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Abstract

The present paper is an appendix to the paper [9]. We obtain
some new congruences for the sums U, (n) = ZEZ/IT] ﬁ"(wz (mod n*+1)
for s € {0,1,2} and r | 24. These congruences are consequences of
those proved in [9] by using an identity from [15]. Our congruences
for s = 1 extend those obtained in [2] and [3] for r € {2,3,4,6} and
2,3 1 n. These four congruences have the same form as those proved
by E. Lehmer [11] in the case when n = p is an odd prime. They are
rational linear combinations of Euler’s quotients. In the case when r €
{8,12,24}, omitted in [11], [2] and [3], the congruences are linear com-
binations of the Euler quotients and three generalized Bernoulli num-
bers n¢>( )me(n),x len (1 —p”¢(")_1) attached to even quadratic char-
acters x of conductor dividing 24. Also some new congruences for s =
2 with one additional summand —%Bn%(n)_Q Hp|n (1 - pn2¢>(n)73)
for all r | 24 are obtained.

MSC: primary 11B68; secondary 11R42; 11A07

Keywords: Congruence; Generalized Bernoulli number; Special value
of L-function; Ordinary Bernoulli number; Bernoulli polynomial; Eu-
ler number

1 Notation and introduction

Following [9], let n € N be odd and let x,, be the trivial Dirichlet character
modulo n. For r > 2 coprime to n, ¢.(n) denotes the Euler quotient, i.e.,

rom) _q

g-(n) = n
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where ¢ is the Euler phi-function. Let B;, denote the i-th generalized
Bernoulli number attached to a Dirichlet character x; as usual B; are the
ordinary Bernoulli numbers. For definitions see [17], [7] or [16].

Given the discriminant d of a quadratic field, let x, denote its quadratic
character (Kronecker symbol). It follows from [4] that the quotients B; ., /i
are rational integers unless d = —4 or d = =4p, where p is an odd prime
of a special form. We shall consider such numbers (with d = +p) only if
d = —3; then we have the so-called D-numbers defined in [10] and [5] by
Di—l = _3Bi»X—3/i for ¢ Odd(l)

If d = —4 and i is odd, then the numbers E;,_y = —2B,, ,/i are odd
integers, called the Euler numbers. Following [9], we also consider the rational
integers Ai—l = Bi,xg/i; -Fz'—l = BivX_gX_4/i and Gi—l = BivX_3X_8/i’ if 4 Z 2
even, and C;_y = —B;, /i and H;_; = —B@X_ng/i if 1 > 1 odd.

In the present paper we find congruences for the sums

U,(n) = Z X0

n—ri
o<i<n/r

modulo n**! for s € {0,1,2} and r | 24 (1 < r < n) coprime to n. To obtain
such congruences it suffices to use appropriate congruences for the sums

or, equivalently, for the sums

Srks(n) = X, ()i

0<i<n/r
for k € {1,2,3}. Such congruences were shown in [9]. In [9] the congruence
(1) T x(n) = Spp.s(n) (modn®th).
was proved by using an identity from [15]® and a well-known congruence
(2) "M = 1 (mod n**t1),

which holds for (i,n) = 1 and is implied by Euler’s congruence i¢™ =
1 (modn). Here we assume that n*¢(n) —k > 0.

(U The denominators of the numbers D; are powers of 3. For details, see [5].
() This identity was already successfully exploited in [13], [6], [1], [8] and [9]. Using it,
T. Cai [1] generalized, in an elegant way, E. Lehmer’s congruence for 7% 1(n) (mod n?).
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The congruences obtained for the sum U,.(n) extend those proved in [11],
[2] and [3].%) For other related papers, see also [12] and [14]. Throughout
the paper, following [9], we set

Y

Ei = BiH (1 —pi_l)> B\z = %
pln

A= (1) A [I¢- (—1)" ),

. — <_1)M¥+;j|;iﬂ (1= (1) 5" p),

D; = (-1)"""D; (1pi (—1)"@p’),

E; = (—1)"21Eiﬁ (1- (=12,

E — 1)”214—1/(:)'; H (1 _ (_1)%1+u(p)pz)’

g — (_1)W+V$Gi [T (1 (- =0y,

pln

A= (~1) T @ g T (1 - (—1) 5 0y),
pl

where x_3(n) = (—=1)*™, v(n) € {0,1} for 3 {n.

2 The main results

In the Theorem we find some congruences for U,(n) modulo n**! for s €
{0,1,2} in each of the seven cases r = 2, 3, 4, 6, 8, 12 or 24. Some of these
congruences for s € {0,1} and r € {2, 3,4,6} were proved in [2] and [3]. The
remaining ones are new. Three of them for s = 1 and r € {8,12,24} were
omitted both in [11] and in [2], [3].

Write pi(1) = 1 = dord,(m),0 (¢ = 2,3) where, as usual, dx,y denotes the
Kronecker delta function. Given odd n > r, we set

EQ,(n) = as(r)qz(r) + as(r)as(r) + Ba(r)ngy (n) + Bs(r)ngs(n)
+92(r)n’g3(n) + 73 (r)n’gs(n)

(3)

(B)E. Lehmer proved her congruences in the case when n = p is an odd prime. The
congruences proved in [2] and [3] are for n odd and not divisible by 3.
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where
ords () 1 p3(r)
aa(r) = pg(r)( r * 20(r) ng(r))’
ords(r) 1 p2(r)
as(r) = ps(r) r 300 6¢(7~)>’
B ordy(r) 1 p3(r)
Balr) = palr) (= 50 - 100 12¢(7’)>’
B ords(r) 1 p3(r)
o) = palr) (- = 60(r) 12¢(r)>’
ords () 1 p3(r)
72(r) = pg(r)< 3r * 6p(r) 18¢(T))’
B ords(r) 1 p2(r)
() = () 30 T oe(r) 18¢(r)>
and )
Br(n) —27; §n2¢(n) 2
Set EQp(n) = aa(r)ga(r) +as(r)gs(r) and EQ = as(r)ga(r) +as(r)es(r) +
Ba(r)ng3(n) + B ( )nga(n). Obviously, we have EQ,(n) = EQ!(n) (modn)
and FQ,(n) = EQ"(n) (modn?). Note that B.(n) = 0(modn), and B,(n) =
0 (mod n?) if n is not divisible by 3.
Following [9], set
Qoln) = ~24s(n) b ()3 n%a(n), Qs(n) = —5as(n)+ 3nain) ~ Sndim).

The sums 7). ;(n) presented in the lemmas below are congruent to linear
combinations of Euler’s quotients E@r(n) plus some generalized Bernoulli
numbers. It was shown in 9] that E@Q(n)/z\QZ(n), EZ)?)(n)i Qs(n),
EQ,(n) = 5Q2(n), EQy(n) = Qa2(n) + Q3(n), EQg(n) = 2Q2(n), EQ1,(n) =
3Q2(n) + Q3(n) and EQ.,,(n ) = 2Q2(n) + Q3(n). In view of Proposition 1
below we have EQ,(n) = ——EQ (n).

Theorem. Assume that s € {0,1,2} and r | 24. Let n > r be odd and not
divisible by 3 if s =1 or 3 | r. Then, in the above notation:

(i)
U.(n) = EQ,(n) + B.(n) (modn*™")
if r < 6;
(i) X
U,(n) = EQ.(n) + B.(n) — ZAn%(n)—l (mod n**)
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if r=28;
(i)

1

U,(n) = EQ,(n)+ B,(n) — Zﬁ"%(”)* (mod n**)
ifr=12;
(iv)
1~ 1~ 1~
Ur(n) = EQr(n) + Br(n) = cAnsom-1 = gFusom-1 = gGnog(m-1 (modn
if r = 24. Here EQ,(n) = EQ.(n)(modn), EQ.(n) = EQ”(n) (modn?),
B.(n) = 0(modn?) if n is not divisible by 3 and B,(n) = 0 (modn).

s+1)

3 Some useful observations

We deduce the main theorem of the paper from Propositions 1, 2 and Lemmas
1-21 below on congruences for the sums 7). ;(n). For proofs of the lemmas,
we refer the reader to [9]. First we find some useful congruences between
the sums U, (n) and some linear combinations of 7T}.1(n), T} 2(n) and 1) 3(n)
modulo powers of n.

Proposition 1. Assume that n > 1 is odd and r (1 < r < n) is coprime to
n. Then:

5T2(n) — ”2 +3(n) (mod n?)

) —
Tra(n) = 5Tra(n) (mOdn)
T.1(n) (modn)

T.1(n
U.(n) =

— ﬁIH %I»—' ﬁIH
ml

Proof. Obviously, (n,i) = 1 if and only if (n — ri,n) = 1. Consequently, by

(2),
U,(n) = Z Xn (1) (n —ri)" ntglm) -1

o<i<n/r
np(n)—1
S _ 1 ) .
- Z Xn (1) Z (n (b(n) )n](—ri)n ¢=1=7 (mod n**t1),
o<i<n/r j=0 J

and hence, since 7" ?"~7 = =7 (mod n**') and (”%(2")71)712 = n? (mod n?),

2

Z—gSr7372(n) (mod n?),

r1,2 n)—% r2 2(71)—
L Sr2,2(n) (mod n?),

(
Ur(n) = m( ) =

—l »1,0(n) (modn).

Now Proposition 1 follows from (1) at once. O
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In [9] some formulae for E’@r(n) are determined. Since, by Proposition 1,
we have EQ,(n) = —%E@T(n), the formulae imply corresponding formulae
for EQ,(n). In the next proposition, we present the formulae in a slightly
different form.

Proposition 2. (cf. [9]) In the above notation, if r | 24, then (3) holds.

Proof. Following [9, (15)] and Proposition 1 we know that

EQ.(n) =~ EQ,(n) = — By (- 1+ ¢(r1)rm 10 -a) tmodn)
qlr

where m = n°¢(n) — 1. Consequently,

Xém—i-l

s+1)
rmti(m 4+ 1)

(4) EQ.(n) =

(modn

where

Thus, in view of (5) and the congruence

1 Brsgn)
¢(n)

(see [9, (20)]) to obtain (3) it suffices to determine X (mod n**4).
Indeed, we have

= 1 (modn*)

_ 1 n)\™ pQ(T) n)\n’ ,03(7“) n)\n’
X = F(’"d)( ) ~o(r) (1_ 2 (27) )(“T(gﬂ ) )
_1 #(n))ord2(r)n® /o e(n) ordg(r)ns_i ,02(7“) s\’ ,03(7") #(n)\"°
=BT e e ) s )
_ 22031 (omyn* (g60m\n°
) oy g0y,
and by virtue of i*™ =1+ ng(n) (i = 2,3)
— 1 orda(r)n® ords(r)n® 1 pg(’l‘) ns
X = ;(1 + nfh(ﬂ)) (1 -+ ncp,(n)) —M—Fm(l -+ nq2(n))

n’ P2(T>p3 (7”) n? n
_W(l +ng2(n))" (14 ngs(n))

77:) (1 + ngs(n))
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Thus,

1 1
X = - (1 +n*lordy(r)ga(n) + n*ords(r)gs(n) — §n8+10Td2(7“)”61§(”)

1 1
R

1 p2(r) st L o1 o Losr1 o
_¢(r)+2¢(r) <1 a qQ(n)_ﬁn : nq2(n)+3n e )>

p3(r) s L L
+3¢(r) (1 +n*tlgy(n) — K +1nq§(n)—|—3n g (n ))

- ) (1) 4 0 ) = (o)

1 1 1
— 5n"ngi(n) + n g (n) + gn In?g)(n) ) (modnt)

1
— §ns+1ord3 (r)ng3(n)+

and so,

X = Y—i—%ns“ (ordg(r)qQ(n) + ords(r)gs(n)— %ordg(r)nqg(n)

1 1 1
_ EOI'dg (r)ngs(n)+ gOI‘dQ (r)yn*g(n)+ gordg(r)ang (n))

pg(’l“) s+1 1 2 1 203
452 Do (qa(n) — gnadn) + g} (m)
(T) 8+1 1 2 1 243
e ORI DR Q)
;02(7‘)03(7“) s+1 1
Zea) " () + a=gnain)
— e ) + 3ngd(n) + g (n) ) (mod w4

where
11 pa(r) p3(7“) _ pa(r)ps(r)
rog(r)  2¢(r) 3¢(7‘) 6p(r)

An easy verification shows that Y = 0. To check it we consider the cases. If
p2(r) = 0 and p3(r) = 1; then r = 3 and obviously Y = 0. If p(r) = 1 and
p3(r) = 0; then r = 2, 4, 8 and we have Y = %_ﬁ(r) = 0 since r = qu( ) for
these r. Finally, if po(r) = p3(r) = 1; thenr =6, 12, 24 and Y = > 3¢(T =0
since r = 3¢(r) in these cases. This completes the proof of Proposition 2. [
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4 Proof of the Theorem

The proof of the Theorem falls naturally into seven cases r = 2, 3, 4, 6, 8, 12
or 24. In view of Proposition 1, in each of the cases, it suffices to determine:

(i) the sums T, (n) (modn*t!) for s € {0,1,2}, which are determined in
Theorems 4,9, 14,19, 24,29 or 34 of [9];

(ii) the congruences for nT,s(n) (modn**tt) for s € {1,2}, which follow
immediately from parts (i) and (ii) of Theorems 5, 10, 15, 20, 25, 30 or
35 of [9];

(iii) the congruences for n?T; 3(n) (mod n?), which follow easily from parts
(ii) of Theorems 1,6, 11,16,21,26 or 31 of [9] for k = 3.1

Set Qi(n) = Q;(n) (modn) and Q?(n) = Q;(n) (modn?) (1 = 2,3). We
consider the cases:

1. If r = 2, then part (i) of the Theorem for s = 2 is a consequence of
Proposition 1, Theorems 4(i), 5(i) and Theorem 1(ii) of [9]; then for n > 1
odd we have

7T 5= 7T 5=
Ty1(n) = Qa(n)— §n28n2¢(n)_2 (mod n?), nTha(n) = §n2an¢(n)_2 (mod n®)

and N
n*Ty3(n) = —3n°B,2(n)—2 (mod n®).

The first of these congruences is the same as that in [9] and the second one is

an immediate consequence of that in [9]. The third congruence follows imme-
diately from Theorem 1(ii) [9] for k = 3; then n?T3(n) = 6n2§n2¢(n)_2 (mod n?).
On the other hand,

~ 1 ~
(5) n28n2¢(n),2 = —§n2Bn2¢(n),2 (HlOd n?’),

which completes the proof in this case.
The part (i) of the Theorem for s = 1 follows immediately from Proposi-
tion 1 and Theorems 4(ii), 5(ii) of [9]; then

n2Bn¢(n)_2 (mod n?).

N =3

7o~
Ty1(n) = Q5(n) — §n23n¢(n)_2 (modn?), nTys(n) =

(“More precisely, we need to determine T 1(n), nTy.2(n), n?Ty3(n) (modn?) if s = 2,
T,1(n), nT,2(n) (modn?) if s =1 and T}.1(n) (modn) if s = 0.
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n—ri

If we assume that 3 1 n, then §n¢(n)_2 is p-integral for any p|n and so
To1(n) = Q4(n) (modn?), nTya(n) = 0(modn?),

as claimed. The part (i) of the Theorem for s = 0 follows at once from
Theorem 4(iii) of [9]; then Ty ;(n) = Q4(n) (modn).

2. If r = 3, then part (i) of the Theorem for s = 2 is an immediate conse-
quence of Proposition 1, Theorems 9(i), 10(i) and Theorem 6(ii) of [9]; then
for n > 1, 3t n we have

1 ~ 13 5=
T3’1<n) = Qg(n) — §nDn2¢(n),2 — En2an¢(n),2 (HlOd TLS),

3 =~ 13 ,~
nTs9(n) = §nDnz¢(n)_2 + §n23n2¢(n)_2 (mod n?)
and N
n’Ty3(n) = —6n°By2g(m)—2 (mod n?).

Again the first congruence is the same as that in [9] and the second one is an
easy consequence of that in [9]. The third congruence follows from Theorem
6(ii) of [9] for k = 3 and (5); then n®T35(n) = 12n*B24(,)—2 (mod n?).

The part (i) of the Theorem for s = 1 follows immediately from Proposi-
tion 1 and Theorems 9(ii), 10(ii) of [9]; then

" 1~ 2 3 = 2

T51(n) = Q3(n) — §nDn¢(n)_2 (modn®), nTsq(n) = §nDn¢(n)_2 (mod n®).
Likewise, part (i) of the Theorem for s = 0 is an obvious consequence of
Proposition 1 and Theorem 9(iii) of [9]; then T5,(n) = Q5(n) (modn).

3. If r = 4, then part (i) of the Theorem for s = 2 follows from Proposition
1 and Theorems 14(i), 15(i) and 11(ii) of [9]; then for n > 3 odd we have

3

- 7 o~
Tyi(n) = -Q2(n) — nEp24m)—2 — gnanzd,(n)_Q (mod n?),

nTya(n) = 4n£77n2¢(n),2 + 7n2§n2¢,(n),2 (mod n?)

and -
n2T473(n) = —?nQBn%(n)_Q (mod n?).

The first congruence is the same as that in [9] and the second one is an im-
mediate consequence of that in [9]. The third congruence follows immediately
from Theorem 11(ii) of [9] for k = 3; then n?T} 3(n) = 27n2§n2¢(n)_2 (mod n?)
and it suffices to use (5).
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The part (i) of the Theorem for s = 1 follows immediately from Proposi-
tion 1 and Theorems 14(ii), 15(ii) of [9]; then

Ty1(n) =

[\CRGV]

_ 7~
Q5(n) — nEpgm)—2 — énzBm(n),z (mod n?),

nTya(n) = 4nEngm)—2 + 0B 2 (mod n?),
and so

3 - -
Ty1(n) = 5@’2/(71) — nE,pn)—2 (mod n?), nTyq(n) = 4nEpgn)—2 (mod n?)
if 34 n. The part (i) of the Theorem for s = 0 is an obvious consequence of
Theorem 14(iii) of [9]; then Ty1(n) = 2Q%(n) (modn).

4. If r = 6, then part (i) of the Theorem for s = 2 is an immediate con-
sequence of Proposition 1, Theorems 19(i), 20(i) and Theorem 16(ii) of [9];
then for n > 5, 3 { n we have

S ~ 91 ,~
Ts1(n) = Q2(n) + Qs(n) — ZnDn%(n)_g — 57123”2@5(”)_2 (mod n?),

15 ~ 91 ,~
nTs2(n) = ?nDn%(n)_z + EnZanqb(n)_Q (mod n?)

and N
n*Ts3(n) = —45n23n2¢(n)_2 (mod n®).

The first congruence is the same as that in [9] and the second one is an
immediate consequence of that in [9]. The third congruence follows from the
congruence n*Tg 3(n) = 90n2§n2¢(n)_2 (modn?3) and (5).

The part (i) of the Theorem for s = 1 follows immediately from Proposi-
tion 1 and Theorems 19(ii), 20(ii) of [9]; then

" " 5~
Ts1(n) = Q3(n) + Q5(n) — Z—Lanz,(n),Q (mod n?),

15 ~
nTs2(n) = ?anﬁ(n)_g (mod n?).

The part (i) of the Theorem for s = 0 follows at once from Proposition 1 and
Theorem 19(iii) of [9]; then T 1(n) = Q4(n) + Q%(n) (modn).

5. If r = 8, then part (ii) of the Theorem for s = 2 follows from Proposition
1, Theorems 24(i), 25(i) and Theorem 21(ii) of [9]; then for n > 7 odd we
have

T&l(n) = 2Q2(n) + 2:4vn2¢(n)_1 — nEn2¢(n)_2 — 2n5n2¢(n)_2
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n—ri

T o~ ~
— gnanQ(ﬁ(n),Q + 2n2An2¢(n),3 (I’IlOd n?’),

nTgq(n) = 8nEnz¢(n)_2+16nénz¢(n)_2+14n2§n2¢(n)_2—32n2gn2¢(n)_3 (mod n?)

and
111 5~ ~
n*Tya(n) = _Tnanz(p(n)_g + 128n2An2¢(n)_3 (mod n?).

The first congruence is the same as that in [9], the second one follows from
that in [9] and the third one is an immediate consequence of Theorem 21(ii)
of [9] for k = 3; then n*Ty3(n) = 111n2§n2¢(n)_2 + 128n2gn¢(n)_3 (mod n?)
and the congruence follows from (5).

The part (ii) of the Theorem for s = 1 follows immediately from Propo-
sition 1 and Theorems 24(ii), 25(ii) of [9]; then

~ ~ ~ T o~
T&l(n) = QQg(n)+2An¢(n)_1—nEn¢(n)_2—2nCn¢(n)_2—gnQBw(n)_g (HlOd n2),

TLT&Q (n) = 8715‘”(1,(”),2 + 16715,“;5(”),2 + 14n2§n¢(n),2 (mod n2),

and so
Ts1(n) = 2Q5(n) + 2ﬁn¢(n),1 — nEnqg(n),Q — Znaw,(n),g (mod n?),

nTgo(n) = 8n§n¢(n),2 + 16n5n¢,(n),2 (mod n?)

if 34 n. The part (ii) of the Theorem for s = 0 is an easy consequence of
Theorem 24(iii) of [9]; then T5;(n) = 2Q%(n) + 2A4(,)—1 (modn).

6. If r = 12, then part (iii) of the Theorem for s = 2 follows at once
from Proposition 1, Theorems 29(i), 30(i) and Theorem 26(ii) of [9]; then for
n > 11 odd we have

3 ~ 5 ~ 5 =~
T1271(7’L) = §QQ(TL) + Qg(n) + 3Fn2¢(n)—1 — Z?’LD”%,(”)_Q — gnEn2¢(n)_2

91 ,~ ~
— EHQanqg(n),Q + 3n2Fn2¢(n),3 (IIIOd n3),

~ ~ 91 ,~
nT1272(n) = 15nDn2¢(n)_2 + ZOnEn2¢(n)_2 + §n2Bn2¢(n)_2

— 72n2ﬁn2¢(n)_3 (mod n?)

and
363 5~ ~
n*Tips(n) = —TnQan(b(n)_Q + 432n2Fn¢(n)_3 (mod n?).
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The first congruence is the same as that in [9], the second one is implied by
that in [9] and the third one follows from Theorem 26(ii) of [9] for k = 3; then
n*Tia3(n) = 363n2§n2¢(n)_2 + 432n2ﬁn¢,(n)_3 (modn?) and it suffices to use
(5). The part (iii) of the Theorem for s = 1 follows at once from Proposition
1 and Theorems 29(ii), 30(ii) of [9]; then

3 ~ 5 5 ~
T1271(n) = §Q/2,(TL) + Qg(n) +3Fn¢(n)—1 — Zanb(n)_g — gnEn¢(n)_2 (mod n2)7

nTha(n) = 15n5n¢(n)72 + QOHEn(z,(n),g (mod n2).

Part (iii) of the Theorem for s = 0 follows easily from Proposition 1 and
Theorem 29(iii) of [9]; then T151(n) = 2Q4(n) + Q4(n) 4+ 3Fy(m)—1 (mod n).

7. If r = 24, then part (iv) of the Theorem for s = 2 follows from Proposition
1, Theorems 34(i), 35(i) and Theorem 31(ii) of [9]; then for n > 23 odd we
have

T2471(7”L) = 2QQ(TL) + Qg(ﬂ)+3ﬁn2¢(n)_1 +3én2¢(n)—1 +42{n2¢(n)—1
5 ~ 5 ~ ~ 8 ~
— Pn2o(m)-2— g Enzgm)-2 = 3nHuzg(m) -2 — 51 Cnz2(n) -2

91 ., ~ - ~ 28 ., ~
— ﬁnQBn%)(n)—Z+3n2Fn2¢(n)—3+3n2Gn2¢(n)—3+gnzAanb(n)—S (mod 713),

nT2472(n) = 30n15n2¢(n)_2 + 40nEn2¢(n)_2 + 72nﬁn2¢(n)_2 + 64n5n2¢(n)_2

+ %n2§n2¢(n)_2 — 14402 F 23 — 1440° G120 3
— ?nQEnz(b(n)_g (mod n?)
and
n*Thys(n) = —#ﬁén%(n” + 172802 F 2 g(n) 3

+ 172812G 2 5(m) -3 + 179202 A2 ()5 (mod 1),

Again the first congruence is the same as that in [9], the second one follows
immediately from that in [9] and the third one follows from Theorem 26(ii)
of [9] for k = 3; then
n*Thy3(n) = 14550 Bpegny—a + 17280 Fr2g(m s
+ 17280 Gyzpmy 3 + 17920 A,2 4y 5 (mod n®)
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n—ri

and it suffices to use (5).
Part (iv) of the Theorem for s = 1 follows immediately from Proposition
1 and Theorems 34(ii), 35(ii) of [9]; then we have

T2471(TL) = QQIQI(TL) + Qg(n)+3fn¢(n),1 +3én¢(n)71 +4fz{n¢(n)71
)

_ 5 ~ - 8 ~
— Znans(n)_Q — gnEnd,(n)_g — 3nHg(n)—2— gnCw(n)_g (mod n?),

nThy0(n) = 30n5n¢(n)_2 +4OnEn¢(n)_2+72nﬁ[n¢(n)_2+64n6n¢(n)_2 (mod n2).

Part (iii) of the Theorem for s = 0 is implied by Proposition 1 and Theorem
34(iii) of [9]; then

Tha1(n) = 2Qh(n) + Q4(n) + 3Fypmy—1 + 3G )1 + 4441 (mod n).

This completes the proof of the Theorem. U

5 Concluding remarks

Let p > 3 be a prime number and let r» be a natural number such that
1 < r < p. In the next part of the paper we are going to derive some new
congruences for the sums U,(p) = S /7 47 modulo p**! for s € {0,1,2}
and for all divisors r of 24. We shall use the congruences obtained in the
present paper in the case when n = p is an odd prime as well as Kummer’s

congruences for the generalized Bernoulli numbers.
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