equation
(5.2) Du =uDx for (u,z) € graph Q.
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is said to be the basic equation. Clearly,
Q 'z ={ucdom D: Du=uDz} forz¢c domD.

The multifunction 2 is well-defined and dom 2 D ker D \ {0}.

Suppose that (u,x) € graph Q, L is a selector of Q and E is a selector of Q1.
By definitions, Lu € dom Q~!, Ex € dom  and the following equations are satisfied:
Du =uDLu, DEx = (Ex)Dz.

Any invertible selector L of €2 is said to be a logarithmic mapping and its inverse
E = L~ is said to be a antilogarithmic mapping. By G[Q] we denote the set of all pairs
(L, E), where L is an invertible selector of Q and E = L~!. For any (u,z) € dom ()
and (L, E) € G[Q] elements Lu, Ex are said to be logarithm of w and antilogarithm of z,
respectively. The multifunction €2 is examined in PR][7].

Clearly, by definition, for all (L, E') € G[€}], (u,x) € graph €2 we have
(5.3) ELu=wu, LEz=u; DEz = (Ex)Dx, Du = uDLu.

A logarithm of zero is not defined. If (L, E) € G[Q] then L(ker D \ {0}) C ker D,
E(ker D) C ker D. In particular, F(0) € ker D.

If D € R(X) then logarithms and antilogarithms are uniquely determined up to a
constant.

Let D € A(X) and let (L, E) € G[Q]. A logarithmic mapping L is said to be of the
exponential type if L(uv) = Lu+ Lo for u,v € dom Q. If L is of the exponential type then
E(x +y) = (Ez)(Ey) for z,y € dom Q71. We have proved that a logarithmic mapping L
is of the exponential type if and only if X is a Leibniz commutative algebra (cf. PR][T7]).
Moreover, Le = 0, i.e. E(0) = e. In Leibniz commutative algebras with D € R(X) a
necessary and sufficient conditions for u to belong to dom 2 is that u € I(X) (cf. PR[9]).

By Lg(D) we denote the class of these commutative algebras with D € R(X) and with
unit e € dom €2 for which there exist invertible selectors of €2, i.e. there exist (L, E) € G[Q].
By L(D) we denote the class of these commutative Leibniz algebras with unit e € dom {2 for
which there exist invertible selectors of €. By these definitions, X € Lg(D) is a Leibniz
algebra if and only if X € L(D) and D € R(X). This class we shall denote by L(D).
It means that L(D) is the class of these commutative Leibniz algebras with D € R(X)
and with unit e € dom 2 for which there exist invertible selectors of €2, i.e. there exist

(L, E) € G[Q].

If ker D = {0} then either X is not a Leibniz algebra or X has no unit. Thus, by our
definition, if X € L(D) then ker D # {0}, i.e. the operator D is right invertible but not
invertible.

Theorem 5.1. Suppose that X € L(D), F is an initial operator for D corresponding
toan R € Rp, (L,E) € G[Q)] and A is an algebra isomorphism of X. Let D' = A™'DA
and let ' : dom D’ — 249°m D" be defined as follows:

(5.4) Qu={xredom D': D'u=uD'z} forué& dom D'
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Then there are (L', E') € G[Q)] and L' = A~'LA, E' = A~'EA.

Theorem 5.2. Suppose that X is a complete linear metric locally convex space
(F=CorF=R), D e R(X) is closed, ker D # {0} and F is a continuous initial operator
for D corresponding to a right inverse R almost quasinilpotent on ker D. Let A(R) = Ry
or R, {Sp}ream) is a strongly continuous semigroup (group) of true shifts and either
P(R) = X or E(R) = X. Suppose, moreover, that X € L(D), (L,E) € G[Q].Write:
D' = k471, Let Q' be defined by (5.4), where k is the canonical mapping defined by

di
(3.5). Then there are (L', E') € G[Q)'] such that L' =1n, E'(-) = exp(+).

Note that for X € L(D), (L, E) € G[€?] we have

(5.5) FE =FEF, FL=LF whenever F € Fp
(cf. PRI[15]).
6. Periodic problems.

By Theorem 2.1, true shifts are D-invariant, i.e. S,D = DS on dom D for all
h € A(R).

Theorem 6.1. Suppose that X € Lg(D) has the unit e and is a complete linear
metric space over F (F =R or F = C), (L, E) € G[Q], D € R(X) is closed, {Sh}hecam) is
a family of true shifts induced by an R € Rp N AQN (ker D), g = Re, A\g € dom Q! for
A € vpR. Then S, E(A\g) = e*"E(\g) whenever \ € vpR, h € A(R).

Theorem 6.2. Suppose that X € Lg(D) has the unit e and is a complete linear
metric space over C, (L, E) € G[Q2], D € R(X) is closed, {Sh}ner is a family of true
shifts induced by an R € Rp N AQN (ker D), S_, is multiplicative for an r € R, w = Nr
(N €N), g = Re and 2Ztg € dom Q™! whenever 22 € vcR. Let

(6.1) Enp = Xon ={zeX: " r=x}={zcX: S ,x=2}#0 (neN)

and let E;) = P;E, = P;En,, where P; are determined by Formulae (2.6). If u =
E(—%jg)v, where v € E,, i.e. S_,v=v (j =1,...,N), then u € E(;), i.e. if S_,u = glu.

In order to prove the necessity of the condition given in Theorem 6.1 we need the
assumption that X is a Leibniz algebra. Namely, we have

Theorem 6.3. Suppose that X € L(D) has the unit e and is a complete linear metric
space over C, (L, E) € G[Q], D € R(X) is closed, {Sh} her is a family of true shifts induced
by an R € RpNAQN (ker D), S_r is multiplicative for anr € R,w = Nr (N € N), g = Re
and %g € dom Q~! whenever % € vcR. Let E(;) = PjE, = P;En,, where P; and Ep,
are determined by Formulae (2.4) and (6.1), respectively. Then u = E(—2%jg)v, where
veE, ie S w=v(j=1,..,N), onlyifu e Eg),ie S_,u= gl

An immediate consequence of Theorems 6.2, 6.3 and the decomposition (2.4) onto the
direct sum is

13



Corollary 6.1. Suppose that all assumptions of Theorem 6.3 are satisfied. Then
x € E, if and only if

N

2
Z E(— mg 9)vj, where S_,v;=v; (j=1,..,N)
=1

(cf. PR]2], also PR[7]).

Note 6.1. In the classical case of the space X = C(R) over C, when D =
(Spx)(t) = x(t+ h) for z € X, t,h € R, we find that E,, w = Nr, is the space of o
w-periodic functions. The operator S_, is an involution of order N on E,, for (S¥.z)(t) =
z(t — Nr) = z(t —w) = x(t). Thus any w-periodic function =z € X is of the form

&l

N
E ™It/ Wy where vy, ..., vN are r-periodic functions.
J=1

Functions of the form e v, where A € C, v is a periodic function, and their linear combi-

nations are said to be exponential-periodic functions. Elements of the form E(\g)v, where
A € C, v is a periodic element, and their linear combinations are said to be exponential-
periodic elements. Recall that in Corollary 6.2 X is a Leibniz algebra, hence antiloga-
rithms are exponentials. For an arbitrary M € N and a true shift S, we denote the space
of exponential-periodic elements by

XEP(h7 /\17 L) )‘M) =

2mik
=lin {E(\jg)v; 1 v; € Xg,;Aj € C; A £ A + 7;; m#jkeZ (m,j=1,...,M)}.
By Corollary 6.1, z € E,, if and only if z € Xgp(h; —2%, ., —27) (G, = §_ ). More
details about spaces of exponential-periodic functions and their applications can be found
in PR[2], PR[7]. O

In order to generalize the Floquet theorem, we use Theorem 6.1 and Corollary 6.1.
The classical Floquet theorem says that every linear ordinary differential equation with
periodic coefficients has at least one non-zero exponential-periodic solution, i.e. a solution
of the form e*u(t), where u # 0 is a periodic function and A € C is properly chosen (cf.
ARrscorT Ar[l], INCE In[1]).

Proposition 6.1. Suppose that all assumptions of Theorem 6.3 are satisfied. Write

K

(6.3) QD)= QD*, Qi€ Lo(X), S_+Qx = QrS—, (k=0,1,..,K),

k=0

i.e. Q) are S_,-periodic. Suppose, moreover, that v € dom D¥ is an S_,-periodic element
and u = E(A\g)v € ker Q(D). Then

2
A= ﬂj where j € Z is arbitrary.
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Proposition 6.2. Suppose that all assumptions of Proposition 6.1 are satisfied. Let
A = 255 where j € Z is arbitrary. Then Q(D + X )v = 0. Conversely, if Q(D + X\l )v = 0,
then u = E(Ag)v € ker Q(D).

Theorem 6.4. (Generalized Floquet Theorem). Suppose that all assumptions of
Theorem 6.3 are satisfied. Let D,., F,., R® and Q(D) be defined by Formulae (2.8). Write

(6.4) Q=) (k>/\m‘ka (k=0,1,...K),
k=m
~ K ~ ~ ~
(6.5) Qt,s) =Y Qut’s™ % Qt) =Q(t1).
k=0

If the operator @(I , RV ) is invertible in the space E, then the equation
(6.6) Q(D)x =0

has exponential-periodic solutions which are of the form

(6.7)) x = E(Ag)v, where S_,v=uv, A= ?]’ (j €Z),
N K k-1 '
(6.:8) v=(RL)MQULRL)IT Y Qe r T,
k=0  j=0

20y 2K —1 € ker D are arbitrary.

In order to reduce an equation with an involution of order N, in particular, an equation
with a true shift in the space of periodic elements, we need

Proposition 6.3. (cf. PR[7]). Suppose that X is a linear space over C, D € R(X),
S € Lo(X) commutes with D: SD = DS on dom D, the operators Qym, € Lo(X) are
S-periodic, i.e. SQm = QrmS (k=0,1,... N —1; N >2; m=0,1,..., M). Write

N-—1 M
(6.9) Qum(S) = QrmS*,  Q(D,S) =Y DM (M € Ny)).
k=0
If Xgn # () then
N .
(6.10) Z Q(D,e")P; on Xgn, where e = e~ |

Jj=1
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and projectors Py, ...., Py defined by (2.4) commute each with another.

Proposition 6.4. (cf. PR[7]). Suppose that all assumptions of Proposition 6.3 are
satisfied. Then the equation

(611) Q(Da S)l‘ =Y, (TS XSNJ
is equivalent in the space X g~ to N independent equations
(6.12) Q(D,e')x; =vy;, where x; = Pjz,y; = Pjy € Xy, (G=1,...,N),

and X ;) are defined by the decomposition (2.5), x,y; are defined by Formulae (2.6).

Theorem 6.4. (cf. PR[7]) Suppose that all assumptions of Proposition 6.3 are
satisfied. If each of Equations (6.12) has a solution x; € X; (j = 1,...,N) then Equation
(6.11) has a solution x = x1 + .... + xny € Xgn. Conversely, if Equation (6.11) has an
SN _periodic solution x then the j-th Equation (6.12) has a solution z; = Pjx € X.

Theorem 6.4 has several applications. We may use this theorem when S = S} is
a true shift (under appropriate additional assumptions). Some of these applications are
quite far from classical differential-difference equations (cf. PR[2], PR[7]). For instance,
this method can be used for a reduction of a stochastic differential-difference equation to
a stochastic differential equation in order to find its periodic solutions (cf. WILKOWSKI
Wi[l]). In a similar manner one can consider the operator

M
Q(D,S) =D" Y~ Qu(S)D™.
m=0

Another possibility is given by

Theorem 6.5. Suppose that all assumptions of Theorem 6.3 are satisfied. Consider
a nonlinear equation

(6.13) Dz =G(z,5_,,2,.... 5, T),

where the mapping
G: Xx.xX—X
——

m—times

is continuous in each variable and all numbers wy, ...,w,, are commensurable, i.e. there
exist an r € R\ {0} and n1,...,nm € Z such that w; = n;r (j = 1,...,m). We admit
wo = 1o = 0. Let N be a common multiple of positive integers ||, ...,|nm| and let
w = Nr. Then Equation (6.13) has a solution x € E,, if and only if the following system
of N equations without shifts

- 2miy ~ - .
(614) Dl‘j = wjxj + Gj(afl,...,x]\]) (] = 1,...,N),
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has an r-periodic solution, where

al 2mik al omik
~ B _ 2mkno ~ 2wknm 7
(6.15) G(E1,..3n) =G() | ™M E(=—g)Fy, .., ) e B(= 9)%k),
k=1 k=0
~ . 2miy ~ - ,
Gj(z1,....,Zn) = E( - 9)P;G(Z1,....,Zn) (j=1,....,N).
If it is the case, then
al 2miyg
(6.16) =3 BT gz,
7j=1

where (Z1, ..., ) Is an r-periodic solution of the system (6.14).

Theorem 6.5 can be used also in order to study linear equations with shifts, in par-
ticular, differential-difference equations with periodic coefficients. In a similar manner one
can consider other periodic problems (cf. PRJ[2], also PR][7], Section 15). Note that in
Theorem 6.5 we obtain a system of equations which, in general, are not independent.

Consider the space of exponential-periodic elements (defined in Note 6.1 in the classical
case) for an arbitrary M € N and a true shift S,

(617) XEp(h; /\1,...,>\M) =

2mik
= lin{E()\jg)vj tv; € Xg,3 A €C Ay #F A + %, m#j, keZ (m,j= 1,...,M)}
We have

Theorem 6.6. Suppose that all assumptions of Theorem 6.3 are satisfied. Let
Aj o= 27”3 (j = 1,..,N), and let h = —r. Then S), is an algebraic operator on the
space XEp(h; A1, ..., AN) with the characteristic polynomial

N
H (t—t;), where tj:e)‘jh (j=1,..,N)

(with single characteristic roots).
An immediate consequence of Theorem 6.6 is

Corollary 6.2. Suppose that all assumptions of Theorem 6.6 are satisfied. Then
X = Xgp(h; A1, ..., AN) Is a direct sum of the eigenspaces of the operator Sy, corresponding
to the eigenvalues ty,...,tN:

(6.18) XEp(h;)\l,...,/\N)ZXl@...@XN, where thj =t;x; for T GXj,
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N
t— 1t

Xj=PX, Py=PFi(Sh), Pit)= ] tj —t
k=1,k#j 7 g

Consider now combinations of exponential-periodic elements and D-polynomials.
However, in that case S; is an algebraic operator with multiple characteristic roots.
Note that polynomial-periodic solutions of differential-difference equations firstly have
been studied by WELODARSKA-DYMITRUK (cf. WDI1]). A generalization for polynomial-

exponential-periodic elements and shifts induced by right invertible operators was given in
PRI7]).

Proposition 6.4. Let D € R(X), ker D # {0} and let F' be an initial operator for
D corresponding to an R € Rp. Let {Sh}ner C Lo(X) be a family of R-shifts, i.e. such
operators that So = I and for h € R

k

(6.19) SyRFF Z

=0

hk—i

RJF for ke Ny

(cf. Proposition 6.1). Then for all h € R, z € ker D, k,n € N, we have

k

(6.20) SPRFz = Z h,g?r)anz, where
1 .
6.21 p) = RFi (G =0,1,...k), n>1,
k
n+1 n 1 n+1
(6.22) W =30 R R =1
m=1

By induction, we get

Proposition 6.5. Suppose that all assumptions of Proposition 6.4 are satisfied. Write

(6.23) P Z pamt™, POt Z Pmt™,

(6.24) pg\(})m—pm, pﬁ(}j” Zpg\?mh%, pﬁﬁ})—l

pm €C, ppy=1 (jym=0,1,...,M; n € Ny),
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thtiare hi::)] are defined by Formulae (6.21), (6.22). Then pg\Z?M =1 for M € N, n € Ny
an

(6.25) SpP™(R) = P (R) forallheR, zckerD (ne€N).

Proposition 6.6. Suppose that all assumptions of Proposition 6.1 are satisfied. Then
for every h € R and k € Ny the operator Sy, is algebraic on the space ker D**1 with the
characteristic polynomial P(t) = (t — 1)**1, i.e.

(S, —D*MR*2 =0 for every h €R, z € ker D, k € N.

Writing
~ . k_‘]
M= m h for j =1,k v =0,k —
u=v
we get
k—2 N
(6.26) (Sn—1)?R*2 =" hi')R"z,
v=0

Corollary 6.3. Let D € R(X), ker D # {0} and let F' be an initial operator for
D corresponding to an R € Rp. Let D € A(X). Let {Sp}rher C Lo(X) be a family of
multiplicative R-shifts (cf. Proposition 6.5). Then

(S — DY (wR*2) =0 forall z€kerD, v € Xon, k,N €N,
i.e. Sy is an algebraic operator on the space
lin {vR*2: 2z €ker D, SNv =0 (k€ Ny)}

with the characteristic polynomial P(t) = (tN — 1)**! and with the characteristic roots
el = e2mI/N (j =0,1,...,N), each of multiplicity k + 1.

Corollary 6.4. Suppose that all assumptions of Corollary 6.3 are satisfied. Write for
M,no,...onp, ng #ng if j #k, heR

(627) pr(h;no,...,nM) =

M
={u= Z U R 2, ¢ 2, € ker D, S} v, = vy, (M =0,1,..., M)}

m=0

Then

M
(6.28) P(Sy) =0 on Xpp(hino,...nym), where P(t) = [ (" — DM+,

m=0
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i.e. Sy is an algebraic operator on the space Xpp(h;ng,...,ny) with the characteristic
. 27mig

polynomial P(t). The characteristic roots are e’, = emm (m=0,1,....M; j=0,1,...;np,—

1), each of the multiplicity M + 1. Thus Xpp(h;ng,...,npy) is a direct sum of principal

spaces X, such that (Sp, —el, DM =0 o0n X, (j =0,1,...,nm — 15 m=0,1,..., M).

Elements of spaces Xpp(h;no,...,npr) are said to be D-polynomial-periodic elements.

Theorem 6.7. Suppose that X € L(D) has the unit e and is a complete linear metric
space over C, (L, E) € G[Q?], D € R(X) is closed, {Sh } her is a family of multiplicative true
shifts induced by an R € Rp N AQN (ker D), g = Re, M, K;, N; € N and \;g € dom Q!
whenever \; € vcR (\j # A\ +2mil/h if j # k; | € Z; j,k = 0,1,...,M). Then Sy, is an
algebraic operator on the space of D-polynomial-exponential-periodic elements:

(6.29) Xpep(h;Aj; K3 Nj; M)
M K;
={zr= Z (Z vijkzjk)E()\jg) :zjp € ker D, vy, € XSNj, k=0,1,..,K;}
j=0 k=0 "

with the characteristic polynomial
M

(6.30) Pty =T N —657)*, where t; =M™ (j =0,1,..., M).
j=0

The characteristic roots of the polynomial P(t) are

¥

)

(6.31) tim = tje;", wheregj=e" (m+0,1,..,N; —1; ,j=0,1,.., M)

of the multiplicity K; + 1, respectively.

Corollary 6.5. Suppose that all assumptions of Theorem 6.7 are satisfied. Then
a principal space corresponding to the root 1 of the multiplicity k + 1 is lin {R/z : z €
ker D, j =0,1,....k}.

We can solve now equations with shifts in the spaces
Xpp(hing,....nn) and Xppp(h; A, Kj; Nj; M)
in the same manner as we did it in the space of periodic elements and in Xgp(h; A, ..., Aar)

(cf. for instance, Proposition 6.2, Theorem 6.4).

Note 6.2. Theorems 6,6, 6.7 and Corollary 6.2 are proved for Leibniz algebras. A
modified proof could be used for quasi Leibniz algebras, i.e. commutative algebras with
the product rule D(zy) = Dy + yDx + d(Dz)(Dy) for z,y € dom D, where d # 0 is a
scalar.We have only remember that in this case logarithms (provided that they exist) are
not of of the exponential type, but they satisfy the following equation

DL(uwv) = D(Lu+ Lv) + d(DLu)(DLv) for u,v € dom Q, (L, E) € G[9)].

20



Hence for antilogarithms we have the equation

(Ez)(Ey) = E{x + y + dR[(Dz)(Dy)] + z} where z € ker D, z = Lu, y = Lv.

We cannot use similar arguments for simple Duhamel algebras, i.e. algebras with the
product rule D(zy) = 2Dy, what can be written D(zy) = 3(zDy+yDz) for z,y € dom D.
Logarithmic (hence also antilogarithmic) mappings in that case do not exist. U

It should be mentioned that R-shifts S}, defined by Formula (2.7) correspond to R-
shifts S_j studied in PR[5], PR[7]. This change of sign is not essential, however, it is
convenient in order to have a unified approach to different questions considered here.
Some results of this chapter are true also in the case when h € A(R) = R,..

7. Harmonic logarithms.

We shall use the so-called Roman factorial defined as

| n! if n >0, (0! =0);
(7.1) [’n] = %:111)_":_)1, <0 (n € N)
and Roman coefficients
n [n]!
) = keZ
(72) M g (WRED)

(cf. RoMAN and RoTA RR[10]). In particular, we have [2} = [_Ok} = % for k € Ny =
Nu{0}.

Definition 7.1. (cf. PR[9]). Suppose that X € Lg(D) (F=R or F =C), F is an
initial operator for D corresponding to an R € Rp and there is (L, E) € Gg1[Q2] *. We
admit the following convention: R™"L = D"L (n € N) for F'L = 0. Harmonic logarithms
of order p € Ny are elements

(7.3) AP (4) = [n]IR™(Lu)?  for u e I(X)Ndom Q, n € Z, p € Ny.

For instance, if g = Re € I(X) Ndom €2, then

() (. — P N g"[Lg— (1+1+..+1)e] ifneNy;
W) = Loy et i M) = {1 ifn € No;

Note that harmonic logarithms are not logarithms defined in Section 5, although they
are constructed with the use of these logarithms.

* Let (L,E) € G[Q]. If FD'L = 0 for j = 0,...,m — 1 then (L, E) is said to be m-
normalized by R and we write (L, E) € Gr,m[S].
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Theorem 7.1. (cf. PR[4]) Suppose that X is a complete linear metric locally convex
space (F = C or F = R), D € R(X) is closed, ker D # {0} and F is a continuous
initial operator for D coresponding to a right inverse R almost quasinilpotent on ker D.
Suppose, moreover, that X € Lg(D), there are (L, E) € Gg1[Q], g = Re € I(X)Ndom D,
g~ € Ar(D) and {Sp}neaw) is a family of multiplicative true shifts. Then

(7.4) AP) (g + he) = Z [Z} hk/\np_)k(g) forneZ, peNy.
k=0

Theorem 7.1 is a generalization of the well-known binomial theorem with harmonic
logarithms appearing in Umbral Calculus (cf. RoMAN and RoTAa RR[1], LOEB and RoTA
LR[1]) for harmonic logarithms induced by a right invertible operator D € L(X) and

(L, E) € G[Q].
Let X € Lg(D), (L,E) € Gr1[?] (R € Rp) and let ¢ = Re € I(X) N dom Q.
Consider the algebra
X(L;g) = lin {g"(Lg)" : n € Z, p € No}.

Clearly, X(L;g) is a Leibniz algebra whenever X is a Leibniz algebra.

Theorem 7.2. (cf. PR[9]) Suppose that X € Lg(D) is a Leibniz algebra, (L, E) €
GRr1[Q) foran R € Rp and g = Re € I(X) Ndom . Then
(7.5) X(L;g) =1lin {\P)(g):neZ, peNyl.

Now one can extend results obtained for algebras considered in Umbral Calculus to
algebras X (L; g) induced by a right invertible operator D € L(X) and (L, E) € G[Q].

Concerning linear equations with scalar coefficients and with the right-hand side be-
longing to X(L;g), we have the following

Theorem 7.3. (cf. PR[9]). Suppose that X is a complete linear metric space (F = R
or F = C) and a commutative Leibniz algebra with unit e, D € R(X), ker D # {0}, F
is a multiplicative initial operator for D corresponding to an R € Rp N AQN (ker D),
X e Lg(D), (L, E) € G[?] and g € I(X) Ndom . Then every equation

(7.6) P(D)x =y, yecX(Lg) (P(t) cF[t])

has all solutions belonging again to X(L;g). If, in addition, g~ € Ar(D) then X(L;g) C
Ag(D).

Note that in the proof of Theorem 7.3 we have applied in an essential way properties
of the so-called D-R hulls (cf. vON TROTHA T[1], also PRJ[2]).

An analogue of Theorem 7.1 for u # g = Re is

Theorem 7.4. (cf. PR[9] Suppose that X is a complete linear metric locally convex
space (F = C or F =R), D € R(X) is closed, ker D # {0} and F is a continuous initial
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operator for D corresponding to a right inverse R almost quasinilpotent on ker D. Suppose,
moreover, that X € Lg(D), there are (L,E) € Grm[Q?] (m € N), u € I(X) Ndom D™,
u~t € Ar(D) and {Sh}hea() is a family of multiplicative true shifts. Then

(7.7) AP (Spu) = Z {Z} hk)\ilp_)k(u) forn € Z, p € Ny.
k=0

Corollary 7.1. (cf. PR[9]). Suppose that all assumptions of Theorem 7.4 are satis-
fied. Then

(7.8) Z [ }hk)\flp)k _pu) forneZ, pe Ny,
k=0
1 [e.¢]
(7.9) (LSpu)?P = ED" Z {Z} hk)\;p_)k(u) forneZ, p e Ny.
' k=0

Denote by I,,(Y) the set of all elements from Y C X having n-th roots:

(7.10) I,(Y)={z€Y: eIEI(y) y" =z} (neN).

If x € I,(Y) and y" = x then we write y = /™, (n € N).

Theorem 7.5. (cf. PR[9]. Suppose that X is a complete linear metric locally convex
space (F = C or F =R), D € R(X) is closed, ker D # {0} and F is a continuous initial
operator for D corresponding to a right inverse R almost quasinilpotent on ker D. Suppose,
moreover, that X € Lg(D), there are (L, E) € Grm,[Q] (m € N), u € I,(X) Ndom D™,
u' € Ar(D) and {Sh}nea(r) Is a family of multiplicative true shifts. Then

(7.11) Spu= (3 KIFDFaP)? forneZ, peN,.
k=0

Theorem 7.6. (cf. PR[9]). Suppose that all assumptions of Theorem 7.4 are satisfied.
Then

(7.12) AP (Spu) = SpAP) (u) forneZ, peNy.

8. Characteristic quasipolynomials.

Suppose that X € Lg(D)) is a complete linear metric space over C, (L, E) € G[Q],
D € R(X), thereisan R € RpNAQN (ker D), F' is an initial operator for D corresponding
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to R, g = Re, \g € dom Q for A\ € vcR and {Sh }ner is a family of true shifts (induced by
R). Write

(8.1) W(tD) = zn: iakjtks_hj, W(t) = zn: iakjt’“e—hﬂ

O0=ho<hi <..<hp, ag; €C(k=0,...,n; j=0,...,m),

Then E(Ag) € ker W(D) if and only if W”*(\) = 0. It means that in order to determine
solutions of the equation W (D)z = 0, which are of the form E(\g), it is enough to find
characteristic roots, i.e. zeros of the characteristic quasipolynomial W (t).

In particular, the characteristic quasipolynomials for homogeneous linear differential-
difference equations with scalar coefficients and their roots are often studied in order to
determine the corresponding solutions.

9. Oscillations.

We begin with

Definition 9.1. Let D € R(X) and let d(D) = {1,2,...,dim kerD < +oo},
(0 < d(D) < +00). Then ker D = lin {2n}neca(p), Where z1,...,24p) € kerD are
linearly independent. By Theorem 3.1, to every x € X there corresponds a function
™ A(R) — ker D defined as z*(t) = Fyz, where F; = FS;. Thus there exist scalar
functions Sz;1, ..., Sz.q4(p) : A(R) — F such that

(9.1) " (t) = {Saimzntneapy forallt € AR) (z € X).

The sequence S; = {Suin}neq(p) is said to be the symbol of the element z. Its nth
component is said to be nth symbol function *. 0

From Definition 9.1 it follows that the symbol is linear in its index, i.e.

(9.2) Scx =Sz, Spqry =Sz +S, forallz,yec X, ceF.

Theorem 9.1. Suppose that all assumptions of Theorem 3.1 are satisfied and x € X,
t,h € A(R). Then

(i) Sprp = 458, for 2 € dom D¥ (k € N);

(ii) all nth symbol functions are infinitely differentiable (with respect to ¢ for x € D,
(n € d(D));

* The symbol functions for D-polynomials and exponentials has been introduced in
PR[2], p. 357. The case dim ker D = n has been examined in PR[11].
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(ili) z € Ar(D) if and only if all nth symbol functions S, (n € d(D)) are analytic
at t =0 and

oo

Sz (t) = Z—k'ngkr)l(O) fort€ AR) (z € Agr(D), n € d(D)).
k=0

Corollary 9.1. Suppose that all assumptions of Theorem 3.1 are satisfied. Let
P(t) € F[t]. Then the equation

(9.3) P(D)x =y, ye X

has a solution x if and only if each nth symbol function S;.,, (n € d(D)) satisfies an
ordinary differential equation:

d

(9-4) P(&)

Sam =Sym  (n € d(D)).

Definition 9.2. Suppose that all assumptions of Theorem 3.1 are satisfied. Then
true shifts have the the intermediate value property (shortly: IVP) if for every = € dom D
if for every t,h € A(R) there exists a § ={6,}, 0< 0, <1 (n € d(D)) such that

(9.5) Suin(t +h) = Se(t) = hSpawn(t + 0,h)  (n € d(D)).

O

Since the family {Sp}ne A(r) of true shifts is at least a semigroup, in order to show
that they have IVP it is enough to prove that for every z € domD, h € A(R) there is a
0 = {On}necap), 0n € (0,1), such that

(9.6) Sein(h) = Sz(0) = hSpam(8,h) (n € d(D)).
Theorem 9.2. Suppose that all assumptions of Theorem 3.1 are satisfied. Then true

shifts Sj, have IVP on dom D.

Corollary 9.2. Suppose that all assumptions of Theorem 3.1 are satisfied. Then the
initial operators Fj, = F'Sy, (h € A(R)) have IVP.

This Corollary has deep consequences. Namely, we have

Theorem 9.3. Suppose that all assumptions of Theorem 3.1 are satisfied. Then the
following theorems on intermediate value hold:

(i) If a # b, x € dom D and F,x = 0, Fyx = 0 then there exists a 0 = {0, },cq(D)
such that

SFb:r—Faa:;n = (b - a)SFa+g(b,a)Dx (n € d(D)>

(ii) If a # b, x € dom D and Fyx = F,x, then there exists a § = {0, },cq(p) such that
SFa+0n(b—a)Dm;n = O (n € d(D));
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(iii) If a # b and x € X then there exists a 6 = {0, },cq(p) such that

1
b—a

Steain = SF,,p4_ayzms where IY=(F,— F,)R, (n€d(D));

(iv) If a # b and x € dom D then

SFbx—Faic;n = (b - a)S[fol Fuio, (b—a)ydfn]Dzin (TL € d(D))

(v) If dim ker D = 1 (i.e. d(D) = 1), then to (i)-(iv) there correspond the classical
LAGRANGE and ROLLE theorems, theorem on intermediate value of a definite integral and
HADAMARD Lemma (where 0 < 6 < 1):

Fyr — Fox = (b—a)Fopop—a)Dx  whenever F, = Fy, = 0;

Forop—a)yDxr =0 whenever Fyx = F,x;
1

b—ICbe = Fyto(b—a)), where I = (Fy — F,)R;
—a

1
Fyr— F,x=(b—a) [/ Fa+9(b_a)d9] Dz.
0

In order to examine solutions of linear equations in a right invertible operator we need

Definition 9.3. Let X be a linear space over the field F and let D € R(X). Suppose
that {F,}ecam) C Fp is a family of initial operators for D. A point a € A(R) is said to
be a zero of an element x € X if F,x = 0. An element x € X is said to be oscillatory if
there is a sequence {a,} C R such that F, x = 0 for n € N, i.e. if z has infinitely many
Z€eros. 0

Proposition 9.1. Let F' be an initial operator for D € R(X) corresponding to a
right inverse R and let be given a semigroup {Sp}ner C Lo(X). If x € X is Sp-periodic
and Fx = 0 then x has infinitely many zeros jh for j € Z, i.e. x is oscillatory.

Suppose that D € R(X) and R € Rp. An operator A € L(X) is said to be stationary
if DA = AD and RA = AR. Clearly, scalar multiples of the identity are stationary. In
general, a converse statement is not true.

Theorem 9.4. (STURM Separation Theorem) Suppose that all assumptions of Theo-
rem 3.1. are satisfied. Let u and Rv be two linearly independent solutions of the equation

N
(9.7)  QD)x=0, where QD)= QD" Qn=1I1,Qo,....Qn-1€ Ly(X),
k=0

Qo, ---, Qn_1 are stationary, the operator

N
(9.8) QU,R)=> QwR"7*
k=0
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is invertible and
(9.9) Fov=0, Fv=0 (b#a).
Then there exists a 0 = {0, }ncq(p), 0 < 0, <1 for n € d(D), such that

(9.10) Sk, =0 forallned(D).

+0(b—a)UsT

In particular, if dim ker D = 1, then there is a 6 € (0,1) such that

(9.11) Fro(o—ayu = 0.

Corollary 9.3. Suppose that all assumptions of Theorem 3.1 are satisfied and A(R) =
R. If v is Sp-periodic then there exists a 0 = {0, },cap) (On € (0,1)) such that h;n =
(j + 6,)h are zeros of u for j € 7.

Theorem 9.5. Suppose that all assumptions of Theorem 3.1 are satisfied and A(R) =
R. If v is oscillatory then w is oscillatory and for every n € N there exists a 6,, € (0,1)
such that

(9.12) SF; wn =0, where h!, = hp+0p(hni1 — hy).

Moreover,

(i) if |hps1 — hyn| — O then |h;,  — h;,| — 0 as n — oo;

(i) if |hp41 — hy| — o0 then |h}, 1 — h}| — 00 as n — oo;
i.e. two linearly independent solutions u and v = Ru of Equation (9.7) have similar kind
of oscillations.

10. Periodicity in locally pseudoconvex algebras.

We start with

Definition 10.1. X is said to be a complete m-pseudoconvex algebra if it is an
algebra and a complete locally pseudoconvex space with the topology induced by a sequence
{l|-||n} of submultiplicative p,-homogeneous F-norms, i.e. such pseudonorms that ||zy||, <
|z||lnllyl|ln for all z,y € X, n € N. (cf. ROLEWICZ R[1]). O

Theorem 10.1. (PR[7]). Suppose that either F =R or F = C, X € L(D) with unit
e € dom Q! is a complete m-pseudoconvex algebra and (L, E) € G[Q]. Let D be closed.
Let g = Re and let \g € dom Q™! for an R € Rp and a A\ € F. Let the initial operator F
corresponding to R be multiplicative. Write

(10.1) " =3 %



whenever this series is convergent. Then \ € vp R and

(10.2) M= (I-AR)'e=E(\g), LeM =M\g.

In the sequel we assume Condition [Clq:

(10.3) —z € dom Q' whenever € dom Q1.

Definition 10.2. (cf. PR[7]) Suppose that Condition [C]; holds and (L, E) € G[€].
For ix € dom ); we write

(10.4) Cz = L[E(iz) + B(—iz)], Sz — %[E(ix) _ B(—iz)].

N | =

The mappings C and S are said to be cosine and sine mappings, respectively, or trigonomet-
ric mappings. Elements C'r and Sx are said to be cosine and sine elements or trigonometric
elements. U
These mappings and elements have all properties of the classical cosine and sine functions.
Indeed, trigonometric mappings C' and S are well-defined for all iz € dom €2; and they are
even and odd functions of their argument respectively, i.e. C(—z) = Cz, S(—zx) = —Sx
for iz € dom Q3. Moreover, C(0) = z € ker D \ {0}, S(0) = 0. If X € L(D) then the
Trigonometric Identity holds, i.e.

(10.5) (Cx)* + (Sz)*> = e whenever iz € dom Q.
Moreover, since [E(ix)|" = E(inz) in X € L(D), the De Moivre formula hold: (Cz +
iSx)" = C(nx) + iS(nx) for iz € dom Q7 ",

Note that the mappings C’, S” defined as follows: C'z = C(x + 2), S’z = S(z + 2)
for iz € dom Q~!, z € ker D are again trigonometric mappings.

Recall that a necessary and sufficient condition for the trigonometric identity to be
satisfied is that X is a Leibniz algebra.

Here and in the sequel we shall assume that the trigonometric identity holds. Let
w=u+1iw € dom 2, w* =u — v and let

(10.6) C(X)={w=u+iv € dom Q : ww* € I3(dom 2)}.

By definition, w € I(X).

Suppose that, in addition, D is closed and (L, E) € Gg1[€?]. Then for all w € C(X)
and z = argw € Ep(X) the mapping Ei is 2mwe-periodic, i.e. Eli(z + 2me)] = E(iz).

Suppose then that all the listed conditions are satisfied, a A\ satisfies the equation
WANA) = 0and A\g € Ep(X). Then E(Ng) = E[i(—Mig)] is 2we-periodic, i.e. E(\g) =
E(\g + 2mike), whenever k € Z.
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11. Perturbations of shifts.

In Section 6 we have considered shifts as algebraic operators (in particular, involutions
of order N) on properly chosen subspaces of elements. Namely, in the classical case of a
differential-difference equation with commensurable deviations due the decomposition of
the space under consideration onto direct sum of principal spaces for the given shift one can
obtain a system of differential equations without deviations (i.e. without shifts). Here we
will show how to use these results in the case of non-commensurable deviations. Tn other
words, we shall try to answer for the following questions: 1° when do linear differential-
difference equations have periodic solutions and how they are determined? 2° Is it possible
to approximate w-periodic solutions of such equations with deviations, "near” in a sense, to
the previous ones but commensurable? The answers to both questions are positive under
some additional restrictions regarding the form of equations under consideration.

Denote by C7 the space of all n-times continuously differentiable complex valued
w-periodic functions x of the real argument ¢ with the norm

n

(11.1) lzlln=>" sup [z2M(@)]  (n=0,1,..).
k—0 0<t<w

Clearly, the spaces C, = C% D ... D> C" ... (n € Ny)) are Banach spaces.

Let h = (hi,...,h;) be a system of real numbers. Consider a linear differential-
difference operator

Jj=0

(11.2)

where the functions aq,...,a,,y are w periodic complex valued functions defined for all
t € R. We are looking for solutions z of differential-difference Equation (11.2) belonging
to C1. Without loss of generality we can assume w # 0.

When all hq, ..., hy, are commensurable with w then there is a positive integer N and
a real 7 # 0 such that h; = jr, w = Nr. Namely, w is the greatest common multiple of the
numbers hq, ..., h,,. We therefore can apply here results of Section 6. On the other hand,
one can prove the following

Theorem 11.1. (cf. Rolewicz R[2], also PR][2]). If the homogeneous equation (11.2)
(i.e. this equation with y = 0) has only the w-periodic solution zero, then Equation (11.2)
has a unique solution x;, € CL, for every y € C,,.

Theorem 11.2. (cf. Rolewicz R[2], also PR[2]). If Equation (11.2) has a unique
solution x, € CJ, then for arbitrary reals hi, ..., hy, such that the values |h; — h;| (j =
1,...,m) are sufficiently small the equation

dz(t) | < N )
dt +jgo a;(t)z(t —hj) =y (ho = 0)

(11.2)
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has a unique solution xp € ClL (where h' = (h,...,h'm). Moreover, if h; — h; for

j=1,...,m then xj, tends uniformly to xp.

Note 11.1. Theorems 11.1 and 11.2 remain valid if instead of scalar functions we
consider vector-valued functions of an arbitrary dimension k. If it is the case, then co-
efficients a; (j = 1,...,m) are taken to be k x k matrices. However, one can show that
proofs of these theorems do not work in the case of functions taking values in an infinite
dimensional space (cf. Rolewicz R[2]). O

Theorems 11.1 and 11.2 are also true for the equation

(11.3) dzlj;st) + i Z ar; () ®(t —h) =y (ho=0), (neN, n#1)
k=0 j=0

where we are looking for solutions belonging to C’.

Suppose now that the numbers hq, ..., h,, in Equation (11.3) are not commensurable
with w nor, possibly, commensurable with one another. Since we are looking for w-periodic
solutions, we can assume without loss of generality, that
(11.4) 0 < hj <w for g =1,....,m.

For a given number > 0 we can find numbers wy,...,w,, commensurable with w and with
one another, such that

(11.5) 0<w; <w and |w;—hj|<d (J=1,...,m).

*

Indeed, without loss of generality we can assume that § < 1. Let N = [%] . For a fixed j

there is an integer 1; < IV such that

n; 1
Write w
T:N, nm—l—j:Na 7’]020, w]:n (jzl,,m)

So that we have m+1 commensurable numbers w1,...,w,+1 satisfying the required condition
(11.5) and such that 0 < w; < w41 < w. Consider now the perturbed equation (11.3),
where instead of deviations h; we put the numbers w;:

n—1 m

(11.3) d"z(t) YN azPt-w)=y (neN, n#1)

dtn :
k=0 57=0

Using the method described in Section 2, we conclude that this equation is equivalent in
the space C! to a system of N independent differential equations without deviation of

* The symbol [z] read "integer part of x, denotes the greatest integer M < z.
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argument. If each of the corresponding homogeneous equations has only zero as an w-
periodic solution, then all non-homogeneous equations has the unique w-periodic solution
X. We therefore conclude that Equation (11.3") has a unique w-periodic z,, for every
y € C) tending uniformly to X as w; — h; tends to zero for j =1,...,m.

Note 11.2. We should point out that the operator R, = R — F,, R, where I, = F'S,,
(which appears in Section 2) is of the form

(Ruz)(®) :/O 2(s)ds — (L +1) /Ow 2(s)ds forz e Cl.

w

It is clear that R, maps continuous functions into differentiable functions and w-periodic
functions into w-periodic functions for (R,x)(t + w) — (R,z)(t) = 0 for arbitrary = € C,,.
Similar properties have the operators R (n > 1). 0
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ABSTRACT

MSC 2010: 47A05, 47D03, 47A16, 16R99, 30D20, 34C10, 34K15, 37A32

Keywords: algebraic analysis, right invertible operator, algebraic operator, involution
of order n, shift, R-shift, true shift, Leibniz condition, Leibniz algebra, multiplicative oper-
ator, hypercyclic operator, almost quasinilpotent operator, logarithmic mapping, antilog-
arithmic mapping, periodic element, polynomial-periodic element, exponential-periodic
element, symbol function, intermediate value, oscillatory element, harmonic logarithm,
umbral calculus, binomial formula, perturbation, differential-difference equation

Shifts and periodicity for functional-differential equations and their generalizations
have been studied by the author in in various aspects. Here we would like to give a
comprehensive survey of some of these results (without proofs) in order to recall the most
important properties of considered shifts In particular, there is shown that the so-called
true shifts in complete linear metric spaces are hypercyclic and that a necessary and
sufficient condition for true shifts in commutative algebras to be multiplicative is that the
generating operator D satisfies the Leibniz condition. A consequence of this fact is that in
commutative Leibniz algebras with logarithms the operator D is uniquely determined by
an isomorphism acting on %. There are also studied generalized periodic and exponential-
periodic solutions of linear and some nonlinear equations with shifts and generalizations of
the classical Birkhoff theorem and Floquet theorem. These results are obtained by means
of tools given by Algebraic Analysis (cf. the author PR[4]). A generalization of binomial
formula of Umbral Calculus is shown in Section 7. Section 11 contains a perturbation
theorem for linear differential-difference equations with non-commensurable deviations and
some its consequences.



