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ON THE RUSSELL PROBLEM

ZBIGNIEW JELONEK

ABSTRACT. We give a partial answer to the Russell Conjecture about characterization
of the affine space. We also characterize testing sets for properness and non-properness
sets of polynomial mappings of k—uniruled varieties, where k is an algebraically closed
field.

1. INTRODUCTION.

Let k be an uncountable algebraically closed field. Let K, :=={x € k" : 21 -... -z, = 0}
(i.e., K}, is the union of coordinate hyperplanes in k™). Peter Russell stated the following:

Conjecture. Let k = C. Let X be an affine, smooth variety of dimension n, which is
contractible. Then X is isomorphic to k™ if and only if there is a closed embedding of K,
into X.

In the paper [7] we have showed that the Russell Conjecture is true if X is additionally
dominated by C". The Russell Conjecture suggests a certain characterization of the affine
space X over any field. Here we generalize our result from [7] and we prove:

Theorem 1.1. Let X be a k—uniruled smooth affine variety of dimension n. Assume that
Pic(X) =0 and H°(X,0*) = k. If there is a closed embedding 1 : K, — X, then X = k™.

Corollary 1.2. The Russell Conjecture holds for every C—uniruled contractible (smooth)
affine variety.

Let us recall that an affine variety X is k—uniruled if for a sufficiently general point x
in X there is an affine parametric curve ¢, : K — X such that ¢,(0) = .

In the paper we also study generically-finite polynomial mappings of affine k—uniruled
varieties. We generalize some results from [7] and moreover we prove some of this result
in more general setting. In particular we give a wide description of hypersurfaces which
are testing sets in the case X is a k—uniruled affine variety. In particular we prove:

Theorem 1.3. Let X be a affine k-uniruled variety. Let Si,...,Sy be hypersurfaces in
k™, which have no common points at infinity. Then S = |J;~, Si is a testing set for
polynomial mappings X — k™.

For example the set S = J/~,{z € k" : z; = 0} is a testing set for polynomial mappings
f: X — K™ and we have the following statement:
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2 ZBIGNIEW JELONEK

Corollary 1.4. Let X be a affine k-uniruled variety. Let f = (fi,...,fm): X — k™ be a
generically-finite polynomial mapping. If restrictions of f to hypersurfaces V(f;) = {z €
X : fi(z) =0}, i =1,...,m are finite, then the mapping f is finite, too.

We also continue the study the set of non-properness of a generically-finite polynomial
mapping f = (f1,...,fn) : X — Y, where X is an affine k—uniruled variety and Y is an
affine variety. Let us recall that f is not proper at a point y if there is no Zariski open
neighborhood U of y such that f~1(cl(U)) is proper. We prove:

Theorem 1.5. For a generically-finite dominant polynomial mapping f : X — Y, where
X is a k—uniruled affine variety and Y is an affine variety, the set Sy is either empty or
it is a k—uniruled hypersurface (in'Y ).

2. PRELIMINARIES.

We assume that k is an algebraically closed field. For simplicity we also assume that
k is uncountable. In this paper by a locally principal divisor on a variety X we mean
a Cartier divisor, which is locally given by polynomial equations. If D is given by a
system {Uy, fo}aca, (where f, € Ek[U,]), then by its support we mean a hypersurface

| D |:= Ugealzr € Uyt fo(z) = 0}
Definition 2.1. Let X C k™ be a curve. We say that X is an affine parametric curve if
there is a surjective polynomial mapping ¢ : k >t — ¢(t) € X.

In analogous way we say that a projective curve X is parametric, if there is a surjective
polynomial mapping ¢ : P*(k) >t — ¢(t) € X.

Now let us recall some basic facts abouts k-uniruled varieties (see [7] and [10]).
Proposition 2.2. Let k be an uncountable field. Let X be an irreducible affine variety of
dimension > 1. The following conditions are equivalent:

1) for every point x € X there is a polynomial affine curve in X going through z;

2) there exists a Zariski-open, non-empty subset U of X, such that for every point x € U
there is a polynomial affine curve in X going through x;

3) there exists an affine variety W with dim W = dim X —1 and a dominant polynomial
mapping ¢ : W x k — X.

We have the following definition of a k-uniruled variety .

Definition 2.3. An affine irreducible variety X is called k-uniruled if it is of dimension
> 1, and satisfies one of equivalent conditions 1) — 3) listed in Proposition 2.2.

Example 2.4. Let H C k" be an irreducible hypersurface of degree d < n. Then H is a
k-uniruled variety. In fact H can be covered by lines.

Let us recall the following;:

Definition 2.5. An irreducible algebraic variety X we will call semi-affine if there exists
a proper generically-finite polynomial mapping X — X', where X' is an affine variety.

We say that a semi-affine variety X is k-uniruled if there is a dominant generically finite
morphism f : H X k — X, where H is an affine variety. Of course we can assume that H
is smooth.



ON THE RUSSELL PROBLEM 3

We also have to recall some facts about sets of non-properness of polynomial mappings
(see [7] and [8]).

Definition 2.6. Let f : X — Y be a polynomial map. We say that f is proper at a point
y € Y if there exists an open neighborhood U of y such that res;-1q) f : fYU) = Uis
a finite map.

We have the following important theorem ( for a proof see [7]):

Theorem 2.7. Let f : X — Y be a dominant polynomial map of irreducible varieties
of the same dimension. Assume that X is semi-affine and Y affine. Then the set Sy of
points at which f is not proper is either empty or it is a hypersurface.

Remark 2.8. The proof given in [7] is over k = C, however essentially it works for
arbitrary field, some obvious modification we leave to the reader.

3. THE CASE OF SURFACES.

Our next aim is to give a characterization of the testing sets, as well as the character-
ization of the set of non-proper points for a dominant map f : X — k™, where X is a
affine k—uniruled surface. In fact we will do it in a more general setting.

Definition 3.1. Let X, Y be algebraic varieties and f : X — 'Y be a polynomial dominant
map. By a compactification of f we mean a variety X and a map f: X — Y, such that

1) f is proper,
2) X C X,

3) resxf=f.
We have the following easy proposition:

Proposition 3.2. Let X,Y be algebraic varieties and f: X —'Y be a polynomial domi-
nant map. Then f has a compactification. Moreover, if X is normal we can choose X to
be normal, too. If X is semi-affine, then X is also semi-affine.

Proof. 1t is enough to take X := closure of graph(f) C X' xY, (where X' is a completion
of X), and to take as f the canonical projection. If X is normal we can additionally take
the normalization of X. O

Remark 3.3. Assume that X is a smooth surface. Since we can resolve singularities of a
surface (see [1]), we can always assume that X is smooth, too.

Let a map f be a compactification of some dominant map f : X — Y, where X
is a semi-affine variety and Y is an affine variety. By the lemma below the subvariety
D := X\ X is a hypersurface. Let Dy U...U D, be a decomposition of D into irreducible
components. We call a component D; horizontal if dim f(D;) =dim D;, otherwise we call
it vertical.

Lemma 3.4. Let V' be an algebraic variety which contains a semi-affine variety X as an
open dense subset. Then the subvariety D :=V \ X is a hypersurface. Moreover, if V is
complete of dimension n > 2, then D is connected.

Let X be a smooth projective surface and let D = )" ;| D; be a simple normal crossing
(s.n.c) divisor on X (here we consider only reduced divisors). Let graph(D) be a graph of
D, i.e., a graph with one vertex Q; for each irreducible component D; of D, and one edge
between ; and ; for each point of intersection of D; and D;.
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Definition 3.5. Let D be a simple normal crossing divisor on a smooth surface X. We
say that D is a tree if graph(D) is connected and acyclic.

We have the following fact which is obvious from graph theory:

Proposition 3.6. Let X be a smooth projective surface and let divisor D C X be a tree.
Assume that D', D" C D are connected divisors without common components. Then D’
and D" have at most one common point.

Now we can prove:

Theorem 3.7. Let X,Y be algebraic surfaces, X is normal, semi-affine and Y is affine.
Assume, that X contains a smooth cylinder H = T x k as an open, dense subset. Let
[+ X =Y be a dominant polynomial map and f: X —'Y be a compactification of f. Let
Q:= X\ X. Then

1) every horizontal component of Q is an affine parametric curve,

2) every vertical component of Q is a projective parametric curve,

3) if Hy, Hy are horizontal components, then Hy N Hy = (),

4) every connected vertical curve meets at most one horizontal component.

Proof. We can assume that X and X are smooth. Let X be a smooth completion of X.
We can assume that the mapping f : X — Y has an extension to a ‘morphism XY,
where Y is a projective closure of Y. In particular f~'(Y \ V) = X \ X.

The inclusion ¢ : I' x k — X induces the birational mapping ¢ : T x P1(k) — X, (here
T is a smooth completion of T'). Note that the divisor D =T x 0o + Y2t_ {a;} x P! is a
tree. Now we have the following picture:

1 fo

_ ¢ !
T xPHk) —===-——=====~~ -—X —Y

Here mappings f; and fy are compositions of blowing-up’s. Note that the divisor D’ =
f(D) is a tree. Let T’ x oo/ denote a proper transform of T’ x oo. It is an easy observation
that fo(T x oo’) € X \ X. The curve L = X \ X is a complement of a semi- afﬁne variety
hence it is connected (for details see [7], Lemma 4.5). So also the curve L' = f, (L) c D’
is connected. Now by Proposition 3.6 we have that every irreducible curve Z C D’ which
does not belong to L’ has at most one common point with L’. Let S C @ be a horizontal
component. There is a curve Z C D’, which has exactly one common point with L’ such
that S = f2(Z \ L). Moreover Z is different from T x oo’, hence Z \ L = k. Now let
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S be a vertical component. Now the curve Z which lies over S is disjoint from L’ and
S = fo(Z) = fa(P ().

Let Hy, Hy be horizontal components. Take Z; = f; I(E), Zy = fy L(H5). The curves
71, Zy are connected and they have common points with L’. Since D’ is the tree, we have
(Z1\L")N(Z2\ L") = 0. Consequently Hy N Hy = (). In a similar way we can prove 4).This
completes the proof. O

Theorem 3.8. Let X,Y be algebraic surfaces, where X is semi-affine and Y 1is affine.
Let f: X =Y be a polynomial dominant map. Let us assume that X contains a smooth
cylinder H = 1" X k, as an open, dense subset. The set Sy of points at which f is not
proper consists of a finite number (possibly 0) of affine parametric curves.

Proof. Taking a normalization we can assume that X is normal. Let f : X — Y be a
normal compactification of f. By Theorem 2.7 the set Sy is a curve. Moreover, it is easy to
see that Sy = f(X \ X). Thus in fact we have Sy = f(R), where R is a union of horizontal

components of X \ X. Now the conclusion holds by Theorem 3.7. O

Corollary 3.9. Let X,Y be affine algebraic surfaces and let X be k—uniruled. Let f :
X —Y be a polynomial dominant map. Then the set Sy of points at which f is not proper
consists of a finite number (possibly 0) of affine parametric curves.

Proof. Since X is k—uniruled, we have a dominant mapping ¢ : I' x k — X. We can
assume that the curve I' is smooth. Let ¢ : Z — X be a compactification of ¢ and take
g = fo¢. Then Sy = S;. Now the conclusion holds by Theorem 3.8. O

We state now the following basic definition:

Definition 3.10. Let X,Y be algebraic varieties, where X is semi-affine and Y is affine.
Let S be a closed subset of Y. We will call S a testing set for properness of polynomial
mappings [ : X — Y (briefly a testing set) if for every generically-finite polynomial
mapping f : X — Y, if resp(g)f : f1S) > 2 — f(x) € S is proper then f is proper,
too.

The following fact will be frequently used

Lemma 3.11. Let X,Y be algebraic varieties, where X is semi-affine and Y is affine.
Let f : X — Y be a generically finite dominant mapping. Assume that T = U;nzl T; is a
connected hypersurface in'Y , with irreducible components T;, which is a support of a locally
principal diwvisor. Moreover, assume that resy—1()f : f~YT) — T is a proper mapping.
If for every j = 1,...,m the mapping f is proper at some point y; € T}, then it is proper
at every pointy € T.

Proof. We can assume that X is normal. Let f : X — Y be a normal compactification of
f and denote D := X \ X. By the Stein Factorization Theorem (see e.g. [4]) there exist a
variety W, and regular surjective mappings p: X — W, ¢: W — Y, such that f = qop
and p has only connected fibers (in particular being generically finite it is a birational
mapping) and ¢ is finite.

Now assume on the contrary, that the mapping f is not proper at a point y € T; C T.
We will show that this assumption leads to a contradiction.

First of all, since res -1 (1 f f~Y(T) — T is a proper mapping we have cl(f~1(T))ND =
0, i.e., the set f~1(T) is closed in X. Moreover, since the mapping f is proper at points
y; € Tj there is no horizontal components over T}, j =1,...,m.
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There are two cases possible:
a) the set f_l(y) is finite,
b) the set ?_l(y) is infinite.

ad a) We have that there is a point b € 7_1(3/) N D. Let T be a support of a divisor T”.
Consider the locally-principal divisor Z := f (T") N (X \ f~Y(T)). It has the support in
D and it has only horizontal components which go through b. One of them lies over some
T}, which is a contradiction.

ad b) We will show that this case also is impossible. Indeed let b € ¢~!(y) be a point
in W such that p~!(b) is infinite. Let R be an irreducible component of the hypersurface
¢ Y(T) which contains the point b. The variety p~*(R) is connected and contains the
connected set p~1(b). Moreover, it is contained in ?_1(T). Since f~1(T) is disjoint from
D and since p~!(b) must be in D, we have that p~!(R) is also in D. But p~!(R) contains
a horizontal component which lies over R and consequently over some 7. This is a
contradiction. O

Corollary 3.12. Let X,Y be algebraic varieties, where X is semi-affine and Y is affine.
Let f: X — Y be a generically finite dominant mapping. Assume that T is a connected
hypersurface in Y, such that every irreducible component of T is a support of a locally
principal divisor. Moreover, assume that resy—1()f : f~YT) — T is a proper mapping.
If the mapping f is proper at some point y; € T, then it is proper at every point y € T.

Theorem 3.13. Let X,Y be algebraic surfaces, where X is semi-affine and Y is affine.
Let X contain a smooth cylinder H = T" X k as an open, dense subset. Assume that
T =Uj_, Tj is a curve in Y such that

1) every Tj is a support of some locally principal divisor,

2) if S C T is an irreducible component of some T; which is an affine parametric curve,
then for some Ty we have S ¢ Ty, and S NTy # 0,

3) for every affine parametric curve ' CY we have T N'T # ().
Then T is a testing set for properness of polynomial mappings f: X — Y.

Proof. Let f : X — Y be a generically-finite polynomial mapping and resg-i(p)f :
f7YT) > x — f(x) € T be a proper mapping. We have to show that f is proper,
too.

Taking the normalization we can assume that X is normal. Let f : X — Y be a normal
compactification of f and denote D := X \ X. By the Stein Factorization Theorem there
exist a normal surface W, and regular surjective mappings p: X — W, ¢: W — Y, such
that f = q o p and p has only connected fibers (in particular, being generically finite it is
a birational mapping) and ¢ is finite. We have:

Lemma 3.14. Let XY, f be as above. Assume that S, T CY are curves, S is irreducible
and T is the support of a locally principal divisor. Moreover, assume that the mapping
resf-1(sur)f fYHSUT) > 2 — f(x) € SUT is proper. If SNT has an isolated point,
then the mapping f is proper at some point y € S.

Proof. Let us assume the contrary, i.e., that S C Sy. Hence there is a horizontal curve
S" € X \ X such that ?(S’)f S. Let a be an isolated point of the intersection S NT and
b € S’ be a point such that f(b) = a.

There are two cases possible:
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i) the point b is an isolated component of the set ?_l(a),

ii) the point b is not an isolated component of the set 7_1(a),

ad i) Let us note that by our assumptions the set f~1(S U T) is closed in X. Let
T’ be a divisor with support | 7" |= T and consider a locally-principal divisor 7”7 :=
F(TYN(X\ f~1(SUT)). It has support in D and cuts S’ in b. Let us denote a component
of T” which contain the point b by R. By i) the component R is horizontal. Since a is
an isolated component of the intersection S NT, we have that R # S’, which contradicts
Theorem 4.6.

ad ii) We will show that this case is impossible. Indeed, let ¢ € ¢~!(a) be a point in W
such that p~!(c) is infinite and b € p~'(c). Let R be an irreducible component of divisor
7*(T") which contains the point ¢. The curve p~!(R) is connected and contains the curve
p~1(c). Moreover, it is contained in 771(T). Since f~1(T) is disjoint from D and since
p~1(c) must be in D, we have that p~!(R) is also in D. But the curve p~!(R) contains a
horizontal component H which lies over R. Moreover, since a is an isolated component of
the intersection S N T, we have that H # S’. It means that the connected vertical curve
p~1(c) meets two different horizontal components and this is a contradiction. O

We now return to the proof of Theorem 3.13. By Lemma 3.11, Lemma 3.14 and Theorem
3.8 we easily see that for every y € T, the mapping f is proper at y. Finally if S; denotes
the set of points at which the mapping f is not proper, we have that Sy N T = (). By
Theorem 3.8 and 3), this implies that Sy = (), i.e., the mapping f is proper. O

The theorem above can be slightly generalized:

Corollary 3.15. Let X, Y be algebraic surfaces, where X is semi-affine and k—uniruled
and Y is affine. Assume that T = U§:1 T; is a curve in'Y such that

1) every Tj is a support of some locally principal divisor,

2)if S C T is an irreducible component of some Tj which is an affine parametric curve,
then for some Ty, we have S ¢ Ty, and SN Ty # 0,

3) for every affine parametric curve T' CY we have T N'T # ().
Then T is a testing set for properness of polynomial mappings f: X — Y.

Proof. Let H =T x k be a smooth cylinder. Let g : H — X be a dominant mapping.
Take a compactification g : H — X. Since g is a proper generically-finite mapping and
X is semi-affine, we have that H is a semi-affine surface. A mapping f : X — Y is
proper if and only if the mapping F' := f o g is proper. Since the mapping g is proper,
we have that ress—1(p)f : f~YT) >z — f(x) € T is a proper mapping if and only if
resp—1(myF F~YT) > 2 — F(z) € T is a proper mapping. Now the proof reduces to the
proof of Theorem 3.13. Il

Corollary 3.16. Let Ty,...,T,, be hypersurfaces in k™ which have no common points at
infinity. Let X be a semi-affine and k— uniruled surface. Then T = \J;~, T; is a testing
set for polynomial mappings f : X — k™.

Proof. First take T; = {z : ; = 0} and T' = |J;~, T;. We have to show that if f : X — k™
is a generically-finite polynomial mapping and res—1(p)f : AT 52— f(z) € Tis
a proper mapping then f is a proper mapping, too. Let us take Y = cl(f(X)) and take
T, =T;nY, T =J", T. We can assume that Y ¢ T; for i = 1,...,m. Hence all T are
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locally principal divisors on Y. We will show that T’ satisfies all assumptions of Corollary
3.15. It satisfies 1),3), because T' = | J;", T; satisfies 1),3) in k™.

It also satisfies 2). Indeed, let ' C T’ be an affine parametric curve, we have to
show that I' meets another component of 77. We can assume that I' C T3,...,T, but
¢ Tsiq,..., Ty (where s < m, because the intersection of all T; is one point). If we put
Z=;_;Ti and Z; = T; N Z for i > s, then Z; are coordinate hyperplanes in Z = k™%,
It means that for at least one index ”j > s” we have I' N Z; # (). Hence I has common
points with the curve T;NY = T]’ By construction all components of TJ’- are different from
T.

The general case can be easily deduced from the particular one. Indeed, let T; = V' (g;)

for some reduced polynomial g; € k[y1,...,ym], @ = 1,...,m. By the assumption, the
mapping G := (g1, ..., 9m) : k™ — k" is finite. Now it is enough to consider the mapping
f' = Go f and to use the first part of our proof. O

In particular the set S = [J";{x : & = 0} is a testing set for polynomial mappings
f: X — k™ and we have the following statement

Corollary 3.17. Let X be a semi-affine and k—uniruled surface. Let f = (f1,..., fm) :
X — k™ be a generically-finite polynomial mapping. If the restrictions of f to curves
V(fi), i=1,...,m are proper, then the mapping f is also proper.

4. GEOMETRIC CHARACTERIZATION OF Sf.

Now we pass to the general situation.

Theorem 4.1. Let f : X — Y be a dominant polynomial map of n—dimensional varieties,
where X is semi-affine, k—uniruled and Y is affine. Then the set Sy of points at which f
is mot proper is either empty or it is a k-uniruled hypersurface.

Proof. As usual we can assume that X contains a smooth affine cylinder H =T" x k as an
open, dense subset. Let f: X — Y be a compactification of the mapping f.

Let yo € S¢. There is a curve A C X such that the mapping f|x is not proper at ypo.
Moreover we can assume that A N H # (). Consequently we can assume that A C H. Let
w:H >3 (y,t) >yeTl and A’ = 7(A). We can assume that A’ is a curve. Hence the curve
A is contained in a cylindrical surface S = A’ x k C H. Let S’ be a closure of S in X. Put
"= flsr. Then Sy C Sy. Since yp € Sy by a construction and the set Sy is a union of
parametric curves the proof is complete. O

We can apply our result to find out something about geometrical properties of the set
Y\ f(X). The following corollary is an easy consequence of Theorem 4.1:

Corollary 4.2. Let f : X — Y be a dominant polynomial map of n—dimensional varieties,
where X is semi-affine, k—uniruled and Y is affine. Every n — 1-dimensional component
C of the set cl(Y'\ f(X)) is a k-uniruled hypersurface. In particular, for every point x € C
there is an affine parametric curve in C through x.

5. TESTING SETS.

Our aim in this section is to generalize Theorem 3.13 to higher dimensions. First we
will prove the following variant of Lemma 3.14:
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Lemma 5.1. Let X be a semi-affine surface and let Y be an affine surface. Assume,
that X contains a smooth cylinder H =T X k as an open, dense subset. Let f: X — Y
be a generically-finite polynomial mapping. Assume, that T;, i = 1,...,m are locally
principal divisors in 'Y and the mapping resy-1(p)f : f~YUT) > 2 — f(x) € T, where
T = U;nzl | T; |, is proper. Then f is proper at every isolated point of the intersection

My [ 751

Proof. As usual, we can assume that X is normal. Let f : X — Y be a normal compact-
ification of f and denote D := X \ X. By the Stein Factorization Theorem there exist a
normal surface W, and regular surjective mappings p : X — W, ¢ : W — Y, such that
f = qop and p has only connected fibers (in particular being generically finite it is a
birational mapping) and ¢ is finite.

Let a be an isolated component of ()72, | 7} | . There are two cases possible:
i) the set f_l(a) is finite,
ii) the set ?_l(a) is infinite.

ad i) It is enough to show that f_l(a) N D = (). Assume on the contrary, that there is a

point b € fil(a)ﬂD. Let us note that by our assumptions the set f~1(| 7' |) is closed in X.
We can consider locally-principal divisors D; := T*(Tl) N(X\fYT)), i=1,...,m. They
have supports in D and meets in b. Let us denote a component of | D; | which contains
the point b, by R;, i = 1,...,m. By i) the components R;, i = 1,...,m are horizontal.
Since a is an isolated component of the intersection (i, | Tj |, we see that R; # R;, for
some i # j, which contradicts Theorem 3.7.

ad ii) We will show that this case is impossible. Indeed let b € ¢~!(a) be a point in W
such that p~1(b) is infinite. Let R;, i = 1,...,m be irreducible components of divisors
@*(T;) which contain the point b. The curves p~'(R;), i = 1,...,m are connected and
contain the curve p~1(b). Moreover, they are contained in f_l(T). Since f~1(T) is disjoint
from D and since p~!(b) must be in D, we have that p~!(R;), i = 1,...,m are also in D.
But the curves p~!(R;) contain horizontal components H; which are over R;. Moreover,
since a is an isolated component of the intersection ﬂ;”zl | Tj |, we see that H; # Hj,
for some i # j. This means that a connected vertical curve p~!(b) meets two different
horizontal components, which is a contradiction. O

Now we are in a position to prove the following:
Theorem 5.2. Let X,Y be irreducible n—dimensional varieties, where X 1is semi-affine
and k-uniruled and Y is affine. Let T be a hypersurface on'Y such that

1) every irreducible component of T is a support of some locally principal divisor,

2) if T" C T is a connected component of T which is k-uniruled then T' contains
irreducible components T7,...,T) such that the intersection (\;_; T} has a point as an
1solated component,

3) for every affine k-uniruled hypersurface T' C Y we have T N'T # ().

Then T is a testing set for polynomial mappings f : X — Y. Moreover, if every irreducible
component of T is not C-uniruled, then we can change the assumption 1) to the weaker
assumption that T is a support of a locally principal divisor.

Proof. As usual we can assume that X is normal and X contains a smooth affine cylinder
H =T x k as an open, dense subset.
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Let f: X — Y be a generically-finite polynomial mapping and resg-i(p)f : fi(T) >

x — f(x) € T be a proper mapping. We have to show that f is proper, too. Let f:X->Y
be a compactification of f and denote D := X \ X.

‘We have:

Lemma 5.3. Let f, X,Y, T be as above. Then f is proper at every isolated point of the
intersection (\;_, T7.

Proof. Let a be an isolated component of ();_; 7. Let us assume that the mapping f is

not proper at the point a and take a point ¢ € ?_l(a) N D. There is an irreducible curve
A C X which contains the point ¢ and A’ := AN H # (). Moreover, we can assume that A’
contains a point b which is smooth with respect to f. As in previous proofs we can assume
that A’ is contained in a cylindrical surface S = G x k C H. Let S’ be a closure of S in X.
Put f' = f|g. Since b € A’ and f is smooth at the point b we have that the mapping f’
is generically-finite. Denote Y’ := cl(f/(S’)). The variety Y’ is an affine surface. By the
choice of the point ¢ and the curve A the mapping f’ is not proper at the point a € Y.

Let T; be locally principal divisors with support T/, ¢ = 1,...,r. We can consider
divisors R; := 1*(T;), where ¢ : Y/ — Y is an inclusion. We have a € (] | R; | and the
point a is an isolated point of this intersection. Moreover, the mapping f’ is proper on
the preimage of the set |J | R; | . By Lemma 5.1 it follows that the mapping f’ is proper
at the point a, which is a contradiction. Hence our assumption that the mapping f is not
proper at the point a is false. U

We now return to the proof of Theorem 5.2. By Lemma 5.3 and Theorem 4.1 we can
easily see that for every y € T' the mapping f is proper at y. Finally, if Sy denotes the set
of points at which the mapping f is not proper we see that Sy N7 = (). By Theorem 4.1
and 3) it follows that Sy = 0, i.e., the mapping f is proper. O

Corollary 5.4. Let X be a semi-affine and k-uniruled n—dimensional variety. Assume
that T s a hypersurface in k™ such that

1) if T" C T is a connected component of T which is k— uniruled then T’ contains
irreducible components T7,...,T) such that the intersection (\;_, T} has a point as an
1solated component,

2) for every affine k-uniruled hypersurface T C k™ we have T N'T # ().
Then T is a testing set for polynomial mappings f : X — k™.

A simple application of Theorem 5.2 is that if 71,...,T,, are hypersurfaces in k™ with-
out common points at infinity, then the set T = [J!'; T; is a testing set for polynomial
mappings f : X — k™ ( where X is a semi-affine, k—uniruled variety). In fact we can
easily generalize this as follows:

Proposition 5.5. Let 1T1,...,T,, be hypersurfaces in k™ which have no common points
at infinity. Let X be a semi-affine and k—uniruled n—dimensional variety. Then the set
T =2, T; is a testing set for polynomial mappings f : X — k™.

Proof. Let f: X — k™ be a dominant mapping which is proper over T. Assume that f is
not proper. We can assume that X contains an affine cylinder H = I" X k as an open dense
subset. As in previous proofs we can construct a cylindrical surface S = G x kK C H, such
that the mapping f is not proper on S’ = ¢l(S) C X. This contradicts Corollary 3.16. O
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In particular the set S = [J"{z : & = 0} is a testing set for polynomial mappings
f:X — k™ and so we have:

Corollary 5.6. Let X be a semi-affine and k—uniruled n—dimensional variety. Let
f =1, fm) : X — E™ be a generically-finite polynomial mapping. If the mappings
resv(fi)f, i=1,...,m are proper, then the mapping f is proper, too.

6. THE RUSSELL PROBLEM.

Now we pass to the application of Theorem 5.2. Let K,, :={x € k" : z1-... -z, = 0}
(i.e., K}, is the union of coordinate hyperplanes in £™). Peter Russell stated the following:

Conjecture. Let k = C. Let X be an affine, smooth variety of dimension n, which is
contractible. Then X is isomorphic to k™ if and only if there is a closed embedding of K,
into X.

In the paper [7] we have showed that the Russell Conjecture is true if X is additionally
dominated by C". The Russell Conjecture suggests a certain characterization of the affine
space X over any field. Here we generalize our result from [7] and we prove:

Theorem 6.1. Let X be a k—uniruled smooth affine variety of dimension n. Assume that
Pic(X) =0 and H°(X, 0*) = k. If there is a closed embedding ¢ : K, — X, then X = k™.
More precisely, every closed embedding 1 : K, — X can be extended to an isomorphism
U k" — X,

Proof. Let ¢ : K, — X be a closed embedding, and let I'; := ¢({z : ; = 0}). Moreover,
denote K], :=1(K,) and denote the point ¢ (0) by a.

Take m; := {z € k" : x; = 0}. Since Pic(X) = 0 there are irreducible polynomials
hj,j=1,...,nsuch that I'y = {x € X : hj(x) =0},7 =1,...,n. We see the following:

Lemma 6.2. The restriction of the mapping H = (hq,...,hy) : X — k™ to the set K], is
an isomorphism. Moreover, H 1(K,) = K.

Proof. Let I';; = I'; NI, Let fo = 0,..., f, = 0, be irreducible equations of the sets
I'2,...,'1, in the coordinate ring k[I'q].

Consider hy. We have {rely: ho (x) = 0} = I'12, hence from the Hilbert Nullstellensatz
there exist an integer r > 1 and c3 € H°(X, O*) such that hy = c2(f2)". By the assumption
co € k. Since polynomials hq, ..., h, give a local system of coordinates at the point a, we
must have 7 = 1 and hy = c2f2,c2 # 0. In a similar way hj = ¢;fj,¢; # 0, for j > 2.

By the symmetry we see that the polynomials iLj = rest,hj,j # 1, are generators of the
ideals I(I';;) in the ring k[I';].

Now, let A = ¢~ ! : K! — K, and let us consider a mapping &' := resp A : '] — 1.
We know that this mapping is polynomial, and moreover ¢! = (0,e2,...,,). We see
that {x € Ty : g;(z) = 0} = I'y;. Since €' is an isomorphism, the polynomials &;,7 =
2,...,n, are irreducible in the ring k[I';]. Since {z € I'y : hi(z) = 0} = I'y;, there ex-
ist non-zero constants x1; such that ¢; = milii,i = 2,...,n. Hence €' has coordinates
(0, mgﬁg, e ,/ilnizn). In a similar way the mapping & := resry A @ I'y — m has coordi-
nates (Hklill, e Bk 1hg_1,0, Hkk+1ilk+1, ol /f;mﬁn) To end the proof of our lemma, it is
enough to show that for every k,l # j we have k; = K;;(:= K;). Indeed, in this case the
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mapping A is the restriction to K/, of the mapping A = (k1h1, ..., knhy), hence also the
mapping H = (hy,...,hy) in the restriction to K], is an embedding.

Since I'y NI'; ¢ T'j, there exists a point ¢ € (I'yNIy) \I';. Thus A(c) &€ 7; (ie., hj(c) # 0)
and A(c) = e¥(c) = (..., kkjhj(c),...) = (..., kihi(c),...) = €(c), hence kyjh;(c) =
ki;hj(c) and ki; = k. Moreover, by the construction of H we have H 1(K,) = K',. O

We now complete the proof of Theorem 6.1. By the lemma above the mapping H in
the restriction to the set H~1(K,) is proper, hence by Corollary 5.6 the mapping H is
proper. Since X is affine it means that the mapping H is finite. Since (dgy))~! is an
isomorphism, we also have that the mapping d,H : T, X — Tpk™ is an isomorphism.
In particular the mapping H is separable and it is non-ramified at the point a. But
H~1(0) = a and consequently deg H = 1 (see e.g. [2]). This means that the mapping H
is birational. Finally, it is isomorphism by the Zariski Main Theorem. Now, if we take
U := (k1h1, ..., Knhy) 7't k™ — X, then VU is an isomorphism and resg, ¥ = . O
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