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Vector fields with distributions and
invariants of ODEs

Bronis law Jakubczyk ∗ Wojciech Kryński †

Abstract

We study pairs (X,V) where X is a vector field on a smooth manifold M
and V ⊂ TM is a vector distribution, both satisfying certain regularity condi-
tions. We construct basic invariants of such objects and solve the equivalence
problem. For a given pair (X,V) we construct a canonical connection on a
certain frame bundle. The results are applied to the problem of time-scale
preserving equivalence of ordinary differential equations. The framework of
pairs (X,V) is shown to include sprays, Hamiltonian systems, Veronese webs
and other structures.

1 Introduction

In this paper we study pairs (X,V) where X is a vector field on a manifold M and
V ⊂ TM is a vector distribution (a sub-bundle of the tangent bundle TM), both
satisfying certain regularity conditions. Such pairs appear to encode a large variety
of geometric objects as geodesic sprays on Riemannian (pseudo-Riemannian) man-
ifolds and, more generally, manifolds with affine connections, spray spaces, control
systems, systems of ordinary differential equations, Veronese and Kronecker webs.

The aim of the article is twofold. The first aim is to study general geometric
objects attributed to the pair (X,V) and identify the invariants. The second aim is
to test the proposed approach on systems of ordinary differential equations of order
≥ 2, where pairs (X,V) appear as a tool. We use time scale preserving equivalence.
This is done in the second part of the article, where we solve the corresponding
equivalence problem. The approach was partially developed in the thesis [19].

The equivalence problem for ODEs is a classical one and was mainly attacked
using contact or point transformations (see Cartan [5], Chern [6], Bryant [3], Fels
[13], Doubrov, Komrakov and Morimoto [11], Dunajski and Tod [12], Godlinski
and Nurowski [16] for a very partial list of contributions). We do not address this
version of the problem, which is more complicated and gives less hopes for a simple
and complete solution (i.e., identifying complete sets of independent invariants).
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Time scale preserving equivalence problem was less studied, even if it is more
natural from the point of view of applications. The problem was formally solved
by Chern [7] (systems of order two) and [8] (systems of higher order), using Car-
tan’s method of equivalence (his second paper was totally ignored in the literature).
Our approach (Section 3) treats ODE’s as pairs (X,V) with a flag of integrable
distributions and can be thought, roughly, as dual to Chern’s [8] (more details on
dual approaches and formulas for invariants will be provided in a future paper). We
additionally give relations between invariants of systems of order two (Section 3.4).

The setting considered here includes control systems and variational equations
appearing there (cf. e.g. [21, 4, 2]). It also includes equivalence problems of special
geometric structures, one of them being a Veronese web (Gelfand and Zakharevich
[14, 26], Touriel [25]). We show that a Veronese web can be coded as a pair (X,V)
and its invariants can be found as a special case of our invariants (Section 4).

The simplest invariants, the curvature operators which we construct in Section
2.2, generalise the curvatures used in [17] for an analysis of the variational equation.
In the special case of geodesic spray on the tangent bundle of a Riemann or Finsler
manifold, or a general spray (cf. Shen [22]), there is only one curvature operator
K0, equivalent to the Riemann curvature (Section 2.3). It is the curvature which
appears in the generalised Jacobi equation (see [22], Chapter 8). Our formalism
applied to Hamiltonian systems (Section 2.3) gives a symmetric curvature operator
K0 which is equivalent to the curvature introduced in a different way by Agrachev
and Gamkrelidze [2] and used for estimation of conjugate points.

We outline our approach. The subject of the study is a pair (X,V) of a vector
field X and a distribution V ⊂ TM on a smooth manifold M . We attach to it a
sequence of distributions defined inductively, using Lie bracket, by

V0 := V , V i+1 := V i + [X,V i].

We impose natural regularity conditions on (X,V), assuming that the distributions
have maximal possible ranks. More precisely, we assume that dimM = (k+1)m+1,
k,m ≥ 1, and

(R1) rkV i = (i+ 1)m, for i = 0, . . . , k,

(R2) Vk ⊕ span{X} = TM .

Our formalism also works with modified assumptions, where dimM = (k+1)m and
(R2) is replaced with

(R2’) Vk = TM , and X(x) 6= 0, for x ∈M .

A pair (X,V) satisfying (R1) and (R2) is called dynamic pair or regular pair. We
show that there is a natural class of frames in TM (called normal frames), attached
in an invariant way to a regular pair (X,V). This class of frames defines a canonical
G-structure P on M , where G = Gl(m). The G-structure has the following property.

Two regular pairs (X,V) and (X ′,V ′) are locally equivalent if and only if the
corresponding G-structures are isomorphic.
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Above, two pairs (X,V) and (X ′,V ′) are called (locally) equivalent if there is a
(local) diffeomorphism Φ: M →M such that Φ∗X = X ′ and Φ∗V = V ′.

In order to solve the equivalence problem in a more explicit way we use the
principal G-bundle P , defined by the G-structure, and define a canonical frame on
P . Our main results in Section 2 (Theorems 2.9 and 2.11) say the following.

Two regular pairs (X,V) and (X ′,V ′) are locally equivalent if and only if the
corresponding canonical frames are.

These theorems give a tool for solving the equivalence problem, since there is a
standard procedure for determining if two frames are equivalent. Additionally, the
canonical frames enable us to define a principal connection on P . The connection
can be used for the analysis of geometric properties of the pair (X,V).

Important geometric objects attached to (X,V) are curvature operators, defined
in Section 2.2 (see also [19] and [17]). In the classical case of semi-sprays defined by
differential equations of order two there is only one such operator.

In the second part (Section 3) we study systems of ordinary differential equations

x(k+1) = F (t, x, . . . , x(k))),

where x ∈ Rm and F is of class C∞. Then we take M = Jk(R,Rm) - the manifold
of k-jets of parametrised curves in Rm. The vector field X is the total derivative

XF = ∂t +
k−1∑
i=0

m∑
j=1

xj
i+1∂xj

i
+

m∑
j=1

F j∂xj
k
.

A vertical distribution V = VF on EF can be defined as the restriction to EF of the
kernel of the canonical projection Jk+1(1,m) → Jk−1(1,m). In coordinates

VF = span{∂xj
k
| j = 1, . . . ,m}.

At the end (Section 4) we study Veronese webs, i.e. one-parameter families of
foliations of special type, introduced by Gelfand and Zakharevich [14] and strongly
related to bi-hamiltonian systems. We prove that Veronese webs can be treated
as ODEs for which our curvature operators vanish. In this way we relate Veronese
webs with dynamic pairs and we solve the equivalence problem. It appears that
Veronese webs play the same role for time-scale preserving contact transformations
as paraconformal structures (called also Gl(2)-structures) play for the general con-
tact transformations [3, 12, 16, 20].

Other examples of pairs (X,V) that can be interesting for applications are:

(1) Given a Riemannian or a pseudo-Riemannian manifold N , we take X to be
the geodesic spray on M = R × TN and V the vertical distribution on the
bundle R× TN → N .

(2) For a vector field X on a fibre bundle E → B, we may take M = E and V -
the vertical distribution tangent to fibres.

(3) Given a control system ẋ = f(x)+
∑

i uigi(x) on a manifold M , we take X = f
and V = span{g1, . . . , gm}.
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2 Vector fields with distributions

2.1 Dynamic pairs (X,V) and their normal frames

Let M be a smooth differentiable manifold of dimension n. Consider a C∞ dynamic
pair (X,V), i.e., a vector field X on M and a distribution V ⊂ TM of rank m,
satisfying the regularity conditions (R1) and (R2). Then V(x) is an m-dimensional
subspace of the tangent space TxM , for every x ∈ M and, locally, there exist m
smooth vector fields V1, . . . , Vm such that

V(x) = span{V1(x), . . . , Vm(x) }.

If V1, . . . , Vm span V on an open subset U ⊂M then we will briefly denote them as
the row vector V = (V1, . . . , Vm) and call V a local frame of V on U .

Recall that the pair (X,V) defines a sequence of distributions

V = V0 ⊂ V1 ⊂ · · · ⊂ Vk ⊂ TM,

where
V i(x) = span{ads

XVj(x) | 0 ≤ s ≤ i, 1 ≤ j ≤ m}.

Above adXY = [X, Y ], ad2
XY = [X, [X, Y ]] etc., where [X, Y ] denotes the Lie bracket

of vector fields. Denote by X the 1-dimensional distribution spanned by X.

Definition 2.1 A local section Y of V is called normal if

adk+1
X Y = 0 mod Vk−1 ⊕X . (1)

A local frame V = (V1, . . . , Vm) of V on U ⊂ M is called normal frame of V if all
Vi are normal sections of V.

Note that it follows from (R1) and (R2) that the vector fields X and adi
XVj(x),

0 ≤ i ≤ k, 1 ≤ j ≤ m, are linearly independent and they span TM . Thus, denoting

adi
XV = (adi

XV1, . . . , adi
XVm)

we have
adk+1

X V = V H0 + (adXV )H1 + · · ·+ (adk
XV )Hk mod X , (2)

where Hi are m×m matrices of functions. Then V is a normal frame iff Hk = 0.
Let V = (V1, . . . , Vm) and W = (W1, . . . ,Wm) be local frames of V on U . Then

there exists a unique Gl(m)-valued function G : U → Gl(m) such that, in the matrix
notation,

W = V G. (3)

Proposition 2.2 (a) Given a regular pair (X,V) and a frame Vx0 in V(x0), there is
a normal frame V = (V1, . . . , Vm) of V in neighbourhood of x0 such that V (x0) = Vx0.
(b) If V and W are two normal frames of V on U then equation (3) holds, where
G : U → Gl(m) satisfies

X(G) = 0. (4)
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(c) If V is a frame of V on U and Hk is defined via (2), then W = V G is a normal
frame of V on U if and only if

X(G) = − 1

k + 1
HkG. (5)

Proof. (a) Let V = (V1, . . . , Vm) be a local frame of V and let V (x0) = Vx0 . We
will find functions G = (Gj

i )i,j=1,...,m such that Wi =
∑m

j=1G
j
iVj, for i = 1, . . . ,m,

are the desired vector fields, i.e.,

adk+1
X W = 0 mod Vk−1 ⊕X . (6)

In the matrix notation W = V G, thus [X,W ] = [X,V G] = [X,V ]G+ V X(G) and,
inductively, adi

XW = adi
X(V G) =

∑i
j=0

(
i
j

)
adj

X(V )X i−j(G). This implies

adk+1
X W = (adk+1

X V )G+ (k + 1)(adk
XV )X(G) mod Vk−1.

It follows from (R1) and (R2) that (2) holds, thus

adk+1
X V = (adk

XV )H mod Vk−1 ⊕X , (7)

for a certain square matrix Hk = H = (Hj
i ). Since adk

XW = (adk
XV )G mod Vk−1,

equation (6) is equivalent to the following equation for the unknown function G:

HG+ (k + 1)X(G) = 0. (8)

This is a linear first order differential equation for G, thus it can be solved, locally,
so that G(x0) = Id. If G is a solution, we have adk+1

X W = 0 mod Vk−1 ⊕ X and
W (x0) = V (x0)Id = Vx0 .

(b) As above, we have W = V G. Since all elements Y = Vi of V satisfy (1), the
matrix H = Hk in equation (7) is zero. Equation (6) implies that the matrix valued
function G satisfies (8), thus X(G) = 0.

(c) This follows from the proof of (a), as H = Hk and equations (5) and (8)
coincide. �

Note that the “initial condition” V (x0) = Vx0 in statement (a) can be imposed
on any local hypersurface transversal to X in M . From statement (b) we get

Corollary 2.3 If V and W are normal frames of V on U ⊂M then W = V G and,
for all i,

adi
XW = adi

X(V G) = (adi
XV )G. (9)

2.2 Curvature operators

We will define the most basic invariants of dynamic pairs, called curvature operators.
Proposition 2.2 says that if both V and W = V G are normal frames of V then

X(G) = 0. Hence, adi
XW = (adi

XV )G for any i. It follows that distributions

Hi = span{V i
1 , . . . , V

i
m}, with V i

j := adi
XVj,
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do not depend on the choice of a normal frame V = (V1, . . . , Vm), for i = 1, . . . , k.
Hi will be called i-th quasi-connection, for reasons which will become clear in the
second part of the paper. We also denote H0 = V and stress that rkHi = m.
Condition (R1) implies

V i = V ⊕H1 ⊕ · · · ⊕ Hi,

for i = 1, . . . , k. Condition (R2) gives

TM = V ⊕H1 ⊕ · · · ⊕ Hk ⊕X .

The last relation defines projections

π0 : TM → V and πi : TM → Hi, i = 1, . . . , k.

Notice that the operators

Ai : V → Hi, Ai = πi ◦ adi
X , 0 ≤ i ≤ k,

are vector bundle isomorphisms, similarly as

πi ◦ adX : Hk → Hi, 0 ≤ i ≤ k − 1.

In particular, A0 = Id : V → V .

Definition 2.4 An i-th curvature operator Ki ∈ End(V) of a dynamic pair (X,V)
is

Ki = (−1)i(Ai)
−1 ◦ πi ◦ adX ◦ Ak : V → V, 0 ≤ i ≤ k − 1.

The alternating sign is chosen for consistency with classical interpretations of cur-
vatures and, in particular, for simplicity of the variational equation [17].

Equivalently, Ki can be defined as follows. Let x ∈ M . In a fixed basis of the
space V(x) the operator Ki(x) is represented by m×m matrix, also denoted Ki(x).
If V = (V1, . . . , Vm) is a normal frame, then matrices of the curvature operators are
defined in the basis V1(x), . . . , Vm(x) of V(x) by the following equation:

adk+1
X V + (−1)k−1(adk−1

X V )Kk−1 + · · · − (adXV )K1 + V K0 = 0 mod X . (10)

Due to the transformation rule (9), when normal generators V is transformed to
normal generators V G, the matrices Ki are transformed via

Ki 7−→ G−1KiG. (11)

The operators
Ki(x) : V(x) → V(x)

are invariantly assigned to the dynamic pair (X,V).
If the generators V are not normal, the formula (2) holds. The linear operators

defined by the matrices Hi(x) are not invariantly assigned to the pair. However, the
curvature matrices can be computed in terms of matrices Hi. In particular, we have
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Proposition 2.5 If k = 1 and ad2
XV = (adXV )H1 + V H0 then

K0 = −H0 +
1

2
X(H1)−

1

4
H2

1 (12)

and

H1 = span

{
adXV −

1

2
V H1

}
. (13)

Proof. We use statement (c) in Proposition 2.2, which states that W = V G is a
normal frame, if X(G) = −1

2
H1G. Then X(X(G)) = −1

2
X(H1)G + 1

4
H2

1G. Since
ad2

X(V G) = (ad2
XV )G + 2(adXV )X(G) + V X2(G), using the assumed formula for

ad2
XV and eliminating X(G) and X2(G) gives

ad2
X(V G) = V GG−1

(
H0 −

1

2
X(H1) +

1

4
H2

1

)
G.

This leads to the formula for K0 in the normal frame W = V G, according to (10)
(we may assume that G(x) = Id, at a fixed point x). The formula for the connection
H1 follows from adX(V G) = (adXV )G+ V X(G). �

2.3 Examples

Hamiltonian vector field. Let M = R × N , where N is a symplectic manifold
of dimension 2m with symplectic form σ. Let H be a time dependent Hamiltonian
vector field on N and, thus, a vector field on M . Take X = ∂t + H, where t is
the canonical time coordinate on R, and on R × N . Let Vt ⊂ TN , t ∈ R, be a
family of Lagrangian distributions on N , i.e., dimVt = m and σ(v, w) = 0 for any
vectors v, w ∈ Vt. Denote by V the resulting distribution on M = R ×N . Assume
that (H,V) is regular, that is span{Vt, [H,Vt]}x = TxN , for any (t, x) ∈ M . The
pair (X,V) is a regular dynamic pair on M with k = 1. Given a normal frame
V = (V1, . . . , Vm) in V , we have

[X, [X,Vi]] = [H, [H, Vi]] =
∑

j

(K0)
j
iVj, (14)

where K0 is the curvature matrix defined according to formula (10): ad2
XV = V K0

(the coefficient at X in (10) vanishes because of the term ∂t in X). One can check,
consulting [1], that the above curvature K0 coincides with the curvature introduced
in a completely different way in [2]. The following proposition is easy to prove.

Proposition 2.6 (a) The distribution

H1 = span{[H, V1], . . . , [H, Vm]}

is Lagrangian with respective to σ, on each fiber {t} ×N .
(b) The matrix g = (gij) given by

gij(x) = σ([H, Vi], Vj)(x), x ∈M = R×N, i, j = 1, . . . ,m.

is symmetric, nondegenerate, and defines a pseudo-Riemannian metric on V.
(c) The matrix K0 is symmetric and defines a selfadjoint (relative to g) operator
K0 : V → V.
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Proof. Since V is Lagrangian, we have σ(Vi, Vj) = 0. Lie differentiating this equality
with respect to H gives

0 = σ([H, Vi], Vj) + σ(Vi, [H, Vj])

and proves the symmetry of g in (b), since σ is antisymmetric. Differentiating twice
gives

0 = σ(ad2
HVi, Vj) + 2σ([H, Vi], [H, Vj]) + σ(Vi, ad2

HVj).

The side terms are zero which follows from (14) and the fact that V is Lagrangian.
Thus σ([H, Vi], [H, Vj]) = 0, which shows (a). Differentiating three times yields

0 = σ([H, ad2
HVi], Vj) + 3σ(ad2

HVi, [H, Vj]) + 3σ([H, Vi], ad2
HVj) + σ(Vi, [H, ad2

HVj])

and, applying (14) and the summation convention,

0 = σ([H, (K0)
s
iVs], Vj) + 3σ((K0)

s
iVs, [H, Vj])

+ 3σ([H, Vi], (K0)
s
jVs) + σ(Vi, [H, (K0)

s
jVs])

= σ((K0)
s
i [H, Vs], Vj) + 3σ((K0)

s
iVs, [H, Vj])

+ 3σ([H, Vi], (K0)
s
jVs) + σ(Vi, (K0)

s
j [H, Vs]),

where in the second equality we use the fact that σ(H((K0)
s
i )Vs, Vj) = 0, as V is

Lagrangian. Using antisymmetry of σ and the definition of gij we get

0 = (K0)
s
igsj − 3(K0)

s
igjs + 3(K0)

s
jgis − (K0)

s
jgsi = −2(K0)

s
igsj + 2(K0)

s
jgis,

since g is symmetric. This proves (c).
Since V = span{V1, . . . , Vm} and H1 = span{[H, V1], . . . , [H, Vm]} are transversal

Lagrangian subspaces in TN and σ is nondegenerate on TN , it follows that the
matrix g in (b) is nondegenerate. �

Remark. A canonical example of the pair as above is a time dependent vector
field H on the cotangent bundle N = T ∗Ñ of a differentiable manifold Ñ , where Vt

is the vertical distribution of the bundle π : T ∗Ñ → Ñ , i.e., Vt(x) = Tπ(x)Ñ .

Another example (see [2]) is given by a Hamiltonian function h : T ∗Ñ → R. The
corresponding Hamiltonian vector field H and the vertical distribution never form
a regular pair with k = 1 since the dimension of M = T ∗Ñ can not be equal to
2m + 1. However, we can have a regular pair if we restrict our considerations to a
level submanifold of the Hamiltonian. Namely, take M = {h = c} ⊂ T ∗Ñ and the
vector field X equal to H restricted to M , X = H|M . The distribution V on M
is defined as the vertical distribution of the cotangent bundle intersected with the
tangent space to M : V(x) = T (T ∗π(x)Ñ)∩TxM , for x ∈M . Then, if dim Ñ = m+ 1,

we have dimV(x) = m, dimM = 2m+ 1 and assuming regularity of the pair (H,V)
makes sense (typical examples are regular). In this case the equality in formula (14)
holds, modulo H, and all statements of Proposition 14 hold true, for the canonical
symplectic form σ on T ∗Ñ replaced with the symplectic form σ̂ = σ|M considered
on the quotient space TxM/span{H(x)}.
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Geodesic spray. Consider a geodesic equation on a manifold N of dimension m
with local coordinates (xi). In local coordinates we have

(xi)′′ = −
m∑

p,q=1

Γi
pq(x

p)′(xq)′,

where Γi
pq are Christoffel symbols of a connection ∇. Note that the equation does

not depend on the torsion of the connection and thus we will assume that ∇ is
symmetric. Let J2(R, N) be the space of 2-jets of functions R → N . On J2(R, N)
there are local coordinates (t, xi

0, x
i
1, x

i
2), induced by the coordinates (xi), where

i = 1, . . . ,m. The geodesic equation is uniquely defined by the submanifold

E =

{
(t, xi

0, x
i
1, x

i
2) | xi

2 = −
∑
p,q

Γi
pqx

p
1x

q
1

}
⊂ J2(R, N).

There is a canonical projection J2(R, N) → TN ×R which, restricted to E, defines
the diffeomorphism E ' TN ×R. In particular (xi

0) = (xi) are local coordinates on
N whereas (xi

1) are the corresponding linear coordinates on the fibres of TN → N .
Let

X = ∂t +
∑

i

xi
1∂xi

0
−
∑
i,p,q

Γi
pqx

p
1x

q
1∂xi

1

be the total derivative. We take the vertical distribution tangent to the fibres of
TN , that is V = span{∂xi

1
| i = 1, . . . ,m}. Clearly, conditions (R1) and (R2) are

satisfied for such a pair (X,V), with the parameter k = 1. Direct computations give

adX∂xi
1

= −∂xi
0

+
∑
j,p

2Γj
ipx

p
1∂xj

1

ad2
X∂xi

1
=

∑
j,p

2Γj
ipx

p
1adX∂xj

1

+
∑

j,p,q,r

(
2∂xq

0
(Γj

ip)xp
1x

q
1 − 2Γj

irΓ
r
pqx

p
1x

q
1 − ∂xi

0
(Γj

pq)x
p
1x

q
1

)
∂xj

1
.

Since k = 1, there is only one curvature operator K0. From Proposition 2.5 we get

K0 =

(∑
p,q,r

(
∂xi

0
(Γj

pq)− ∂xq
0
(Γj

ip) + Γj
irΓ

r
pq − Γr

ipΓj
rq

)
xp

1x
q
1

)
i,j=1,...m

.

We see that K0 is a quadratic function in the coordinates on fibres xp
1, x

q
1 and we

recognise that the coefficients Rj
iqp = ∂xi

0
(Γj

pq)− ∂xq
0
(Γj

ip) +
∑

r(Γ
j
irΓ

r
pq − Γr

ipΓj
rq) are

components of the curvature tensor R of the connection ∇. Denoting Y = y = (xi
1)

and x = (xi
0), we get

K0(x, y)(Z) = Rx(Z, Y )Y.

A simple calculation using Bianchi identity for R gives the converse formula

Rx(Y, Z)W =
1

3
(K0(x, z + w)(Y )−K0(x, y + w)(Z)

−K0(x, z)(Y )−K0(x,w)(Y ) +K0(x, y)(Z) +K0(x,w)(Z)),
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where x = (t, (xi
0)) and we identify the elements y = Y, z = Z,w = W . We also

have

H1 = span

{
−∂xi

0
+
∑
j,p

Γj
ipx

p
1∂xj

1

}
.

It follows that the quasi-connection H1 coincides, in the Ehresmann sense, with the
connection ∇. More general cases will be considered in Chapter 3.

ODE with constant coefficients. Consider the following linear system of
ODEs

x(k+1) + Ak−1x
(k−1) + · · ·+ A1x

′ + A0x = 0.

where x = (x1, . . . , xm)T ∈ Rm and Ai ∈ Rm×m are constant matrices. Let Jk(1,m)
be the space of k-jets of functions from R to Rm. The standard global coordinate
functions on Jk(1,m) are denoted (t, xj

i ), where i = 0, . . . , k and j = 1, . . . ,m. We
set xi = (x1

i , . . . , x
m
i )T . Let

X = ∂t +
k∑

i=1

m∑
j=1

xj
i∂xj

i−1
+

m∑
j=1

F j∂xj
k

be the corresponding total derivative, where we abbreviate

(F 1, . . . , Fm)T =
(
Ak−1xk−1 + · · ·+ A1x1 + A0x0

)
.

Taking V = span{∂xj
k
| j = 1, . . . ,m} one can prove that (∂x1

k
, . . . , ∂xm

k
) is a normal

frame of the pair (X,V). Moreover, a simple induction gives that the corresponding
curvature operators are given by the matrices Ki = (−1)iAi.

2.4 Canonical bundle

In order to identify further invariants of dynamic pairs, and solve the equivalence
problem, we introduce a sub-bundle FN(X,V) of the tangent frame bundle, called
canonical or normal frame bundle of (X,V). Assume (X,V) satisfy (R1) and (R2).

Definition 2.7 Fix x ∈M . A frame Fx in TxM of the form

Fx = (V 0, V 1, . . . , V k, X(x)), where V i = (V i
1 , . . . , V

i
m),

is called normal at x if there is a local normal frame V = (V1, . . . , Vm) in V such
that V i

j = (adi
XVj)(x). Equivalently, Fx is called normal if there is a local frame V

of V, possibly not normal, such that

V 0 = V (x), V i = AiV (x), i = 1, . . . , k, (15)

where the operators Ai = πi ◦ adi
X : V → Hi are the vector bundle isomorphisms

from Section 2.2. Both definitions coincide since they coincide for a local normal
frame V and, given the pair (X,V), the second one depends on the value V (x), only.
A local normal frame in TM is a smooth local field of normal frames x 7→ Fx.

10



Denote by FN(x) the set of all normal frames in TxM . The set

FN = FN(X,V) :=
⋃

x∈M

FN(x)

forms a bundle over M , called normal frame bundle corresponding to the pair (X,V)
or canonical bundle of (X,V). This is a smooth sub-bundle,

FN ⊂ F ,

of the bundle π : F →M of all frames on M .
There is a natural right action of Gl(m) on FN given by

(Fx, A) 7−→ RAFx = (V 0A, V 1A, . . . , V kA,X(x))

where A ∈ Gl(m) and V iA =
(∑m

j=1A
j
1V

i
j , . . . ,

∑m
j=1A

j
mV

i
j

)
. This action is briefly

denoted
RAFx = FxA, where A = diag(A,A, . . . , A, 1).

With respect to this action FN is a principal Gl(m)-bundle. This means that
Gl(m) acts transitively and freely on each fiber FN(x). To check this pick two
normal frames F (x) and F ′(x) at x, given by local normal frames V and V ′ of V .
Then, by Proposition 2.2, there is a matrix valued function G such that V = V ′G,
where X(G) = 0. Thus adXV = (adXV

′)G and, generally, adi
XV = (adi

XV
′)G.

Thus, the corresponding local normal frames F and F ′ are related by the block
diagonal matrix

G = diag(G, . . . , G, 1), F = F ′G.

If x ∈ M is fixed, the group of block diagonal matrices G(x) is isomorphic to the
group Gl(m), with the isomorphism given by G(x) 7→ G(x). We conclude that

Proposition 2.8 FN = FN(X,V) is a principal Gl(m)-bundle and a sub-bundle of
the bundle F of frames on M , i.e., a Gl(m)-structure. Two regular pairs (X,V)
and (X ′,V ′) are locally equivalent if and only if the corresponding canonical bundles
FN(X,V) and FN(X ′,V ′) are isomorphic as Gl(m)-structures.

Proof. The second statement follows directly from the definition of FN(X,V) and
from equivariance of the Lie bracket with respect to diffeomorphisms. Note that
any isomorphism of FN(X,V) and FN(X ′,V ′) is given by a diffeomorphism Φ of M
such that Φ∗FN(X,V) = FN(X ′,V ′) which implies Φ∗V = V ′. �

2.5 Canonical frame and connection, equivalence

Assume that a pair (X,V) satisfies conditions (R1) and (R2). To any such pair we
will assign, in an invariant way, a frame on the canonical bundle. Moreover, we will
show that the normal frame bundle π : FN →M with the structural group

{diag(A, . . . , A, 1) ∈ Gl(n) | A ∈ Gl(m)} ' Gl(m),

11



where n = (k+ 1)m+ 1, possesses a canonical principal connection understood as a
smooth distribution D on FN , which is transversal to the fibres and which satisfies

D(RAF ) = (RA)∗D(F ),

for any F ∈ FN and any A ∈ Gl(m). Here RA is the transformation of FN induced
by the right action: RAF = FA, A = {diag(A, . . . , A, 1).

Note that any distribution D on FN of rank n = dimM which is transversal to
fibers defines a frame on FN . Namely, let F be a point in FN which is an n-tuple of
vectors F = (V 0, V 1, . . . , V k, X) on M , where V i = (V i

1 , . . . , V
i
m). Then there exists

a unique tuple of vectors lifted to D,

F = (Vi
j,X | j = 1, . . . ,m, i = 0, . . . , k),

i.e., such that Vi
j,X ∈ D(F ) and

π∗(V
i
j) = V i

j , π∗(X) = X. (16)

We will briefly denote Vi = (Vi
1, . . . ,V

i
m) and V = (V0, . . . ,Vk).

In addition, on FN there are defined fundamental vector fields which are tangent
to the fibres of FN and which come from the action of the structural group Gl(m).
The fundamental vector fields with the Lie bracket form a Lie algebra isomorphic
to the Lie algebra g of the structural group, where

g = {diag(a, a, . . . , a, 0) | a ∈ gl(m)} ⊂ gl(n)

is naturally isomorphic to gl(m). Vector fields corresponding to matrices es
t with 1

at the position (s, t) = (row, column) and 0 elsewhere will be denoted Gt
s and the

collection of all such vector fields will be shortly denoted G = (Gt
s)s,t=1,...,m. Clearly

the tuple (F,G) is a frame on FN defined uniquely by D.
Vice versa, any frame (F,G) on FN , where G consists of the fundamental vector

fields, defines a unique Ehresmann connection D = span{X,Vi
j : 0 ≤ i ≤ k, 1 ≤ j ≤

m} on FN . In our case both the connection and the frame will be Gl(m) invariant.
We will show that one can choose D in a canonical way. Then two pairs (X,V)

and (X ′,V ′) will be equivalent if and only if the corresponding connections are
equivalent (or if and only if the corresponding frames are equivalent).

Let (θj
i , α, ω

s
t ) be the coframe on FN dual to the frame (Vi

j,X,G
t
s). We put

T ijr
pql = θr

l ([Vi
p,V

j
q]), T̂ ir

pl = θr
l ([X,Vi

p]),

Sij
pq = α([Vi

p,V
j
q]), Ŝi

p = α([X,Vi
p])

and
Rijs

pqt = ωs
t ([Vi

p,V
j
q]), R̂is

pt = ωs
t ([X,Vi

p]).

These functions are called structural coefficients of the frame. We will see in the
next section that they are coefficients of the torsion and curvature of the connection
D. Some of them can be normalised so that the connection and frame are unique.

Namely, the main result of this part of the paper says the following:

12



Theorem 2.9 Assume that (X,V) satisfies (R1) and (R2), with a given k ≥ 1.
(a) There exists a unique principal connection on FN such that the corresponding
frame (V,X,G) satisfies the following conditions:

T̂ kr
pk = 0, p, r = 1, . . . ,m, (17)

T 01r
pq1 = 0, p, q, r = 1, . . . ,m, (18)

T 0ir
pq0 = 0, p, q, r = 1, . . . ,m, i = 1, . . . , k. (19)

It then also satisfies

Ŝi
p = 0, p = 1, . . . ,m, i = 0, . . . , k − 1, (20)

and

T̂ ir
pl = δr

pδ
i+1
l , p, r = 1, . . . ,m, i = 0, . . . , k−1, l = 0, . . . , k. (21)

(b) Two pairs (X,V) and (X ′,V ′) on M are diffeomorphic if and only if the corre-
sponding frames on FN(X,V) and FN(X ′,V ′) are diffeomorphic.
(c) The symmetry group of (X,V) is at most (k+ 1)m+m2 + 1-dimensional, and it
is maximal if and only if (X,V) is locally equivalent to a pair defined by the system

x(k+1) +Kk−1x
(k−1) + · · ·+K1x

′ +K0x = 0,

where x ∈ Rm and matrices Ki are diagonal and constant.

Remark. Conditions (17), (18), (19), (20), (21) can be equivalently stated as

[X,Vk
p ] = 0 mod V0, . . . ,Vk−1,G,X, (22)

[V0
p,V

1
q ] = 0 mod V2, . . . ,Vk,G,X, (23)

[V0
p,V

i
q] = 0 mod V1, . . . ,Vk,G,X, i = 2, . . . , k, (24)

[X,Vi
p] = Vi+1

p mod G, i = 0, . . . , k − 1. (25)

Namely, (17) is equivalent to (22); (18) and (19) are (jointly) equivalent to (23) and
(24); (20) and (21) are (jointly) equivalent to (25). We can also see from (29) below
that the equalities

[Gt
s,X] = 0, [Gt

s,V
i
j] = δt

jV
i
s. (26)

hold modulo the vertical distribution span{G}. From the invariance of the distri-
bution D = span{X,Vi

j} under the action of Gl(m) it follows that they hold exactly.

Lemma 2.10 There is a unique vector field X on FN satisfying (17) and π∗X = X.
If t 7→ F (t) ∈ FN is an integral curve of X then F (t) is a normal frame along
x(t) = π(F (t)), i.e. there is a local normal frame F̂ in TM such that F (t) = F̂ (x(t)).

Proof. Let us fix an open subset U ⊂ M and a section U 3 x 7→ Fx ∈ FN of
normal frames, Fx = (V 0(x), . . . , V k(x), X(x)). Then a point ν ∈ FN is encoded by
its projection x = π(ν) ∈ U and an element G = G(ν) ∈ Gl(m) such that

ν = (V 0(x)G, V 1(x)G, . . . , V k(x)G,X(x)).

13



In this way we get a local trivialisation FN = U × Gl(m). Using this trivialisation
we introduce natural coordinates on fibers of FN (the coordinates depend on the
initial choice of the section x 7→ Fx but our construction will not). The vertical
vector fields Gt

s, in these coordinates, are given by

Gt
s =

∑
r

Gr
s∂Gr

t
, (27)

where Gr
s(ν) is the (r, s) = (row, column) coordinate of the above defined matrix

G = G(ν). The lifted vector fields X and Vi
j (see (16)) can be written in coordinates

as
X = X +

∑
s,t

αs
tG

t
s, Vi

j =
∑

p

Gp
jV

i
p +

∑
s,t

βis
jtG

t
s, (28)

for some functions αs
t and βis

jt . By direct checking we see that

[Gt
s,X] = 0 mod G and [Gt

s,V
i
j] = δt

jV
i
s mod G. (29)

Let H = (H i
j) denote the matrix of functions which satisfies

[X,V k
j ] =

∑
s

Hs
jV

k
s mod Vk−1 ⊕X . (30)

This relation and (29) give

[X,Vk
j ] =

∑
s

(αs
j + Ĥs

j )Vk
s mod V0, . . . ,Vk−1,X,G,

where Ĥ i
j =

∑
p,q(G

−1)p
jH

q
pG

i
q are coefficients of the matrix Ĥ = G−1HG. Con-

sequently, we have T̂ ks
jk = αs

j + Ĥs
j and condition (17) is satisfied if and only if

αs
t = −Hs

j . In this way the first part of the lemma is proved and we get the explicit
formula

X = X −
∑
s,t

Ĥs
t G

t
s. (31)

The second part follows directly from the first part if we choose the section of normal
frames F with V i = (adi

XV ), where V = (V1, . . . , Vm) is a local normal frame of V .
Then H i

j = 0 and X = X. Thus any integral curve in FN of X is a section of a local
normal frame in TM coming from a local normal frame V G (the matrix G is kept
constant along such a curve). �

Proof of Theorem 2.9. (a) We will use the local section U 3 x 7→ Fx ∈ FN

of normal frames, Fx = (V 0(x), . . . , V k(x), X(x)), and local coordinates defined in
the proof of Lemma 2.10. Here V i = (V i

1 , . . . , V
i
m). The lifted vector fields can be

written
X = X −

∑
s,t

Ĥs
t G

t
s, Vi

j =
∑

p

Gp
jV

i
p +

∑
s,t

βis
jtG

t
s. (32)

Assume that
[V 0

p , V
l
q ] =

∑
i,j

bljpqiV
i
j + clpqX. (33)
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We will show that βis
jt are uniquely determined by conditions (18) and (19), namely

βis
jt =

∑
p,q,r

air
pqG

p
jG

q
t (G

−1)s
r, where (34)

a0r
pq = −b1r

pq1 and air
pq = birpq0, for i ≥ 1. (35)

Taking into account that ∑
s

(G−1)s
rG

t
s = ∂Gr

t

we will see that the resulting frame on FN consists of vertical vector fields Gt
s and

of
X = X −

∑
s,t

Ĥs
t G

t
s, Vi

j =
∑

p

Gp
j(V i

p +
∑
q,r

air
pqĜ

q
r), (36)

where
Ĝq

r =
∑

t

Gq
t∂Gr

t

can be identified with right invariant vector fields on Gl(m) corresponding to ma-
trices er

q, with 1 at the position (q, r) and 0 elsewhere.
To prove (34) note that from (32) and (33) we obtain

[V0
p,V

l
q] =

∑
s,t,i,j

Gs
pG

t
qb

lj
stiV

i
j +

∑
s,j

β0s
pqG

j
sV

l
j −

∑
s,j

βls
qpG

j
sV

0
j mod G,X. (37)

Thus (18) is equivalent to the equations∑
s,t

Gs
pG

t
qb

1j
st1 = −

∑
s

β0s
pqG

j
s, (38)

for p, q, j = 1, . . . ,m, and (19) is equivalent to the equations:∑
s,t

Gs
pG

t
qb

lj
st0 =

∑
s

βls
qpG

j
s,

for p, q, j = 1, . . . ,m and l = 1, . . . , k. It follows from these equations that (βls
pq) are

uniquely determined by (18) and (19) and are given by (34).
It is evident from (36) that so constructed frame is invariant under the right

action of Gl(m) on FN . This means that the distribution D = span{X,Vi
j}, where

i = 0, . . . , k and j = 1, . . . ,m, defines a principal connection on FN . Thus statement
(a) of the theorem is proved. Note that condition (25) is a direct consequence of
(36), thus so are conditions (20) and (21) .

(b) Our construction is invariant with respect to the action of diffeomorphisms,
thus (X,V) and (X ′,V ′) are equivalent if and only if the corresponding frames are.

(c) The first part of statement (c) follows directly from statement (a), since
the dimension of the symmetry group of a frame is bounded from above by the
dimension of the ambient manifold (see [18], Chapter 1, Theorem 3.2). In our case
this dimension is dimFN = (k + 1)m+m2 + 1.
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The symmetry group of (X,V) is maximal if and only if the structural functions
of the frame (Gs

t ,X,V
i
j) are constant. We have (26) and, by definition, Lie brackets

of vertical vector fields Gt
s behave as generators of gl(m), thus have constant struc-

tural functions. Therefore, in order to finish the proof we have to check when the
structural functions of [X,Vi

j] and of [Vi
p,V

l
q] are constant as functions on FN .

The coefficients βi
j in (34) are homogeneous of order one with respect to G. It

implies that the structural functions of the bracket [Vi
p,V

l
q] are homogeneous of

order either one (functions next to Gs
t and Vi

j), or two (a function next to X).
Thus, in order to be constant they have to vanish. Condition (25), already proved,
says:

[X,Vi] = Vi+1 mod G, i = 0, . . . , k − 1.

Moreover,

[X,Vk] = −V0K̂0 + · · ·+ (−1)kVk−1K̂k−1 mod X,G

where, in coordinates, K̂i = G−1KiG. By homogeneity argument, we see that in the
most symmetric case coefficients next to X and G vanish, whereas Ki have to be
diagonal and constant so that G−1KiG = Ki.

In conclusion we see that structural functions of a pair (X,V) with maximal sym-
metry group coincide with the structural functions of the pair (X,V) corresponding
to the system

x(k+1) +Kk−1x
(k−1) + · · ·+K1x

′ +K0x = 0,

with diagonal and constant Ki. (The canonical frame of the pair (X,V), which
corresponds to the linear system, is given by Gs

t , X = X and Vi
j = Gs

jadi
X∂xs

0
, since

vector fields adi
X∂xs

0
are constant and all their Lie brackets vanish.) �

There is also another way of defining the canonical frame on the bundle FN , with
condition (19) replaced by a condition on the structural functions R̂is

pt = ωs
t ([X,Vi

p]).
It will be more convenient in certain situations.

Theorem 2.11 Assume that (X,V) satisfies (R1) and (R2).
There exists a unique principal connection on FN such that the corresponding frame
(V,X,G) satisfies (17), (18) and the following condition:

R̂is
pt = 0, p, s, t = 1, . . . ,m, i = 0, . . . , k − 1. (39)

Two pairs (X,V) and (X ′,V ′) are diffeomorphic if and only if the corresponding
frames are diffeomorphic.

Note that condition (39), taking into account the form (32) of Vi
j, is equivalent

to
[X,Vi] = Vi+1, i = 0, . . . , k − 1. (40)

Proof. The proof is similar to the proof of Theorem 2.9. We get from (17) and
Lemma 2.10, in coordinates used in its proof, that X = X −

∑
s,t Ĥ

s
t G

t
s. Then we

use equation (37) with l = 1 and we see that condition (18) is equivalent to (38),
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and to (34) with i = 0. In this way we normalise V0 = (V0
1, . . . ,V

0
m) so that (32)

gives

V0
j =

∑
p

Gp
j(V 0

p −
∑
q,r

b1r
pq1Ĝ

q
r), (41)

where Ĝq
r =

∑
tG

q
t∂Gr

t
and the coefficients b1r

pq1 are determined from the relation

[V 0
p , V

1
q ] =

∑
j

b1j
pq1V

1
j mod X, V i

j , i = 0, 2, 3, . . . , k, j = 1, . . . ,m, (42)

where V 0(x), . . . , V k(x), X(x) is a section of the normal frame bundle FN . Then
(40) defines Vi uniquely. The resulting frame defines a principal connection.

Note that we can take V i
j = adi

XVj, where (V1, . . . , Vm) is a local normal frame

of V . In this case we can apply formula (31) with Ĥ = 0, thus X = X. We get

Vi
j =

∑
p

Gp
j

(
V i

p −
∑
q,r

X i(b1r
pq1)Ĝ

q
r

)
, i = 1, . . . , k, (43)

which follows from X = X, (40) and (41). �

Definition 2.12 The frame of Theorem 2.9 will be called first canonical frame,
denoted V, and the frame of Theorem 2.11 the second canonical frame, denoted Ṽ.
By definition, the vector fields X and G in both canonical frames coincide.

The following direct corollaries of the proofs of Theorems 2.9, 2.11 and Definition
2.7 will be useful.

Corollary 2.13 The coefficients (35), needed for determining the first normal frame
(36), and the coefficients (43), needed for determining the second normal frame (41),
can be computed using any local frame V of Vk by defining the section of FN via

Fx = (V 0(x), . . . , V k(x), X(x)), where V i(x) = AiV (x).

Corollary 2.14 If k = 1, the operator A1 = π1 ◦ adX : V → H1 has the form
A1(Y ) = adX(Y )− 1

2
V H1Ŷ , for Y =

∑
j Vjfj and Ŷ = (f1, . . . , fm), fj ∈ C∞(M).

Example. For illustration we continue the example of geodesic equation from
Section 2.3 (see Section 3.4 for a general case). We will use the above corollaries.
In order to solve the equivalence problem one has to construct V0, V1 and G on
FN = R×TN×Gl(m) (we locally trivialise the canonical bundle). The vector fields
in G are standard, given by (27).

Take Vj = V 0
j = ∂xj

1
and compute the corresponding components V 1

j = A1Vj of

the normal frame. From the formulas for adXVj and ad2
XVj computed earlier we see

that the matrix H1 is (H1)
j
i = 2

∑
p Γj

ipx
p
1. This and adXVj = −∂xj

0
+2
∑

i,p Γi
jpx

p
1∂xi

1

give

V 1
j = A1Vj = −∂xj

0
+
∑
p,i

Γi
jpx

p
1∂xi

1
.
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We have

[X,V 1
j ] = −

∑
i,u

Γi
jux

u
1V

0
j mod V1, [V 0

p , V
1
q ] =

∑
j

Γj
pqV

0
j ,

i.e. the matrix H = (H i
j) defined via (30) is H i

j = −
∑

i,u Γi
jux

u
1 and the coefficients

defined in the proof of Theorem 2.9 via formula (33) are b1j
pq1 = 0 and b1j

pq0 = Γj
pq.

Hence, formulas (36) and (35) give

X = X +
∑

p,q,r,s,t,u

(G−1)p
t Γq

pux
u
1G

s
qG

r
s∂Gr

t

V0
i =

∑
j

Gj
i∂xj

1
,

V1
i =

∑
j

Gj
i

(
−∂xj

0
+
∑
p,q

Γp
jqx

q
1∂xp

1
+
∑
p,q,r

Γp
jrG

r
q∂Gp

q

)
.

It is straightforward to verify that

[V0
i ,V

0
j ] = 0, [V0

i ,V
1
j ] = 0, [X,V0

j ] = V1
j , [X,V1

j ] = −K̂i
0jV

1
i mod G,

with K̂0 = G−1K0G and K0 computed earlier, and

[V1
i ,V

1
j ] =

∑
s,t,p,q

Gs
iG

t
jR

p
stqx

q
1∂xp

1
+
∑

s,t,p,q,r

Gs
iG

t
jG

r
qR

p
stq∂Gp

r
,

where
Rp

stq = ∂xt
0
(Γp

sq)− ∂xs
0
(Γp

tq) +
∑

r

(
Γp

trΓ
r
sq − Γp

srΓ
r
tq

)
are components of the curvature tensor of ∇. Due to formula (26) we see that there
are no more nontrivial structural functions on FN .

2.6 Torsion and curvature

We can describe the principal connection given by Theorem 2.9 (or Theorem 2.11)
by a connection form. The corresponding curvature and torsion of the connection
can be used as an alternative description of the invariants of the pair (X,V).

Denote φ = (θj
i , α) and ω = (ωs

t ). Then ω is a 1-form on FN with values in the
Lie algebra g ' gl(m), called the connection form. It defines the connection D by
D(F ) = kerω(F ). The 1-form φ on FN with values in Rn is called the canonical
soldering form, where n = (k + 1)m + 1 is the dimension of the manifold M . The
following Cartan structural equations are satisfied

dφ+ ω ∧ φ = Θ, dω + ω ∧ ω = Ω

and define torsion Θ and curvature Ω of the connection, both being 2-forms with
values in Rn and g, respectively.
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The structural functions from Section 2.5 can be described in terms of the torsion
and curvature. Namely, since Θ has values in Rn, where n = (k + 1)m + 1, we can
decompose Θ = (Θj

i , Θ̂)j=1,...,m
i=0,...,k . Similarly, we can write Ω = (Ωs

t)s,t=1,...,m. Then

Θj
i =

∑
p<q
s,t

T stj
pqi θ

q
t ∧ θp

s +
∑
l,r

T̂ lj
ri θ

r
l ∧ α, Θ̂ =

∑
p<q
i,j

Sij
pqθ

q
j ∧ θ

p
i +

∑
i,p

Ŝi
pθ

p
i ∧ α

and
Ωs

t =
∑
p<q
i,j

Rijs
pqtθ

q
j ∧ θ

p
i +

∑
i,p

R̂is
ptθ

p
i ∧ α.

The coincidence of the coefficients in these formulas and the structural functions
introduced in Section 2.5 follows from the general formula dβ(Y, Z) = −β([Y, Z]) for
a 1-form β belonging to a coframe and Y , Z being frame vector fields in D = kerω.

Note that the structural functions satisfy relations which follow from the Bianchi
identities

DΘ = Ω ∧ θ and DΩ = 0,

where D denotes the covariant derivative. We will not use them in full generality
in the present paper, but only restrict to the simplest cases, important for our
applications. Namely, in the next section we will consider cases k = 1 and k = 2
with additional integrability conditions. We will work in terms of canonical frame
rather than connection and use the identities in the form of Jacobi identity for the
vector fields in the canonical frame.

Remark. Uniqueness in Theorem 2.9 is obtained by normalising torsion, setting
part of its coefficients to zero (conditions (17), (18) and (19)). Uniqueness in The-
orem 2.11 is reached by normalising torsion (conditions (17), (18)) and curvature
(condition (39)). Note that (39) (respectively, (40)) means that the vertical part of
[X,Vi

p] is zero (the horizontal parts of [X,Vi
p] and Vi+1

p are the same, by (32)).

The freedom of choosing torsion normalisation conditions in Theorem 2.9 can be
explained following Sternberg [23]. Note that both Θ and Ω vanish if one of their
arguments is in the vertical distribution span G. Thus at a fixed point F ∈ FN they
can be considered as elements of hom(D(F )∧D(F ),Rn) and hom(D(F )∧D(F ), g),
respectively. Moreover, using the isomorphism φ|D(F ) : D(F ) → Rn we obtain that
Θ ∈ hom(Rn ∧ Rn,Rn) and Ω ∈ hom(Rn ∧ Rn, g). If we fix a point in F ∈ FN then
it follows that the set of sub-spaces of TFFN which are transversal to the fibre is an
affine space modeled on the linear space hom(Rn, g). If two connections differ at F
by an element η ∈ hom(Rn, g) then their torsions at F differ by

δη ∈ hom(Rn ∧ Rn,Rn).

where δ : hom(Rn, g) → hom(Rn ∧ Rn,Rn) is Spencer operator

δη(Y1, Y2) = η(Y1)Y2 − η(Y2)Y1.

The approach of Sternberg [23], page 318, says that in order to choose a canoni-
cal connection one should fix a subspace N ⊂ hom(Rn, g) such that N ⊕ Im δ =
hom(Rn, g) and then consider connections with torsion in N . Such a connection is
unique provided that ker δ = {0}. This is the case in our situation:
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Lemma 2.15 The kernel of the Spencer operator is trivial, ker δ = {0}.

Proof. Let η ∈ hom(Rn, g) and δη = 0. There exists a ∈ hom(Rn, gl(m)) such that
η = diag(a, . . . , a, 0) and η(Y1)Y2 − η(Y2)Y1 = 0 for any two vectors Y1, Y2 ∈ Rn.
Both Y1 and Y2 are column vectors of length (k + 1)m + 1, where k ≥ 1. Take
Y1 = (y1, 0, 0, . . . , 0)T and Y2 = (0, y2, 0, . . . , 0)T for some y1, y2 ∈ Rm. Then we
get a(y1)y2 = 0 (and also a(y2)y1 = 0) for arbitrary y1 and y2. Thus a = 0 and
consequently η = 0. �

An upshot of Lemma 2.15 is that in order to solve the problem of equivalence
for dynamic pairs one should fix, once and for all, a subspace N ⊂ hom(Rn, g)
transversal to Im δ and then assign to a dynamic pair a unique connection on FN

with torsion having values in N . Choosing normalisation conditions (17), (18), (19)
was a choice of the subspace N ⊂ hom(Rn, g). Of course, there is a freedom in
choosing another transversal subspace N and the only criterion for choosing one
seems simplicity of the resulting invariants.

3 Ordinary differential equations

Consider a system of m ordinary differential equations of order k + 1 ≥ 2,

x(k+1) = F (t, x, x(1), . . . , x(k)), (F )

where x = (x1, . . . , xm) ∈ Rm and F = (F 1, . . . , Fm) is a smooth map Rn → Rm,
n = 1 + (k + 1)m. Two systems (F ) and (F ′) of this form will be called equivalent
(alternatively, time-scale preserving equivalent or affine-contact equivalent), if there
exists a smooth diffeomorphism Rm+1 → Rm+1 of the form

t 7−→ t′ = t+ c, x 7−→ x′ = Φ(t, x), (44)

with c ∈ R, which maps the set of solutions to (F) onto the set of solutions of (F’).
In the present section we will focus on the problem whether two systems of the

form (F) are time-scale preserving equivalent and on determining invariants. We
start with providing a geometric background to the definition of equivalence.

3.1 Jet space and its affine distribution

Let Jk(1,m) denote the space of k jets of smooth functions R → Rm. The space
Jk(1,m) is endowed with the natural coordinate system (t, y) := (t, x0, . . . , xk),
where xi = (x1

i , . . . , x
m
i ). Recall that any parametrised curve x : I → Rm, with

I ⊂ R an open interval, has its k-jet extension jkx : I → Jk(1,m) defined by
(jkx)(t) = (t, x(t), x(1)(t), . . . , x(k)(t)). On each such curve we identify xi(t) = x(i)(t).

For any given (t, y) ∈ Jk(1,m) there is a smooth curve x : I → Rm such that
(jkx)(t) = (t, y). The vector tangent to this curve at (t, y) is of the form

v = ∂t +
k−1∑
i=0

m∑
j=1

xj
i+1∂xj

i
+

m∑
j=1

uj∂xj
k
,
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where uj are arbitrary numbers and, again, we identify xi = x(i)(t). All such vectors
form an affine subspace of the tangent space toM = Jk(1,m) at the point (t, y) ∈M .
This subspace is denoted Ak(t, y) ⊂ Tt,yM and we have

Ak(t, y) = Dk(t, y) + span{∂x1
k
, . . . , ∂xm

k
},

where Dk denotes the vector field

Dk(t, y) = ∂t +
k−1∑
i=0

m∑
j=1

xj
i+1∂xj

i
.

We will call Ak canonical affine distribution on the space Jk(1,m) of k-jets of
parametrised curves in Rm. We may write

Ak = Dk + Vk,

where Vk denotes the involutive distribution Vk = span{∂x1
k
, . . . , ∂xm

k
}.

Proposition 3.1 A diffeomorphism Ψ : Jk(1,m) → Jk(1,m) which preserves Ak

is the k-jet extension of a diffeomorphism (44), which means that it is of the form

(t, x0, . . . , xk) 7−→ (t+c,Φ(t, x0), (DkΦ)(t, x0, x1), . . . , (D
k−1
k Φ)(t, x0, . . . , xk)). (45)

In particular Ψ preserves the 1-form dt. Vice versa, any Ψ as in (45) preserves Ak.

Proof. Suppose, Ψ : Jk(1,m) → Jk(1,m) preserves Ak, i.e., Ψ∗Ak = Ak. Denoting
with the same same symbol Ak the set (the sheaf) of vector fields belonging to the
distribution Ak we have

[Ak,Ak] = V1
k ,

[Ak, [Ak,Ak]] = V2
k ,

...

[Ak, [· · · [Ak,Ak]]] = Vk
k ,

where [·, ·] denotes the Lie bracket and V1
k , . . . ,Vk

k denote the involutive distributions

V i
k = span{∂xj

s
| s = k − i, k − i+ 1, . . . , k, j = 1, . . . ,m}.

Since Ψ preserves Ak, it also preserves these distributions and the corresponding
foliations. In particular, it preserves Vk−1

k and Vk
k , which means that t is transformed

into t′ and (t, x) is transformed into (t′, x′). The 1-form α = dt is determined by the
conditions α(Vk

k ) = 0 and α(Y ) = 1, for Y ∈ Ak, thus it is also preserved by Ψ. This
implies that t is mapped into t+ c, c ∈ R and, therefore, (t′, x′) = (t+ c,Φ(t, x)).

Since through any point in Jk(1,m) there passes a k-jet extension of a curve in
Rm, and for any curve s 7→ γ(s) = (s, x(s)) we have

x′i(Ψ(γ(s))) =

(
d

ds

)i

x′(Ψ(γ(s))) = (DiΦ)(γ(s)),

it follows that x′i = (DiΦ)(t, x) and, thus, Ψ is of the desired form.
The converse implication is straightforward. �
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Remark. In geometric theory of ODEs one uses a Cartan distribution Ck, which
is the vector distribution spanned by the more subtle object, the affine distribution
Ak. Ck gives all vectors tangent to k-jet extensions of unparametrised curves. We
have

Ck = span{Dk,Vk} and Ak = {Y ∈ Ck : dt(Y ) = 1}.

3.2 Dynamic pair of (F) and equivalence

The system (F ) can be equivalently defined by a submanifold EF ⊂ Jk+1(1,m),

EF = {(t, x0, . . . , xk+1) ∈ Jk+1(1,m) | xk+1 − F (t, x0, . . . , xk) = 0}.

The functions t, x0, . . . , xk restricted to EF define a system of coordinates on EF ,
since the projection π : Jk+1(1,m) → Jk(1,m) restricted to EF is a diffeomorphism,
π|EF

: EF → Jk(1,m).
The canonical affine distribution Ak+1 = Dk+1 + Vk+1 on M = Jk+1(1,m),

intersected with the tangent space to the submanifold EF , defines a unique vector

XF (t, y) = Ak+1(t, y) ∩ T(t,y)EF , for any (t, y) ∈ EF .

This follows from the fact that Vk+1 and TEF are mutually transversal subspaces in
TJk+1(1,m), at any point in EF . In this way (F) defines a vector field XF on EF .
XF is called total derivative corresponding to (F) and, in coordinates, it is given by

XF = ∂t +
k−1∑
i=0

m∑
j=1

xj
i+1∂xj

i
+

m∑
j=1

F j∂xj
k
. (46)

Consider the Lie square [Ak+1,Ak+1], which is a vector distribution on Jk+1(1,m)
and, in coordinates, [Ak+1,Ak+1] = span{∂xi

k
, ∂xj

k+1
|i, j = 1, . . . ,m}. We define the

distribution on EF by intersecting [Ak+1,Ak+1] with the tangent bundle TEF ,

VF = TEF ∩ [Ak+1,Ak+1].

In coordinates,
VF = span{∂x1

k
, . . . , ∂xm

k
}. (47)

It is easy to check that the pair (XF ,VF ) is regular, i.e., it satisfies conditions (R1)
and (R2) on M = EF . We will call it the dynamic pair of system (F).

Consider two equations (F ) and (F ′).

Proposition 3.2 The following conditions are equivalent.
(a) Equations (F ) and (F ′) are time-scale preserving equivalent.
(b) There is a diffeomorphism of Jk+1(1,m) which preserves the canonical affine
distribution Ak+1 and transforms EF onto EF ′.
(c) There is a diffeomorphism of Jk+1(1,m) preserving the Cartan distribution Ck+1

and the 1-form dt, and transforming EF onto EF ′.
(d) The dynamic pairs (XF ,VF ) and (XF ′ ,VF ′) are diffeomorphic.
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Proof. Equivalence of (a), (b) and (c) follows from Proposition 3.1 and the re-
mark following it. From the definitions XF = TEF ∩Ak+1, VF = TEF ∩ [Ak+1,Ak+1]
we see that (b) implies (d).

In order to show (d) ⇒ (b) assume that there is a diffeomorphism ψ : EF → EF ′

which transforms the pair (XF ,VF ) into (XF ′ ,VF ′). Since EF and Jk(1,m) are
diffeomorphic via the natural projection π : Jk+1(1,m) → Jk(1,m) restricted to
EF , and so are EF ′ and Jk(1,m), there is a diffeomorphism ψ̂ : Jk(1,m) → Jk(1,m)
corresponding to ψ : EF → EF ′ . Moreover, after projections both pairs (XF ,VF )
and (XF ′ ,VF ′) have, in natural coordinates in Jk(1,m), the form (46) and (47).
Since ψ̂ transforms the projected pair into the projected pair, it follows from (46)
and (47) that they both span the same affine distribution Ak = Dk + Vk. Thus
ψ̂ preserves the canonical affine distribution Ak in Jk(1,m). We then deduce from
Proposition 3.1 that ψ̂ is of the form (45). Let Ψ be the 1-prolongation of ψ̂, which
means that it is of the form (45), with k replaced by k + 1. Then Ψ automatically
preserves Ak+1 and it is easy to see that it transforms EF to EF ′ .

The proposition can also be deduced from the classical Lie-Bäcklund theorem,
cf. [15], or from Theorem 1 in [11], with additional condition Ψ∗(dt) = dt. �

Equations (F) and (F’) satisfying one of the above conditions will simply be
called equivalent. Taking into account conditions (b) and (c) one could also call
them affine-contact equivalent or time-scale preserving contact equivalent.

Condition (d) implies that we can use Theorems 2.9 or 2.11 in order to solve the
equivalence problem for systems (F). We can assign to (F) a canonical connection
and a canonical frame on the normal frame bundle of the pair (XF ,VF ). We obtain

Theorem 3.3 The following conditions are equivalent.
(a) Equations (F ) and (F ′) are equivalent.
(b) The dynamic pairs (XF ,VF ) on EF and (XF ′ ,VF ′) on EF ′ are diffeomorphic.
(c) The canonical frames (V,X,G) and (V′,X′,G′) in Theorem 2.9 (resp. Theorem
2.11), corresponding to dynamic pairs (XF ,VF ′) and (XF ′ ,VF ′) and living on the
normal frame bundles π : FN → Jk(1,m) and π : F ′

N → Jk(1,m), are diffeomorphic.

We also deduce that any system (F) has at most (k+ 1)m+m2 + 1-dimensional
group of time-scale preserving contact symmetries and it has maximal dimension if
and only if it is equivalent to a linear system with constant and diagonal coefficients.
In this way, the problem of time-scale preserving equivalence of systems of ODEs is
reduced to the geometry of pairs (X,V).

3.3 Dynamic pairs of ODEs

Not all dynamic pairs (X,V) correspond to systems of ODEs. In order to characterise
such pairs we introduce

Definition 3.4 Let X be a smooth vector field and V be a smooth distribution of
constant rank m on a manifold M . The pair (X,V) is of equation type if there
exists a system (F ) and a diffeomorphism Φ: M → EF such that Φ∗(X) = XF and
Φ∗(V) = VF . The pair (X,V) is locally of equation type if for any x ∈ M there
exists a neighbourhood U 3 x such that (X|U ,V|U) is of equation type.
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Theorem 3.5 A pair (X,V) is locally of equation type if and only if it satisfies
conditions (R1), (R2) and, additionally,

(R3) V i are integrable for i = 0, . . . , k,
(R4) adXVk = Vk.

Moreover, condition (R3) is equivalent to:
(R3’) V i are integrable for i = k − 1 and i = k.

Proof. It is straightforward to check that conditions (R1)-(R4) are satisfied for an
arbitrary equation (F ) and the corresponding (XF ,VF ).

In order to prove the theorem in the opposite direction let us notice that (R1)
and (R3) imply that Vk defines a corank one foliation on M . Thus we can choose
a local coordinate t on M such that leaves of Vk are given by equations: t = const.
Additionally, it follows from (R3) that we can choose remaining coordinates such
that V i = {t = c, xj

0 = cj0, · · · , x
j
k−i−1 = cjk−i−1 | j = 1, . . . ,m}, for i = 0, . . . , k − 1,

where c and cjs are constants. We have

X = f∂t +
k∑

i=0

m∑
j=1

f j
i ∂xj

i

for certain functions f and fi = (f 1
i , . . . , f

m
i ).

Note that (R4) implies that f is constant on leaves of Vk. If not, then the Lie
bracket of X and some vector field tangent to Vk would be transversal to Vk, and
hence it would violate condition (R4). Thus, we can reparametrise t so that f ≡ 1.

Similarly, let us notice that fi depend on t and x0, . . . , xi only. Otherwise, the
Lie bracket of X and a vector field in Vk would stick out of Vk. We will modify
coordinates xj

i in such a way that X is of the form XF for some system (F ). Firstly,
we set

y0 = x0 and y1 = f0(t, y0, x1).

As a consequence of (R1) we will see that (t, y0, y1, x2, . . . , xk) can be taken as new
coordinates. Indeed, (R1) implies that the matrix (∂xs

1
f t

0)s,t=1,...,m has maximal pos-
sible rank m, because rkV1− rkV0 = m. We continue the reasoning and inductively
define

yi = fi−1(t, y0, . . . , yi−1, xi).

At each step we get new coordinate system (t, y0, . . . , yi, xi+1, . . . , xk). Finally we
obtain

X = ∂t +
k−1∑
i=0

m∑
j=1

yj
i+1∂yj

i
+

m∑
j=1

F j∂yj
k
.

where F j(t, y0, . . . , yk) = f j
k(t, y0, . . . , yk) define the desired system of ODEs.

In order to complete the proof it is sufficient to prove that (R3’) implies (R3).
We proceed by induction. Assume that V i+1, . . . ,Vk are integrable, where i < k−1.
Let Y1 and Y2 be two sections of V i ⊂ V i+1. Then, by assumption, [Y1, Y2] is a
section of V i+1. Moreover, Jacobi identity implies that [X, [Y1, Y2]] is also a section
of V i+1, since [X, Y1] and [X, Y2] are sections of V i+1 by the definition of V i+1. It
follows, that [Y1, Y2] is a section of V i. If not, then by condition (R1), the bracket
[X, [Y1, Y2]] would be a non-trivial section of V i+2 mod V i+1. �
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Theorem 3.5 implies that the canonical frames in Theorems 2.9, 2.11 satisfy

[Vi
p,V

j
q] = 0 mod V0, . . . ,Vr,G, where r = max{i, j}. (48)

This fact, Theorems 2.9, 2.11 and the remark following Theorem 2.9 will imply

Corollary 3.6 The canonical frame of Theorem 2.9, corresponding to dynamic pair
(XF ,VF ) of system (F), satisfies the following conditions

[V0
p,V

0
q ] = 0, (49)

[V0
p,V

1
q ] = 0 mod G, (50)

[V0
p,V

i
q] = 0 mod V0, . . . ,Vi−1,G, 2, . . . , k, (51)

[X,Vi
p] = Vi+1

p mod G, i = 0, . . . , k − 1, (52)

[X,Vk
p ] = 0 mod V0, . . . ,Vk−1,G. (53)

It is also uniquely determined by the first three of them. The canonical frame of
Theorem 2.11 corresponding to (XF ,VF ) satisfies (and is uniquely determined by)
(49), (53) and

[V0
p,V

i
q] = 0 mod V0, . . . ,Vi−1,G, i = 1, . . . , k, (54)

[X,Vi
p] = Vi+1

p , i = 0, . . . , k − 1. (55)

Proof. Conditions (50), (52), (53), (55), and (54) with i = 1, follow from the
definitions of canonical frames (Section 2.5). In order to prove the remaining ones
we will use identities (26), without mentioning. From (48) we have

[V0
p,V

0
q ] = T 00r

pq0 V0
r +R00t

pqsG
s
t .

Taking Lie bracket of both sides with X and using [X,Gs
t ] = 0, [X,V0

r ] = V1
r

mod G, gives

[[X,V0
p],V0

q ] + [V0
p, [X,V

0
q ]] = T 00r

pq0 V1
r mod V0,G.

Using again [X,V0
r ] = V1

r mod G on the left-hand side and the identity [V0
i ,V

1
j ] =

0 modulo V0, G (satisfied for the first and the second canonical frame) we see that
the left-hand side equals to zero, modulo V0,G. Thus T 00r

pq0 = 0.
We repeat the same procedure, taking this time Lie bracket of the above identity

with V1
r (now T 00r

pq0 = 0). Applying the Jacobi identity on the left-hand side and
using the identity [V0

i ,V
1
j ] = 0 modulo V0, G we find that this side vanishes modulo

V0, G. The right-hand side equals to R00t
pqs[V

1
r ,G

s
t ] = −R00t

pqrV
1
t modulo V0, G, thus

R00t
pqr = 0 and (49) is proved.

In order to prove (51) note that this condition is satisfied for i = 1, for the first
and the second canonical frames, by the definitions of these frames. Suppose now
that (51) is satisfied for some i ≥ 1 and take the Lie bracket of both sides with X.
We see from (52) and condition (48) that is is also satisfied for i + 1. Analogously
we prove (54). �
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Theorem 3.5 implies that the distribution Vk is integrable. Let S be a leaf
of the corresponding foliation (a hypersurface) and let us choose a normal frame
Fx = (V 0, . . . , V k, X(x)) at each point x ∈ S. Then (V 0, . . . , V k) constitutes a
frame of manifold S and X is transversal to S, by (R2). We will call (V 0, . . . , V k)
a normal frame of a pair (V , X) on S. Such a frame together with the vector field
X and the curvature matrices K0, . . . , Kk−1 determine V in a neighbourhood of S.

Corollary 3.7 Assume that two dynamic pairs (X,V) and (X ′,V ′) are of equation
type, X = X ′, and there exists a common leaf S of distributions Vk and V ′k with a
common normal frame (V 0, . . . , V k). Additionally, assume that there exist a normal
frame of V and a normal frame of V ′ which coincide on S and are such that the
associated matrices of curvature operators coincide in a neighbourhood of S. Then
V = V ′ in a neighbourhood of S.

Proof. Let V and V ′ be normal frames of V and V ′, respectively, such that the
associated curvature operators coincide on a neighbourhood of S and V = V ′ on S.
We can assume that V = V ′ = V 0 on S (if not, we take V := V 0G and V ′ := V 0G′

where G(x), G′(x) ∈ Gl(m) are transition matrices from V 0(x) to V (x) and V ′(x)).
Now, we know that both V and V ′ satisfy equation (10) with the same coefficients
Ki. Moreover, adi

XV = adi
XV

′ = V i on S for i = 0, . . . , k. Thus, the uniqueness
theorem for ODEs implies that V = V ′ on a neighbourhood of S. Consequently
V = span{V } = span{V ′} = V ′ on a neighbourhood of S. �

3.4 Systems of order 2

Consider a system of second order ODEs on Rm,

x′′ = F (t, x, x′). (F )

Instead of (F ), we can consider the corresponding dynamic pairs (XF ,VF ) or, equiv-
alently, general dynamic pairs (X,V) satisfying (R1)-(R4), with k = 1.

Theorem 3.8 The first and the second canonical frames on FN , corresponding to
dynamic pair (XF ,VF ) of (F ), coincide and they satisfy:

[X,V0
p] = V1

p,

[X,V1
p] = −K̂r

0pV
0
r + R̂1t

psG
s
t ,

[V0
p,V

0
q ] = 0,

[V0
p,V

1
q ] = R01t

pqsG
s
t ,

[V1
p,V

1
q ] = T 11r

pq0 V0
r +R11t

pqsG
s
t .

The invariants R̂1, T 11
0 and R11 are determined by K̂0, namely

T 11s
pq0 =

1

3

(
V0

p(K̂s
0q)−V0

q(K̂s
0p)
)
, (56)

R11s
pqr =

1

3

(
V0

rV
0
p(K̂s

0q)−V0
rV

0
q(K̂s

0p)
)
, (57)

R̂1s
pq =

1

2
T 11s

pq0 −
1

2

(
V0

p(K̂s
0q) + V0

q(K̂s
0p)
)
, (58)
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and they satisfy ∑
cycl{p,q,r}

R11t
pqr = 0, (59)

∑
cycl{p,q,r}

V1
p(T 11t

qr ) = 0 (60)

(
∑

cycl denotes the cyclic sum). Moreover, R01t
pqs is symmetric in lower indices and

V0
p(R01t

qrs) = V0
q(R01t

prs), (61)

V0
r(R11t

pqs) = V1
p(R01t

rqs)−V1
q(R01t

rps), (62)

X(R01t
pqs) = R11t

pqs + V0
p(R̂1t

qs), (63)

X(R11t
pqs) = −K̂r

0pR
01t
rqs + K̂r

0qR
01t
rps + V1

p(R̂1t
qs)−V1

q(R̂1t
ps), (64)∑

cycl{p,q,r}

(
V1

p(R11t
qrs)− T 11u

qr R01t
ups

)
= 0. (65)

If K̂0 vanishes then [X,V1
p] = 0, [V1

p,V
1
q ] = 0 and the only nonzero invariant R01

satisfies the relations

X(R01t
pqs) = 0 and Vi

p(R01t
qrs) = Vi

q(R
01t
prs), i = 0, 1.

Note that K̂0 = G−1K0G, in coordinates of the proof of Lemma 2.15.

Proof. A priori, due to Corollary 3.6, the structural equations of the first canonical
frame have the form:

[X,V0
p] = V1

p + R̂0t
psG

s
t ,

[X,V1
p] = −K̂r

0pV
0
r + R̂1t

psG
s
t ,

[V0
p,V

0
q ] = 0,

[V0
p,V

1
q ] = R01t

pqsG
s
t ,

[V1
p,V

1
q ] = T 11r

pq0 V0
r + T 11r

pq1 V1
r +R11t

pqsG
s
t .

In order to identify the relations between the structural functions we will use the
Jacobi identities for the following combinations of the vector fields (the remaining
are either trivial or follow from the considered ones):

(X,V0
p,V

0
q), (X,V0

p,V
1
q), (X,V1

p,V
1
q), (V0

p,V
0
q ,V

1
r), (V0

p,V
1
q ,V

1
r), (V1

p,V
1
q ,V

1
r).

First, let us consider the third equation and take the Lie bracket of both sides
with X. We have [X, [V0

p,V
0
q ]] = 0 and, applying Jacobi identity, the first and

fourth equations and the identities (26), we obtain

−R01t
qpsG

s
t +R01t

pqsG
s
t + R̂0t

pqV
0
t − R̂0t

qpV
0
t −V0

q(R̂0t
ps)G

s
t + V0

p(R̂0t
qs)G

s
t = 0,

thus

R̂0t
pq = R̂0t

qp, (66)

R01t
pqs = R01t

qps + V0
q(R̂0t

ps)−V0
p(R̂0t

qs). (67)
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Next, let us Lie bracket both sides of the fourth structural equation with X. On
the left-hand side we have [X, [V0

p,V
1
q ]] and, applying Jacobi identity, the first, the

second and the third equations, and the identities (26) we get:

T 11r
pq0 V0

r + T 11r
pq1 V1

r +R11t
pqsG

s
t −V1

q(R̂0t
ps)G

s
t + R̂0t

pqV
1
t

−V0
p(K̂r

0q)V
0
r + V0

p(R̂1t
qs)G

s
t − R̂1t

qpV
0
t .

On the right-hand side we obtain X(R01t
pqs)G

s
t . Therefore,

R̂1r
qp = T 11r

pq0 −V0
p(K̂r

0q), (68)

R̂0r
pq = −T 11r

pq1 , (69)

X(R01t
pqs) = R11t

pqs + V0
p(R̂1t

qs)−V1
q(R̂0t

ps). (70)

In particular, we get that R̂0r
pq is anti-symmetric in p and q, because T 11r

pq1 is. But

(66) reads that R̂0t
pq is symmetric in p and q. Thus

R̂0r
pq = T 11r

pq1 = 0. (71)

This proves that the structural equations are as stated in the theorem. Moreover,
from these equations we see that they satisfy the axioms of both, the first and the
second canonical frames, thus these frames coincide by their uniqueness.

Additionally, equation R̂0r
pq = 0 together with (70) proves the relation (63) and

simplifies (67) to
R01t

pqs = R01t
qps. (72)

Now, let us Lie bracket both sides of the last structural equation with X. On
the left-hand side we have [X, [V1

p,V
1
q ]] and, applying Jacobi identity, the second

and the fourth structural equations, and (26), we obtain

−K̂r
0pR

01t
rqsG

s
t + V1

q(K̂r
0p)V0

r −V1
q(R̂1t

ps)G
s
t + R̂1t

pqV
1
t

+K̂r
0qR

01t
rpsG

s
t −V1

p(K̂r
0q)V

0
r + V1

p(R̂1t
qs)G

s
t − R̂1t

qpV
1
t .

On the right-hand side, taking into account the first structural equation and (71),
we get:

T 11r
pq0 V1

r + X(T 11r
pq0 )V0

r + X(R11t
pqs)G

s
t .

Thus we have

X(T 11r
pq0 ) = V1

q(K̂r
0p)−V1

p(K̂r
0q) (73)

T 11r
pq0 = R̂1t

pq − R̂1t
qp (74)

and (64) (which was to be proved). Combining (68) and (74) we can express T 11r
pq0

and R̂1t
pq in terms of V0

p(K̂r
0q). Precisely, taking into account that T 11r

pq0 = −T 11r
qp0 , we

find

T 11r
pq0 =

1

3
(V0

p(K̂r
0q)−V0

q(K̂r
0p)), R̂1r

pq = 2T 11r
pq0 −V0

p(K̂r
0q),

which gives (56) and (58) in the formulation of the theorem.
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Consider next the third structural equation and bracket it with V1
r . We have

[V1
r , [V

0
p,V

0
q ]] = 0 and, after applying Jacobi identity and the fourth structural

equation,
−R01t

prqV
0
t + V0

q(R01t
prs)G

s
t +R01t

qrpV
0
t −V0

p(R01t
qrs)G

s
t = 0.

This implies (61) and the relation R01t
prq = R01t

qrp which, together with (72), implies
that R01t

pqr is symmetric with respect to indices p, q, and r.
Let us now bracket the last structural equation with the vector field V0

r . On the
left-hand side we have [V0

r , [V
1
p,V

1
q ]] and, applying Jacobi identity,

−V1
q(R01t

rps)G
s
t +R01t

rpqV
1
t + V1

p(R01t
rqs)G

s
t −R01t

rqpV
1
t .

On the right-hand side, taking into account the third structural equation and T 11r
pq1 =

0, we obtain:
V0

r(T 11t
pq0)V0

t + V0
r(R11t

pqs)G
s
t −R11t

pqrV
0
t .

Thus we get the relation (62) and R11t
pqr = V0

r(T 11t
pq0). The latter equation and (56)

give the desired formula (57) for R11t
pqr.

Finally, we consider the Jacobi identity
∑

[V1
p, [V

1
q ,V

1
r ]] = 0, where we take the

cyclic sum over p, q, r. Taking into account the last structural equation we get

0 =
∑

cycl{p,q,r}

(
V1

p(T 11s
qr )V0

s + V1
p(R11t

qrs)G
s
t − T 11u

qr R01t
upsG

s
t −R11t

qrs[G
s
t ,V

1
p]
)

which, taking into account [Gs
t ,V

1
p] = δs

pV
1
t , implies vanishing of the cyclic sums∑

R11t
pqr = 0,

∑
V1

p(T 11t
qr ) = 0,

∑(
V1

p(R11t
qrs)− T 11u

qr R01t
ups

)
= 0,

i.e., identities (59), (60) and (65). This ends the proof of the theorem as, if K̂0 = 0,
all the invariants vanish except of R01t

pqr. �

Let us find the structural functions in terms of function F defining an equation
and coordinates (t, xj, yj) on the space of 1-jets, where yj corresponds to the first
derivative of xj. We have

XF = ∂t +
m∑

j=1

yj∂xj +
m∑

j=1

F j(t, x, y)∂yj

and VF = span{V1, . . . , Vm}, where Vj = ∂yj . Let V = (V1, . . . , Vm). We compute

ad2
XF
V = (adXF

V )H1 + V H0

where

H1 =
(
−∂ysF t

)
s,t=1,...,m

, H0 =
(
∂xsF t −XF (∂ysF t)

)
s,t=1,...,m

.

Therefore, by Proposition 2.5, we get

K0 =

(
−∂xsF t +

1

2
X(∂ysF t)− 1

4

m∑
r=1

∂ysF r∂yrF t

)
s,t=1,...,m
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and H1 = span{V 1
1 , . . . , V

1
m} where

V 1
j = −∂xj − 1

2

m∑
s=1

∂yjF s∂ys .

We have

[Vp, V
1
q ] = −1

2

m∑
s=1

∂yp∂yqF sVs

and using (36) we can write

V0
j =

m∑
s=1

Gs
j∂ys ,

V1
j = −

m∑
s=1

Gs
j∂xs − 1

2

m∑
s,t=1

Gt
j∂ytF s∂ys − 1

2

m∑
r,s,t=1

Gu
jG

w
t (G−1)s

r∂yu∂ywF rGt
s.

Then

[V0
p,V

1
q ] =

m∑
u,w,s,t=1

Gu
pG

w
q R̃

s
uwtG

t
s,

[V1
p,V

1
q ] =

m∑
u,w,s,t=1

Gu
pG

w
q T̃

t
uw(G−1)s

tV
0
s mod G

where

R̃s
uwt = −1

2
∂yu∂yw∂ytF s,

T̃ t
uw =

1

2

(
∂xu∂ywF t − ∂xw∂yuF t

)
+

1

4

m∑
v=1

(
∂yuF v∂yv∂ywF t − ∂ywF v∂yv∂yuF t

)
.

By Theorem 3.8 we know that T̃ is expressed in terms of K0. As a conclusion we
get that all invariants of a system (F ) are expressed by K0, R̃ and their derivatives.
This strengthens a result of [7] (problem (B)).

We get the following characterisation of trivial systems.

Corollary 3.9 A system of second order ODEs is equivalent to the trivial system
x′′ = 0 if and only if K0 vanishes and F is a polynomial of degree at most 2 in x′.

Proof. R̃s
uwt = −1

2
∂yu∂yw∂ytF s = 0 means that F is polynomial of degree at most

2 as a function in x′. �

Remark. Let us notice that if (F ) is a geodesic equation for a Finsler metric
then the quantity ∂yu∂yw∂ytF s is called Berwald curvature (cf. [22]). In our setting
it appears as a component of curvature: R01s

uwt. Vanishing of Berwald curvature is
necessary an sufficient condition for Finsler metric to be Riemannian.
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3.5 Equations of order 3

Let (F ) be an equation of the third order

x′′′ = F (t, x, x′, x′′).

As before we consider time-scale preserving contact transformations and we want to
solve the equivalence problem for (F ).

Theorem 3.10 Let (F ) be a third order ODE. The first canonical frame on FN

satisfies:

[X,V0] = V1 − LG,

[X,V1] = V2,

[X,V2] = −K0V
0 +K1V

1 + R̂2G,

[V0,V1] = 2V0(L)G,

[V0,V2] = LV1 +R02G,

[V1,V2] = T 12
0 V0 − 2X(L)V1 + 2LV2 +R12G.

where L = T 02
1 = R̂0 = GL̃ and L̃, K0, K1 are functions of global coordinates

(t, x, y, p) on J2(1, 1) (G is the fiber coordinate), and

R̂2 = −1

2
V0(K0) +

1

2
V1(K1)−X2(L)− LK1,

T 12
0 =

1

2
V0(K0) +

1

2
V1(K1)−X2(L)− LK1

R02 = V1(L) + 2V0X(L)− 2(L)2, R12 = V0(T 12
0 ).

Moreover X(L) = 1
3
V0(K1) and

V0(R12) + 2LR02 − 2X(L) + 2V2V0(L) = V1(R02).

Proof. The proof, based on Jacobi identity applied to the canonical frame, is anal-
ogous to the proof of Theorem 3.8. �

Corollary 3.11 All structural functions of the canonical frame are combinations of
L̃, K0, K1 and their derivatives, where

L̃ = −1

3
∂2

pF,

K1 = ∂yF −X(∂pF ) +
1

3
(∂pF )2,

K0 = ∂xF −X(∂yF ) +
1

3
∂yF∂pF +

4

3
X2(∂pF )− 2

3
X(∂pF )∂pF −

2

27
(∂pF )3.

In order to prove the corollary we will compute structural functions in terms of
function F . We start with the following analog of Proposition 2.5.
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Proposition 3.12 If

ad3
XV = H2ad2

XV +H1adXV +H0V

then

K1 = H1 −X(H2) +
1

3
H2

2 , (75)

K0 = −
(
H0 −

1

3
X2(H2)−

2

9
H2X(H2) +

2

27
H3

2 +
1

3
H2H1 +

2

9
X(H2)H2

)
and

H1 = span

{
adXV −

1

3
V H2

}
, (76)

H2 = span

{
ad2

XV −
2

3
(adXV )H2 + V

(
1

9
H2

2 −
1

3
X(H2)

)}
.

Proof. Equation (5) reads X(G) = −1
3
H2G. Then X2(G) = −1

3
X(H2)G + 1

9
H2

2G
and X3(G) = −1

3
X2(H2)G + 1

9
H2X(H2)G + 2

9
X(H2)H2G − 1

27
H3

2G. We directly
compute

ad3
X(V G) = (adXV )H1G+ V H0G+ 3(adXV )X2(G) + V X3(G)

= ((adXV )G+ V X(G))G−1(H1G+ 3X2(G))

+ V GG−1(H0G+X3(G)−X(G)G−1H1G− 3X(G)G−1X2(G)).

At a point x we can substitute G(x) = Id and this leads to the formula for K0

and K1 in the basis V (x). We also have that adX(V G) = (adXV )G− 1
3
V H2G and

ad2
X(V G) = (ad2

XV )G − 2
3
(adXV )H2G + V

(
1
9
H2

2G− 1
3
X(H2)G

)
, and we get the

formulae for H1 and H2. �

Let (t, x, y, p) denote global coordinates on J2(1, 1) (y corresponds to x′ and p
corresponds to x′′). Then

XF = ∂t + y∂x + p∂y + F (t, x, y, p)∂p

and VF = span{V }, where V = ∂p. We check that

ad3
XF
V = −∂pFad2

XF
V − (2X(∂pF )− ∂yF )adXF

V + (X(∂yF )−X2(∂pF )− ∂xF )V.

Therefore, from Proposition 3.12 we easily derive the formulas for K0 and K1 in
Corollary 3.11. Moreover, H1 = span{V 1} and H2 = span{V 2}, where

V 1 = −∂y −
2

3
∂pF∂p,

V 2 = ∂x +
1

3
∂pF∂y +

(
∂yF +

4

9
(∂pF )2 − 2

3
X(∂pF )

)
∂p.

In order to construct the canonical frame we compute

[V, V 1] = −2

3
∂2

pFV,

[V, V 2] = −1

3
∂2

pFV
1 +

(
1

3
∂y∂pF −

2

3
X(∂2

pF )

)
V,
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and equation (34) implies

V0 = GV,

V1 = GV 1 −G
2

3
∂2

pFG,

V2 = GV 2 +G

(
1

3
∂y∂pF −

2

3
X(∂2

pF )

)
G.

Then

[V0,V2] = −G1

3
∂2

pFV1 mod G.

This gives the structural function T 02
1 = −G1

3
∂2

pF and proves the first formula in
Corollary 3.11. In addition we get

Corollary 3.13 A third order ODE is time-scale preserving contact equivalent to
the trivial equation x′′′ = 0 if and only if it is affine in x′′ and K0 = K1 = 0.

4 Veronese Webs

We apply our results to get local classification of Veronese webs of corank 1. Such
webs were introduced by Gelfand and Zakharevich [14] in connection to bi-hamiltonian
systems. It was conjectured in [14], and proved by Turiel in [24], that Veronese webs
determine bi-hamiltonian structures. Normal forms of Veronese webs were provided
in [25] (see also [26]). Below we show that the framework of dynamic pairs includes
Veronese webs (and thus, by results of [14, 24], it includes bi-hamiltonian structures).

Let
R 3 t 7→ Ft

be a family of corank 1 foliations on a manifold S of dimension k + 1. Assume that
ωt are smooth one-forms annihilating Ft. We say that a family {Ft} is a Veronese
web if there exist pointwise linearly independent smooth one-forms

α0, . . . , αk

such that for every x ∈ S

ωt(x) = tkα0(x) + tk−1α1(x) + · · ·+ tαk−1(x) + αk(x).

If we add a one-form at infinity ω∞ = αk then, for every x ∈ S, we get a Veronese
curve in the projectivisation of the cotangent space T ∗xS:

RP 1 3 (s : t) 7−→ R

(
k∑

i=0

sitk−iαi(x)

)
∈ P (T ∗xS). (77)

This curve has a canonical parameter defined by the map t 7→ Ft.
We say that two Veronese webs {Ft} on a manifold S and {F ′

t} on a manifold
S ′ are equivalent if there exists a diffeomorphism Φ: S → S ′ such that Φ(Ft) = F ′

t

for any t ∈ R.
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4.1 Dynamic pairs of Veronese webs and equivalence

Let

RP 1 3 (s : t) 7→ R

(
k∑

i=0

sitk−iYi(x)

)
∈ P (TxS)

be the Veronese curve in the projective space P (TxS) dual to the curve (77). By
definition, this is a curve Zt(x) in TxS such that

span

{
Zt(x),

d

dt
Zt(x), . . . ,

dk−1

dtk−1
Zt(x)

}
= TxFt = kerωt(x), (78)

where
Zt = tkY0 + tk−1Y1 + · · ·+ tYk−1 + Yk (79)

and Y0, . . . , Yk are pointwise linearly independent vector fields on S.
Denote

MF =
⋃
x∈S

P

({
k∑

i=0

sitk−iαi(x) | (s : t) ∈ RP 1

})
⊂ P (T ∗S).

Then MF is k+2 dimensional manifold, more precisely a circle bundle pr : MF → S.
Note that the fibres of MF have a canonical parameter given by t. If x ∈ S and
t ∈ R then (x, t) is a point in MF . On MF there is a canonical vertical (i.e. tangent
to fibres) vector field, denoted XF . In coordinates

XF = ∂t.

Moreover, MF itself is equipped with a canonical foliation with leaves given by the
equations {t = const}. This foliation can be treated as a horizontal connection
on the bundle MF → S. Therefore, in particular, we can lift the vector Zt(x) to
a unique vector Ẑt(x) at the point (x, t) ∈ MF . In this way we obtain a global
vector field (x, t) 7→ Ẑ(x, t) ∈ T(x,t)MF defined on MF . We introduce the rank 1
distribution:

VF(x, t) = span{Ẑ(x, t)}.

Lemma 4.1 The pair (XF ,VF) on MF satisfies (R1), (R2) and is of equation type.

Proof. We begin with the observation that adi
XF
VF is spanned by Ŷ 0, Ŷ 1, . . . , Ŷ i,

where Ŷ i is the lift of ∂i
tZt to MF . By (79) Ŷ 0, . . . , Ŷ k are independent at any

point of MF and thus (R1) and (R2) are satisfied. To finish the proof it is sufficient
to prove that adk−1

XF
VF and adk

XF
VF are integrable (see condition (R3’) of Theorem

3.5). Integrability of adk−1
XF
VF immediately follows from the definitions of XF , VF

and from (78). Namely, pr(adk−1
XF
VF(x, t)) = TxFt. On the other hand adk

XF
VF is

the distribution tangent to foliation {t = const} on MF . �

We would like to know which dynamic pairs of equation type define Veronese
webs.
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Definition 4.2 Let X, V be a smooth vector field and a smooth line field on a
manifold M . We say that (X,V) is of Veronese type, if there exists a Veronese web
{Ft} on a manifold S such that (X,V) is diffeomorphic to the pair (XF ,VF) on the
manifold MF . We say that (X,V) is locally of Veronese type, if for any x ∈M there
exists a neighbourhood U 3 x and a Veronese web {Ft} on a manifold S such that
(X|U ,V|U) is diffeomorphic to the pair (XF |V ,VF |V ) for an open subset V ⊂MF .

Theorem 4.3 Let (F ) be an equation of order k + 1. The corresponding dynamic
pair (XF ,VF) on M = EF ' Jk(1, 1) is locally of Veronese type if and only if all
curvature operators K0, . . . , Kk−1 vanish.

Proof. First, note that if (X,V) is of Veronese type then in local coordinates on
MF we have X = ∂t and V(t, x) is spanned by

Ẑ(t, x) = tkY0(x) + tk−1Y1(x) + · · ·+ tYk−1(x) + Yk(x),

see formula (79). Since adk+1
∂t

Ẑ = 0, it follows that Ẑ is a normal generator of V
and all curvature operators vanish.

On the other hand, if (X,V) is of equation type and all its curvature operators
vanish, then we can choose a section V of V such that adk+1

X V = 0. Let us choose an
open subset U ⊂ M with local coordinates such that X = ∂t on U (we can always
locally trivialise X). Then along any integral curve of X contained in U we get the
formula

V (t) = tkV0 + tk−1V1 + · · ·+ tVk−1 + Vk,

where V0, . . . , Vk are constant vectors along an integral curve of X. Indeed, the
equation adk+1

X V = 0 means that along an integral curve of X the vector field V is

a solution to the equation dk+1V
dtk+1 = 0 and thus V is polynomial in t.

Take U so that the set of trajectories of X in U forms a Hausdorff manifold and
define S to be the quotient space S = U/X. This means that a point x ∈ S is
an integral line of X with parameter t belonging to some segment Ix ⊂ R. If we
project V(t) = span{V (t)} to S for every t ∈ Ix we get a segment of Veronese curve
in P (TxS). Since a Veronese curve is uniquely determined by a finite number of its
points, we can uniquely extend the segment of Veronese curve to the full Veronese
curve. The dual Veronese curve in P (T ∗S) defines the desired Veronese web. �

Theorems 2.9 and 2.11 applied to the pair (XF ,VF) give the following:

Theorem 4.4 The following conditions are equivalent.
(a) Veronese webs {Ft} and {F ′

t} are equivalent.
(b) The dynamic pairs (XF ,VF) and (XF ′ ,VF ′) are diffeomorphic by a diffeomor-
phism preserving t.
(c) The canonical frames (X,V,G) and (X′,V′,G′) on the normal frame bundles
π : FN → MF and π : F ′

N → MF ′ , corresponding to dynamical pairs (XF ,VF) and
(XF ′ ,VF ′) via Theorem 2.9 (resp. Theorem 2.11), are diffeomorphic by a diffeomor-
phism preserving t.
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Proof. Assume first that {Ft} and {F ′
t} are equivalent Veronese webs and the

equivalence is established by Φ: S → S ′. Let Ψ: MF → MF ′ be the lift of Φ
defined in an obvious way. By definition of equivalence of webs we get Φ(Ft) = F ′

t

and hence Ψ preserves t. Moreover, Ψ maps fibres of MF → S onto fibres of
MF ′ → S ′ and we get that Ψ∗XF = XF ′ . It is also a direct consequence of the
definitions that Ψ∗VF = VF ′ because Φ∗(kerωt) = kerω′t, for any t, which implies
that Φ∗(span{Zt}) = span{Z ′

t} and, consequently, Ψ∗(span{Ẑ}) = span{Ẑ ′}.
On the other hand, if Ψ: MF → MF ′ establish equivalence of dynamic pairs

(XF ,VF) and (XF ′ ,VF ′) then Ψ∗XF = XF ′ and thus it transports fibres of MF → S
onto fibres of MF ′ → S ′. Hence, Ψ defines a mapping Φ: S → S ′. If Ψ∗VF = VF ′
then also Ψ∗adk−1

XF
VF = adk−1

XF′
VF ′ . The projection of a leaf of adk−1

XF
VF is a leaf of

the foliation Ft, for some t, thus Φ maps leaves of {Ft} onto leaves of {F ′
t}. If

additionally Ψ preserves t we get that Φ(Ft) = F ′
t for any t. This proves (a) ⇔ (b).

(b) ⇔ (c) follows directly from Theorem 2.9 (resp. Theorem 2.11). �

Corollary 4.5 A Veronese web has at most k+2-dimensional group of symmetries.
The group has maximal dimension if and only if the web is flat, i.e., it is given by
the kernel of the 1-forms ωt =

∑k
i=0 t

k−idxi, in some coordinates on S.

Proof. Note that Theorem 2.9 imply that the group of symmetries of a web is at
most k + 3 dimensional. However, statement (c) of Theorem 4.4 says that not all
symmetries of the canonical frame of a dynamic pair (XF ,VF) define symmetries of
{Ft}. Namely a symmetry must keep t invariant. Therefore we get that the dimen-
sion of the symmetry group is bounded from above by k+2. Moreover, it follows that
if the symmetry group has maximal possible dimension then the structural functions
of the canonical frame (V,G) have to be constant on each leaf FN |{t=const} ⊂ FN .
Therefore the part of the curvature and the torsion of the canonical connection
which involves V vanish. Then, using Jacobi identity applied to [X, [Vi,Vj]] we get
that the part of the curvature involving X and Vi also vanish. Moreover, taking
into account that Ki ≡ 0 for an arbitrary Veronese web (Lemma 4.1) we get that
the Veronese web is flat. �

4.2 Veronese webs on a plane

Let F = {Ft} be a Veronese web on R2 defined by a family of 1-dimensional distri-
butions

span{tY0 + Y1},

where Y0, Y1 are smooth vector fields on R2. Theorems 3.8, 3.5 and 4.3 imply

Theorem 4.6 The first canonical frame on the bundle FN , corresponding to the
dynamic pair (XF ,VF), satisfies:

[X,V0] = V1, [X,V1] = 0, [V0,V1] = RG

for a certain function R such that X(R) = 0.
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Remark. Equation [X,V0] = V1 implies that the first and the second canonical
frames, given by Theorems 2.9 and 2.11, coincide for Veronese webs on a plane.

Since V0 and V1 are homogeneous of order one with respect to the fiber co-
ordinate in the normal bundle FN → MF , and G are homogeneous of order zero,
it follows that R = G2R̃, in coordinates, where R̃ is a function on MF . However,
X(R) = 0 implies that R̃ is in fact well defined on R2. Let us fix a point x ∈ R2 and
let x̂ = (x, 0) ∈MF(x). Let us also choose a point ν in the bundle FN(x̂). Then we
can introduce a coordinate system on R2 in the following way:

(x0, x1) 7→ pr ◦ exp(x0V
0) ◦ exp(x1V

1)(ν), (80)

where pr : FN → R2 is the projection composed of the projections FN →MF → R2.
If we change ν 7→ νG for some G ∈ Gl(1) ' R∗, the coordinates are multiplied by a
real number. Therefore we get a canonical local system of coordinates on R2 with
the origin in x, given up to multiplication by a constant. In this coordinates we can
express function R̃ and get the function on R2 intrinsically assigned to the web.

Corollary 4.7 There is one-to-one correspondence between germs of Veronese webs
at 0 ∈ R2 and germs of functions R̃ : R2 → R at 0 given up to the transformations

R̃(x0, x2) 7→ G2R̃(Gx0, Gx1), G 6= 0.

Proof. We shall show how to recover the web from the function R̃. First we consider
R2 ×Gl(1) with coordinates x0, x1 and G (this space is the level set {t = 0} of the
canonical bundle FN). On R2×Gl(1) we define R(x0, x1, G) = GR̃(x0, x1). It follows
from the definition of the canonical coordinate system (formula (80)) and the relation
[G,Vi] = Vi that we can assume V0 = G∂x0 and V1 = Ga∂x0 + Gb∂x1 + Gc∂G for
some functions a, b, c in variables x0, x1. Thus the equation [V0,V1] = RG in
Theorem 4.6 implies the following:

∂x0a− c = 0, ∂x0b = 0, G∂x0c = R.

On the plane {x0 = 0} we have a = c = 0 and b = 1 (again we use the definition
(80) of the coordinate system). Hence we are able to recover a, b and c in a unique
way. The web on the (x0, x1)-plane is spanned by: pr∗(V

0(x0, x1, 1)+ tV1(x0, x1, 1))
where pr : R2 ×Gl(1) → R2 is the projection on the first factor. �

4.3 Veronese webs on R3

Let F = {Ft} be a Veronese web on R3 given by the kernel of ωt, where

ωt = t2α0 + tα1 + α2

and α0, α1, α2 are smooth one-forms on R3. Theorems 3.10, 3.5 and 4.3 imply:
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Theorem 4.8 The first canonical frame on the bundle FN , corresponding to the
dynamic pair (XF ,VF), satisfies the relations:

[X,V0] = V1 − TG, [X,V1] = V2, [X,V2] = 0,

[V0,V1] = 2V0(T )G,

[V0,V2] = TV1 + (V1(T )− 2T 2)G,

[V1,V2] = 2TV2,

for a certain function T such that

X(T ) = 0 and V0V2(T ) + V2V0(T ) = V1V1(T )− 4TV1(T ) + 2T 3.

The second canonical frame gives more elegant structural functions.

Theorem 4.9 The second canonical frame satisfies:

[X, Ṽ0] = Ṽ1, [X, Ṽ1] = Ṽ2, [X, Ṽ2] = 0,

[Ṽ0, Ṽ1] = T Ṽ0 + Ṽ0(T )G,

[Ṽ0, Ṽ2] = T Ṽ1 + Ṽ1(T )G,

[Ṽ1, Ṽ2] = T Ṽ2 + Ṽ2(T )G,

for a function T such that

X(T ) = 0 and Ṽ0Ṽ2(T ) + Ṽ2Ṽ0(T ) = Ṽ1Ṽ1(T ). (81)

Proof. K0 and K1 vanish for Veronese webs. Thus, the definition of the second
canonical frame implies:

[X, Ṽ0] = Ṽ1, [X, Ṽ1] = Ṽ2, [X, Ṽ2] = R̂2G1

for a function R̂2. Moreover, we have:

[Ṽ0, Ṽ1] = T 01
0 V0 +R01G

where T 01
0 and R01 are some functions on the canonical bundle. If we compute the

Lie brackets [X, [Ṽ0, Ṽ1]] and [X, [X, [Ṽ0, Ṽ1]]] and apply Jacobi identity we get

[Ṽ0, Ṽ2] = X(T 01
0 )Ṽ0 + T 01

0 Ṽ1 + X(R01)G,

[Ṽ1, Ṽ2] = (R̂2 + X2(T 01
0 ))Ṽ0 + 2X(T 01

0 )Ṽ1 + T 01
0 Ṽ2 + (X2(R01)− Ṽ0(R̂2))G.

Now, let us compute the bracket: [X, [Ṽ1, Ṽ2]]. Applying Jacobi identity on the one
hand we get:

Ṽ1(R̂2)G− R̂2V1.

On the other hand:(
X(R̂2) + X3(T 01

0 )
)

Ṽ0 +
(

3X2(T 01
0 ) + X(R̂2)

)
Ṽ1 + 3X(T 01

0 )Ṽ2

+
(
T 01

0 R̂2 −X(Ṽ0(R̂2)) + X3(R01)
)

G
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We compare the coefficients and get: X(T 01
0 ) = 0 (coefficient next to Ṽ2), X(R̂2) = 0

(coefficient next to Ṽ0). Then we get: R̂2 = 0 (coefficient next to Ṽ1) and finally:
X3(R01) = 0 (coefficient next to G). We substitute this equations to the previous
relations and get the simplified versions:

[Ṽ0, Ṽ2] = T 01
0 Ṽ1 + X(R01)G, [Ṽ1, Ṽ2] = T 01

0 Ṽ2 + X2(R01)G.

Then we apply Jacobi identity to [Ṽ0, [Ṽ1, Ṽ2]] and on the one hand we get:

−X2(R01)Ṽ0 + (T 01
0 )2Ṽ1 + Ṽ0(T 01

0 )Ṽ2 +
(
Ṽ0X2(R01) + T 01

0 X(R01)
)

G

whereas on the other hand we get:

−Ṽ2(T 01
0 )Ṽ0 +

(
(T 01

0 )2 −X(R01) + Ṽ1(T 01
0 )
)

Ṽ1 +R01Ṽ2

+
(
Ṽ1X(R01)− Ṽ2(R01) + T 01

0 X(R01))
)

G.

Thus we get: V0(T 01
0 ) = R01 (coefficient next to Ṽ2). Recall that we have already

proved: X(T 01
0 ) = 0. Therefore, it follows that X(R01) = V1(T 01

0 ), X2(R01) =
V2(T 01

0 ) and X3(R01) = 0 (the last relation was also obtained before). We see that
the only new relation is Ṽ0Ṽ2(T 01

0 ) + Ṽ2Ṽ0(T 01
0 ) = Ṽ1Ṽ1(T 01

0 ) (coefficient next to
G). If we denote T := T 01

0 then the theorem is proved. �

Remark. It can be easily verified that the following substitution relates the
frames of Theorem 4.8 and Theorem 4.9:

Ṽ0 = V0, Ṽ1 = V1 − TG, Ṽ2 = V2.

Moreover, the functions T in Theorems 4.8 and 4.9 coincide.

In coordinates T = GT̃ , where T̃ is a function on MF . However, similarly to the
case of Veronese web on the plane, it follows from X(T ) = 0 that T̃ is well defined
on R3. Let us fixed a point x ∈ R3 and take x̂ = (x, 0) ∈MF(x). Let us also choose
a point ν in FN(x̂). We introduce the following coordinate system on R3:

(x0, x2, x1) 7→ pr ◦ exp(x1Ṽ
1) ◦ exp(x2Ṽ

2) ◦ exp(x0Ṽ
0)(ν),

where pr : FN → R3 is the projection. Note that at the beginning we go along Ṽ0

then along Ṽ2 and finally along Ṽ1.
We are able to compute any derivative of the form ∂a+b+cT̃ /∂xa

0∂x
b
2∂x

c
1 at the

origin of our coordinate system. Indeed, this is equivalent to (Ṽ0)a(Ṽ2)b(Ṽ1)c(T̃ ).
Moreover, it follows from the structural equations and (81) that any derivative of
the form (Ṽ0)a(Ṽ2)b(Ṽ1)c(T̃ ) with arbitrary c ∈ N can be written as a sum of
derivatives (Ṽ0)a(Ṽ2)b(Ṽ1)c(T̃ ) where c = 1 or c = 0. Therefore if we know T̃ and
S̃ = Ṽ1(T̃ ) on the plane {x1 = 0} then we are able to recover all possible derivatives
∂a+b+cT̃ /∂xa

0∂x
b
2∂x

c
1 at the origin of our coordinate system. Hence, if all data are

analytic then we can recover T̃ on R3.
The coordinate system is unique up to the choice of the point ν ∈ FN(x̂). If we

change ν then every coordinate function is multiplied by G ∈ Gl(1) ' R∗. We get
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Corollary 4.10 In the analytic category there is one-to-one correspondence between
germs of Veronese webs at 0 ∈ R3 and germs at 0 of two functions T̃ and S̃ in two
variables: x0 and x2. The functions are given up to the following transformations:

T̃ (x0, x2) 7→ GT̃ (Gx0, Gx2), S̃(x0, x2) 7→ GS̃(Gx0, Gx2).

Proof. The proof is similar to the proof of Corollary 4.7 and we skip it. �
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