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COMBINATORIAL CYCLES OF TETRAHEDRAL CHAINS

HASSAN BABIKER & STANISÃLAW JANECZKO

Abstract. Tetrahedral chains build of face-sharing regular tetrahedrons in Eu-
clidean three space are investigated. Explicit formula for the positions of all ver-
tices and the complete description of the geometric structure with optimal folding
of tetrahedral chains are obtained. Parametrization of chains by sequences of or-
dered reflections is constructed and periodicity in their combinatorial structure
is found. It is based on the structure of sequences of admissible triplets of inte-
gers and their cycling properties. The corresponding numerical invariants and the
indexing role of the tetrahedral group were discovered.

1. Introduction.

The simplest naturally ordered tetrahedral packing is built of an ordered sequence

of regular tetrahedra glued together face to face like linear packing of tetrahedral

helix (Figure 1) introduced implicitly by H.S.M. Coxeter in [1]. Such tetrahedral

structures, studied already by several authors [7, 8, 10] are called tetrahedral chains.

Figure 1. Tetrahelix
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Any tetrahedral chain is build of three types of simplest configurations of four

consecutive tetrahedrons called tetrahedral units. Two types are left and right tetra-

hedral short spirals, U,D, and the third type, F, is a flat configuration of four

tetrahedrons (Figure 2).

D U F

Figure 2. Tetrahedral units

The three strands of the left or right oriented tetrahedral helix form a spiral

with irrational slope. This is a reason of effective density of tetrahedral chains and

as it was proved by J.H.Mason in [7] nonexistence of closed tetrahedral chains in

Euclidean space (Figure 3).

Figure 3. Semi-ring structure

Let us assume that the gluing process of tetrahedrons is ordered along the chain

and each step is realized by reflection in a proper face of a consecutive tetrahedron.

To each tetrahedron we prescribe four reflections Ri, i = 1, . . . , 4 in the configu-

rational three dimensional space V. Reflections Ri in V are represented by four
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corresponding operators twist-morphisms R̄i, i = 1, . . . , 4 acting in the space of re-

gular tetrahedrons T through a reflectional transformation of their vortexes. Any

tetrahedral chain of length n + 1 is uniquely represented by an initial tetrahedron

T and an ordered sequence of n-twist-morphisms

R̄i1 , . . . , R̄in , ik+1 6= ik, k = 1, . . . , n− 1.

Its structure in U,D, F elementary units is written in the form of word UUDFUDD....

The fact that the tetrahedral chain is so rigid in 3-space and regular tetrahedrons

can not tile the space gives rise to several questions. The main question we con-

sider in this paper is the recognition of the combinatorial and algebraic structure of

tetrahedral chains. We want to investigate their geometric properties and determine

what information is contained in the chain invariant of orthogonal transformations

and re-numerations.

In Section 2 we demonstrate that any tetrahedral chain of length n + 1 is char-

acterized by one from the four twist-morphisms, say R̄l and collection of pairs

{(gi, σlmi
)}i=1,...,k where gi ∈ S4 is a cycle of order ni, 2 ≤ ni ≤ 4,

∑k
i=1 ni = n,

and σlmi
∈ S4 is a transposition in the permutation group of four elements. The

encoding of U,D, F elements in the triplets of consecutive tetrahedrons along a

chain is investigated in Section 3. By this way any tetrahedral chain is decomposed

into sequence of admissible triplets of integers (k, j, i), 1 ≤ k, j, i ≤ 4, k 6= j 6= i

with the adjacency procedure reconstructing the chain in the form of word in U,D, F

characters. Numerical description of a chain Qn of length n by the admissible triplets

of integers is reduced to an exact numerical invariant in the form of sign {−1, 0, +1}
sequence Λ(Qn) and presented in Section 5. In Section 6 the folding properties

of tetrahedral chain as a simplicial complex are investigated. All chains centered

around one vortex with various branching orders are classified. The periodic chains

are investigated in Section 7 where it was proved that any periodic tetrahedral chain

can be reconstructed by transformation M (composed by twist-morphisms) and its

powers Mm. Finally in Section 8 we show that minimal indexing of numerical de-

composition reduces to the tetrahedral group structure of 12 elements.

2. Tetrahedral chains.

A regular tetrahedron T in Euclidean 3-space is identified with the set of its four

vertices {p1, p2, p3, p4}, pi ∈ R3. We decompose T into four faces; T = S1 ∪ . . . ∪ S4,

where we enumerate faces in such a way that vortex pi lies outside the plane defined

by face Si. By (Si, pi) we denote an elementary pair of T. We also write T =

{(S1, p1), . . . (S4, p4)}. By T we denote the space of regular tetrahedrons, and in

what follows we will consider only regular tetrahedra.
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An ordered sequence of regular tetrahedrons {T (i)}n
i=0 is called a tetrahedral chain

if any pair of two consecutive tetrahedrons have a common face.

By si we denote the center of Si, si = 1
3
(
∑4

j=1 pj − pi). Four reflections Ri are

defined uniquely by Si and their orthogonal si − pi, 1 ≤ i ≤ 4.

Ri(p) = p− 2
(p− si|si − pi)

(si − pi|si − pi)
(si − pi).(2.1)

For a given tetrahedron T the tetrahedral triangulation process is an attaching a

copy of T, to one of its faces. The natural step of triangulation process is defined

by reflection of vertex pi in the face Si. The new attached tetrahedron is defined by

three vertices laying on the face Si and the reflected vertex p
(1)
i . We denote it by T

(1)
i

as it is determined uniquely by an extra vertex p
(1)
i . The new attached tetrahedron

T
(1)
i is defined by four vertices {Ri(p1), Ri(p2), Ri(p3), Ri(p4)},

Ri(pj) = pj, j 6= i

as pj − si is orthogonal to si − pi and for j = i

Ri(pi) = pi + 2(si − pi).(2.2)

The tetrahedron T
(1)
i given by reflection of pi in the face Si is defined by new four

vertices, T
(1)
i = {p(1)i

j }4
j=1 where T

(1)
i = R̄iT and R̄i is defined by reflection Ri (2.1)

and it is called a twist-morphism of T , R̄2
i = id.

p
(1)i

j := Ri(pj) = pj + 2δij(
1

3

∑

k 6=i

pk − pj), j = 1, . . . , 4(2.3)

The tetrahedral chains of the consecutive length 1, 2, . . . , n are encoded (and de-

scribed in affine coordinates) by compositions of R̄i, i = 1, . . . , 4;

T (0) = T

T
(1)
i1

= R̄i1T

T
(2)
i1i2

= R̄i2R̄i1T, i1 6= i2

. . . . . . . . .

T
(n)
i1i2...in

= R̄in . . . R̄i2R̄i1T, ik+1 6= ik, k = 1, . . . n− 1.

We define the center of a tetrahedron T ; C : T → V, C(T ) = 1
4

∑4
i=1 pi. The

vectors joining centers of two consecutive tetrahedra in a chain are defined by xr =

C(T (r) − T (r−1)) = c(r) − c(r−1) (Figure 4).
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Figure 4. Skeleton orientation

The skeleton of the tetrahedral chain is a broken line build of consecutive seg-

ments, intervals |xr| joining the consecutive centers, xr = c(r) − c(r−1). In the coor-

dinate matrix form R̄i we have.

R̄1 =




−1 2
3

2
3

2
3

0 1 0 0
0 0 1 0
0 0 0 1


 , R̄2 =




1 0 0 0
2
3
−1 2

3
2
3

0 0 1 0
0 0 0 1


 ,

R̄3 =




1 0 0 0
0 1 0 0
2
3

2
3
−1 2

3
0 0 0 1


 , R̄4 =




1 0 0 0
0 1 0 0
0 0 1 0
2
3

2
3

2
3
−1


 ,

Let S4 be the symmetric group. We consider its matrix representation in R4.

Then we prove the following properties of twist-morphisms.

Lemma 2.1. For every g ∈ S4

R̄ig = gR̄g−1(i).

Proof. We have relations

R̄i = σijR̄jσij, R̄iσij = σijR̄j = σijR̄σij(i),

and

R̄iσkl = σklR̄i = σklR̄σkl(i), where k 6= i 6= l, σkl(i) = i,

where σkl is a transposition between k and l, k, l ≤ 4. Let g = un
i=1σi be decompo-

sition of g onto transpositions. Then

R̄ig = R̄iσ1 . . . σn = σ1 . . . σrR̄σr◦...◦σn(i) = gR̄g−1(i),

as g−1 = (σ1 . . . σn)−1 = σ−1
n . . . σ−1

1 and σi = σ−1
i . 2
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Corollary 2.2. By Lemma (2.1) we have relation

gR̄i = R̄g(i)g

By Lemma (2.1) we can prove the following decomposition.

Theorem 2.3. For any sequence of twist-morphisms R̄in . . . R̄i2R̄i1T there is a de-

composition

(gkR̄lk)
nk(gk−1R̄lk−1

)nk−1 . . . (g1R̄l1)
n1T, n1 + . . . + nk = n,

where 1 ≤ li ≤ 4 and gi ∈ S4, i = 1, . . . , k, gi is a cycle of order ni, 2 ≤ ni ≤ 4.

Proof. A chain of length n + 1 can be characterized by a map f of Nn =

{1, . . . , n} to N4 = {1, 2, 3, 4}, f : Nn → N4 which may be decomposed into maximal

monotonous units of length greater than or equal to 2. Any monotonous unit of

length k, 2 ≤ k ≤ 4, can be indexed by an action of a cyclic element of S4 of order

k. We can write

R̄ik . . . R̄i1 = R̄gk−1(i1) . . . R̄i1 .

Using Lemma 2.1 we get

R̄ik . . . R̄i1 = gkR̄gk−1(i1) . . . R̄i1 = (gR̄i1)
k

which finishes the proof. 2

The twist-morphisms R̄1, . . . , R̄4 are related by composition with permutation

matrices. As an example R̄2, R̄3, R̄4 can be expressed uniquely by R̄1,

R̄2 = σ12R̄1σ12, R̄3 = σ13R̄1σ13, R̄4 = σ14R̄1σ14

Thus the tetrahedral chain of length n + 1 is characterized by one of the twist-

morphisms, say R̄r, with relations R̄j = σrjR̄rσrj, j 6= r, and a sequence of pairs

of cycles {(gi, σrli) ∈ S4 × S4 : i = 1, . . . k}, with the decomposition
∑k

i=1 ni = n,

where ni is an order of gi.

3. Coding in triplets of consecutive steps.

The three consecutive tetrahedra or two skeleton segments define the orientation

plane spanned by two vectors xr+2 and xr+1. Thus we can write the coordinate repre-

sentation of the three possible reflections R̄ir+3 , ir+3 6= ir+2,(ir+2 = 1, . . . , 4). The cor-

responding tetrahedrons follow after the orientation unit, T
(r+2)
ir+1ir+2

= R̄ir+2R̄ir+1T
(r)

build of three neighboring tetrahedra, T (r), T
(r+1)
ir+1

= R̄ir+1T
(r), T

(r+2)
ir+1ir+2

= R̄ir+2R̄ir+1T
(r).

The three possible consecutive reflections R̄ir+1 , R̄ir+2 , R̄ir+3 of an initial tetrahe-

dron T (r) complete the initial tetrahedron to the oriented quadruple of four tetra-

hedrons and determine the three skeleton segments xr+1, xr+2, xr+3.
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Definition 3.1. The three units F, U,D of tetrahedral chain, build of four consec-

utive tetrahedrons are defined by the three possible orientations of three consecutive

skeleton segments,

F : T (r+3); det(xr+1, xr+2, xr+3) = 0(3.1)

U : T (r+3); det(xr+1, xr+2, xr+3) > 0(3.2)

D : T (r+3); det(xr+1, xr+2, xr+3) < 0(3.3)

The initial value for continuation of the recurrence process at each step of the

process is defined by T (r) with r ≥ 2. A tetrahedral chain with fixed orientation in

the space (i.e. with coordinates prescribed to each vortex of the chain) is written in

the form of word, e.g.

F . . . FU . . . UD . . .D . . .

The initial configuration of three consecutive tetrahedra T (0), T (1), T (2) establish

an exact position of the chain in R3. But the distribution of elements F,D,U along

the word defines its geometric structure uniquely. In symbolic description of the

chain (invariant according to SO(3) symmetries) we postpone the initial value data.

Proposition 3.2. At each element of a tetrahedral chain, say T (r+3), its posi-

tion, F, U, D is defined uniquely by the triplet of three consecutive tetrahedrons

T (r), T (r+1), T (r+2) and one of the three twist-morphisms acting on T (r+2).

Proof. At each step of the triangulation process of the tetrahedral chain we have

three preceding operations by twist-morphisms,

T
(r+1)
k = R̄kT

(r)(3.4)

T
(r+2)
kj = R̄jR̄kT

(r)(3.5)

T
(r+3)
kji = R̄iR̄jR̄kT

(r).(3.6)

Let T (r) = {pl}4
l=1 Now we distinguish uniquely the three configurations depending

on the last twist-morphism R̄i. Assuming c(r) = 1
4

∑4
i=1 pi = 0 we get,

(F ) : i = k, xr+1 = −2

3
pk, xr+2 = −2

3
(pj +

2

3
pk), xr+3 = −4

9
(pj +

5

6
pk)

(U) : i 6= k, xr+1 = −2

3
pk, xr+2 = −2

3
(pj +

2

3
pk), xr+3 = −2

3
(pi +

2

3
pj +

14

9
pk),

det(pk, pj, pi) < 0

(D) : i 6= k, xr+1 = −2

3
pk, xr+2 = −2

3
(pj +

2

3
pk), xr+3 = −2

3
(pi +

2

3
pj +

14

9
pk),

det(pk, pj, pi) > 0.

These configurations uniquely define the three possible elements of a tetrahedral

chain. 2
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Definition 3.3. A triplet of integers (k, j, i), 1 ≤ i, j, k ≤ 4 such that k 6= j 6= i is

called an admissible triplet. The set of all admissible triplets we denote by A.

On the basis of Proposition 3.2 ,to each admissible triplet of integers we associate

an encoding (for F, U, D) triplet of twist-morphisms,

(k, j, i) 7→ (R̄k, R̄j, R̄i)

4. Admissible triplets along the chain.

As it is seen from the proof of Proposition 3.2 to complete orientation in the

directed chain of tetrahedra and define especially U and D chain elements we need

to orient at least one tetrahedron of the chain. It means that if we fix the sign, say

det[p1, p2, p3] > 0, then the orientation is defined for all other admissible triplets. In

what follows we will assume this orientation for an initial tetrahedron. By direct

calculation based on the proof of Proposition 3.2 we get the following result,

Proposition 4.1. Assume the normalization conditions,
∑4

i=1 pi = 0, and

det(p1, p2, p3) > 0, are fulfilled. Then in Table 1 we get the classes of admissible

triplets representing the first step Ū , D̄, and F̄ chain oriented elements.

Ū D̄ F̄

det(x1, x2, x3) = 32
√

3/243 det(x1, x2, x3) = −32
√

3/243 det(x1, x2, x3) = 0
(k, j, i) (k, j, i) (k, j, i)
(3, 2, 1) (4, 2, 1) (1, 2, 1)
(4, 3, 1) (2, 3, 1) (1, 3, 1)
(2, 4, 1) (3, 4, 1) (1, 4, 1)
(4, 1, 2) (3, 1, 2) (2, 1, 2)
(1, 3, 2) (4, 3, 2) (2, 3, 2)
(3, 4, 2) (1, 4, 2) (2, 4, 2)
(2, 1, 3) (4, 1, 3) (3, 1, 3)
(4, 2, 3) (1, 2, 3) (3, 2, 3)
(1, 4, 3) (2, 4, 3) (3, 4, 3)
(3, 1, 4) (2, 1, 4) (4, 1, 4)
(1, 2, 4) (3, 2, 4) (4, 2, 4)
(2, 3, 4) (1, 3, 4) (4, 3, 4)

Table 1. Classification of admissible triplets.

Each tetrahedron of a tetrahedral chain is given by reflection from the previous

one. At each step of determining of U,D, F positions we have to normalize the initial

conditions (initial tetrahedron) as it is described in Proposition 4.1 and repeat the

part of the proof of Proposition 3.2. Indeed if the initial tetrahedron (say T (r) ) was

oriented by det[p1, p2, p3] > 0 then the next one (T (r+1)) (serving as an initial for the
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next step of determination of U,D, F element), is given as reflection of a previous one

so after normalization of its coordinates,
∑4

i=1 pi = 0 we get the opposite orientation

of the initial condition, i.e. det[p1, p2, p3] < 0. And this orientation changes in any

even step of our construction. Thus choosing an admissible triplet, say for D (in the

second step) we choose it from the Ū column of admissible triplets of Table 1. In

the next step (odd) of this procedure the initial data orientation comes to the first

one, i.e. det[p1, p2, p3] > 0 and we use the Table 1 as it is.

To avoid this varying initial orientation data along the chaining process we will

introduce the notion of chain representing adjoint word.

Definition 4.2. To each tetrahedral chain written in the form of word W (possibly

infinite), for example

W = UUDDUUFFU...

we prescribe uniquely a new word W̄ = I(W ) which will be called an adjoint word.

Adjoint word is defined by replacing each character U (or D) by D̄ (or Ū respectively)

if it stays on the even place in the word W. All F characters are preserved in its

adjoint form, for example

I(W ) = W̄ = ŪD̄D̄Ū ŪD̄F̄ F̄ Ū ...

The adjoint word has a numerical meaning reducing the word characters along

the chain to the ones listed in Table 1 which are the first step characters represented

numerically. This way each tetrahedral chain can be represented by the sequence of

admissible triplets uniquely defined by the initial triplet and the triplets of Table 1.

5. Numerical invariants of tetrahedral chains.

Any tetrahedral chain is described as a composition (ordered collection, sequence)

of admissible ordered triplets representing the corresponding characters (U,D,F)

of the defining word, e.g. for UUDFD we have I(UUDFD) = ŪD̄D̄F̄ D̄ and

respectively,

(3, 4, 2) → (4, 2, 1) → (2, 1, 4) → (1, 4, 1) → (4, 1, 3).

and

T
(7)
3421413 = R̄3R̄1R̄4R̄1R̄2R̄4R̄3T.

As an ordered set each admissible triplet (i1, i2, i3) is a mapping from the ordered

set ∆3 = {1, 2, 3} to the set ∆4 = {1, 2, 3, 4} denoted by fi1i2i3 . There is a natural

action of the simple product of symmetric groups S4×S3 in the space of mappings,

(ξ, σ).fi1i2i3 = ξ ◦ fi1i2i3 ◦ σ, ξ ∈ S4, σ ∈ S3.
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The set of mappings into admissible triplets we will denote by A. Obviously A is

not preserved by the above defined group action.

Now we fix an orientation of the chain choosing a reference triplet (i, j, k), i 6= j 6=
k 6= i. We call this triplet positive. We easily see that any other mapping fi1i2i3 ∈ A
can be given from the reference mapping fijk through the group action, i.e.

fi1i2i3 = ξ ◦ fijk ◦ σ

Lemma 5.1.

1. If i1 6= i2 6= i3 6= i1, fi1i2i3(s) ∈ {i, j, k}, 1 ≤ s ≤ 3, then there is a uniquely

defined σ ∈ S3 such that fi1i2i3 = (id, σ).fijk

2. If i1 6= i2 6= i3 6= i1, {i1, i2, i3} 6= {i, j, k}, then there are uniquely defined,

transposition τ ∈ S4 and permutation σ ∈ S3 such that fi1i2i3 = (τ, σ).fijk.

Proof. The case 1.) is straightforward as the image set of fi1i2i3 is equal to

{i, j, k}. In the case 2.) there are three possibilities {i1, i2, i3} = {i, j, l}, {i1, i2, i3} =

{i, l, k}, {i1, i2, i3} = {l, j, k}, where {l} = ∆4 − {i, j, k}. In each case there is a

transposition τkl, τjl, τil such that the image of fi1i2i3 is equal τ∗ ◦ fijk, where τ∗
denotes one of the permutations τkl, τjl and τil. Then there is a uniquely defined

element σ ∈ S3 such that fi1i2i3 = τ∗ ◦ fijk ◦ σ. 2

On the basis of Lemma 5.1 and straightforward checking we get the new numerical

characteristic of admissible triplets.

Proposition 5.2. To each admissible triplet fi1i2i3 we associate uniquely its sign Λ,

i.e. there is a mapping Λ : A → {−1, 0, +1}, such that

1. Λ(fijk) = +1

2. If i1 6= i2 6= i3 6= i1, fi1i2i3(s) ∈ {i, j, k}, 1 ≤ s ≤ 3, then fi1i2i3 = (id, σ).fijk

and Λ(fi1i2i3) = sgn(σ).

3. If i1 6= i2 6= i3 6= i1, {i1, i2, i3} 6= {i, j, k}, then fi1i2i3 = (τ∗, σ).fijk and

Λ(fi1i2i3) = sgn(τ∗)sgn(σ) = −sgn(σ).

4. If i1 = i3, Λ(fi1i2i3) = 0.

For a formal notion of Λ we propose its representation as a sign of the determinant

build of three vortexes of the first tetrahedron of the tetrahedral chain, i.e. the

positive reference triplet means det(pi, pj, pk) > 0 (sgn(det(pi, pj, pk)) = +1), and

Λ(fi1i2i3) = sgn(det(pi1 , pi2 , pi3)).

Now we show the properties of Λ represented by determinant and displayed in Propo-

sition 5.2. We show that

Λ(fi1i2i3) = sgn(det(pi1 , pi2 , pi3)) = Λ(ξ ◦ fijk ◦ σ) = −sgn(σ)sgn(det(pi, pj, pk)).
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Indeed,

det(pξ◦fijk◦σ(1), pξ◦fijk◦σ(2), pξ◦fijk◦σ(3))

= sgn(σ)det(pξ◦fijk(1), pξ◦fijk(2), pξ◦fijk(3))

= sgn(σ)det(pξ(i), pξ(j), pξ(k)) = sgn(σ)det(pi, pj, pl),

because we choose (as an example) ξ = τkl. And taking pl = −(pi + pj + pk) we get

sgn(σ)det(pi, pj, pl) = sgn(σ)det(pi, pj,−pi − pj − pk) = −sgn(σ)det(pi, pj, pk).

In the sequence of admissible triplets defining a tetrahedral chain for each triplet

the two last numbers repeat in the subsequent triplet in the same order. To each

tetrahedral chain Wn we associate the chain of admissible triplets.

Definition 5.3. The chain of admissible triplets

. . .
L̃∗−→ (i1, i2, i3)

L̃∗−→ (i2, i3, i4)
L̃∗−→ (i3, i4, i5)

L̃∗−→ . . . ,

where L̃∗ is defined by the corresponding transposition τ∗ ∈ S4, maximal order ele-

ment (maximal cycle) γ of S3 and the unique relation

fir+2ir+3ir+4 = τ∗ ◦ fir+1ir+2ir+3 ◦ γ(5.1)

is called an admissible chain (pre-complex) and we denote it by Qn.

The action of above defined pairs (τ∗, γ) preserve the space of admissible mappings

A. The relation of sign Λ in an admissible chain reads

Λ(fi2i3i4) = Λ(τ∗ ◦ fi1i2i3 ◦ γ) = −sgn(γ)Λ(fi1i2i3)

In the space of all finite admissible chains we introduce the following equivalency,

Definition 5.4. Two admissible chains Qn and Q′
n

Qn = . . .
L̃∗−→ (ir+1, ir+2, ir+3)

L̃∗−→ (ir+2, ir+3, ir+4)
L̃∗−→ (ir+3, ir+4, ir+5)

L̃∗−→ . . . ,

Q′
n = . . .

L̃∗−→ (jr+1, jr+2, jr+3)
L̃∗−→ (jr+2, jr+3, jr+4)

L̃∗−→ (jr+3, jr+4, jr+5)
L̃∗−→ . . . ,

are equivalent, Qn ∼ Q′
n, if there exists ξ ∈ S4 such that fik+1ik+2ik+3

= ξ◦fjk+1jk+2jk+3

for k = 0, . . . , n− 1.

To each admissible chain, say Qn, we associate its sign sequence

Λ(Qn) = {Λ(fi1i2i3), . . . , Λ(finin+1in+2)}

Proposition 5.5. The sign sequence is a numerical invariant, i.e.

Λ(Qn) = Λ(Q′
n) if and only if Qn ∼ Q′

n.
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Thus the sign sequences corresponding to admissible sequences describe in 1-1 cor-

respondence the tetrahedral chains. There is a natural correspondence of sequences

. . .
L̃∗−−−→ A L̃∗−−−→ A L̃∗−−−→ A L̃∗−−−→ . . .

Λ

y Λ

y Λ

y Λ

y Λ

y

. . .
S̃∗−−−→ G

S̃∗−−−→ G
S̃∗−−−→ G

S̃∗−−−→ . . .

where G = {−1, 0, +1} and S̃∗ is an operator G → G corresponding to L̃∗.

6. Geometric characteristics of short tetrahedral chains.

An important notion of tetrahedral chains is their clustering characteristic. First

we introduce the notion of vortex order. If p is a common vortex for a number of

tetrahedrons we call this number an order of vortex p. Vortex order is a function

P : VCn → N defined on the ordered sequence of vortices VCn of chain Cn (of length

n) which to each vortex p ∈ VCn along the chain Cn prescribes its order P (p). In

the same way we define an edge order function G : ECn → N defined on the ordered

sequence of edges ECn ordered along the chain. G(l) is a number of tetrahedrons

which share an edge l, l ∈ ECn . We can easily see the following

Lemma 6.1. 1. The total vortex order Ṽ =
∑

p∈VCn
P (p) for a chain does not

depend on a form of chain and for the chain of length n it is equal to 4n.

2. Maximal vortex order is 20 and the chains of length 20 with such vortex we will

call ico-clusters (icosahedral clusters). Distribution of values of vortex order func-

tion along the chain uniquely up to orientation defines the geometric shape of the

chain, i.e. if two functions P1 and P2 for two chains of the same length are equal

then their shapes are identical up to the change of orientation.

Remark 6.2. If the vortex order function is constant and equal 4 (beside the

vortices for two initial and two final tetrahedrons) then the chain is a tetrahelix

with U or D orientation. In this case the level sets of edge order function G,

G−1(1), G−1(2), G−1(3) form the three helices build of external edges, two helices

and central broken spiral.

Let E denote the set of edges of a chain Cn. By S we denote the set of its faces

and Ŝ the set of its external faces. Then we have an Euler characteristic relation

#Ŝ −#E + #V = 2



TETRAHEDRAL CHAINS 13

end relations for the total orders
1

n
(S̃ − Ẽ + Ṽ ) = 2.

Then on each space Cn of proper chains of length n, we have a clustering function

Cl : Cn → N. For a chain Cn we prescribe the set V̄Cn of vortices with vortex order

greater than or equal to 4,

Cl(Cn) =
∑

p∈V̄Cn

(P (p)− 4)

We see that the clustering function vanishes on tetrahelix and has a maximal value

for chains build of ico-clusters completed by k-clusters (chains composed of one

common vortex of order k) with k = n(mod20).

In the chain growing process at each final tetrahedron one may have maximally

three possibilities to attache tightly the next tetrahedron if it has no common points

with any other tetrahedron than the last one. Thus we see that every tetrahedron

(element of the chain) along a chain has its branching order which is the number

b, 0 ≤ b ≤ 3 of possible concurrent continuations of the chain at the given tetra-

hedron. The zero branching order terminates the chain (see Figure 5).

Figure 5. Zero branching order example

If branching order is one at that tetrahedron it is a deterministic continuation

of the chain. Such chains form the basic units with substantially reduced space of

possible configurations. Classification of fixed vortex clusters is given in the following

Theorem 6.3. The tetrahedral chains sharing one fixed geometrical vortex, with

different branching orders b = 1, 2 and 3 are listed in the Table 2.
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b\n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 total
1 0 0 0 0 0 1 2 6 9 19 38 49 69 79 71 34 6 383
2 0 0 1 4 6 10 24 46 78 113 137 153 132 85 36 6 0 831
3 2 4 6 9 16 27 38 48 55 56 50 35 22 12 2 0 0 380

total 2 4 7 13 22 38 64 100 142 188 225 237 223 176 109 40 6 1594

Table 2. Table of one vortex clusters.

Example 6.4. We show the first listing of short chains centered at one fixed vortex

with 4 ≤ n ≤ 8:

n = 4 : F, D

n = 5 : FF, FD, DU, DF,

n = 6 : FFD, FDF, FDU, DUF, DUD, DFF, DFU

n = 7 : FFDF, FFDU, FDFF, FDFU, FDUF, FDUD, DUFF, DUFD,

DUDF, DUDU, DFFU, DFUF, DFUD

n = 8 : FFDFU, FFDFF, FFDUD, FDFFU, FDFUD, FDFUF,

FDUFD FDUDU, FDUDF, DUFFD, DUFDU, DUFDF,

DUDFU, DUDFF DUDUD, DUDUF, DFFUF, DFFUD,

DFUFD, DFUFF, DFUDU, DFUDF.

Remark 6.5.

1. The smallest basic cluster of branching order 1 is given by the following code

(Figure 6):

UDFUDF

2. The ico-clusters are listed in the following codes (Figure 7):

FFUFFDUDUDFFUFFDU,FFUFFDUDUDUDFFUFF

UFFDFFUDUDUFFDFFU,UFFDUDFFUFFDUDFFU

UDFFUFFDUDFFUFFDU,UDFFUFFDUDUDFFUFF

3. Table 2 displays one vortex chains sharing one geometrically fixed point as a

vortex. This gives us the part of the clusters, namely those who has fixed orientation.

This table extended by all codes with U replaced by D and vice versa completes the

set of all one vortex clusters.
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Figure 6. Smallest basic cluster, n = 9, b = 1

Figure 7. Examples of Ico-clusters n = 20, b = 1

7. Periodic tetrahedral chains.

We call tetrahedral chains periodic if configurations of elements F,U,D in the

defining sequence (word) D . . .DU . . . UF . . . are periodic. Any periodic tetrahedral

chain is uniquely defined by its period which forms the shortest finite tetrahedral

chain written in the form of ”word” of length n of U,D, F configuration, say Wn =

UDFU . . .DU. We will call this word the basic period of the periodic tetrahedral



16 HASSAN BABIKER & STANISÃLAW JANECZKO

Figure 8. Multi ico-cluster

chain. In the twist-morphism representation for each of U,D, F characters to be

defined we need two preceding twist-morphisms which define an admissible triplet

of integers (indexes). Thus the period in the numerical characterization of the

periodic tetrahedral chains by their sequence of admissible triplets corresponds to

the shortest cycle of the triplets which continues repeating along the sequence. The

cycle of triplets is directly represented by the twist-morphisms and finally by their

composition, which forms the kind of master matrix for the infinite periodic chain.

In this section we show existence of such matrix for a periodic chain and display

some of its properties. For construction of coordinate representation of the periodic

chains, i.e. its twist-morphism composition for the cycle of admissible triplets we

will define the corresponding adjoint defining sequence of periodic tetrahedral chain

and its adjoint period

Definition 7.1. The shortest word Wn will be called period of the tetrahedral chain

if it is also period for the corresponding adjoint defining sequence and its adjoint

word W̄n is also period for the adjoint defining sequence.

We notice that if length of a basic period W is even, then the adjoint word I(W )

is also a basic period for the adjoint defining sequence of the chain. Obviously the
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doubled basic period is a period for the adjoint defining sequence in the case of odd

length of the basic period.

Let us assume the positive orientation of an initial tetrahedron T, i.e. det[p1, p2, p3] >

0, then using Table 1 for any two indices i1, i2, i1 6= i2, 1 ≤ i1, i2 ≤ 4 we can define

uniquely i3, 1 ≤ i3 ≤ 4 such that (i1, i2, i3) is an admissible triplet of the fixed type

”U,D, F”. Thus we have mappings LU , LD, LF : I→ ∆, where ∆ = {1, 2, 3, 4} and

I = {(α, β) ∈ ∆×∆ : α 6= β} .

Any word Wn of length n can be represented as a composition of n + 2 twist-

morphisms R̄in+2 . . . R̄i1 . The sequence of indices i1, . . . in+2 is defined by the sequence

of L∗−mappings directly corresponding to the sequence of characters in the dual

word W̄n. For example the L∗− sequence for the period Wn = UDFU . . . DU is

following:

LU(i1, i2) = i3,

LU(i2, i3) = i4,

LF (i3, i4) = i5,

LD(i4, i5) = i6,

. . . . . . .

LD(in−1, in) = in+1,

LD(in, in+1) = in+2.

For the twist-morphisms representation of a periodic tetrahedral chain with Wn to

be a period the corresponding composition R̄in+2 . . . R̄i1 is not necessary continuing

along the representing sequence. It would be so if the L∗−sequence is cyclic, i.e. if

i1 = in+1, i2 = in+2. This fact may be easily seen for three basic periodic chains,

U periodic : U . . . U . . .

D periodic : D . . . D . . .

F periodic : F . . . F . . .

In first two cases the period is a two characters word, UU,DD. In U (and D) periodic

chains the defining sequences are cyclic after two iterations of the L∗−sequence

LU(i1, i2) = i3

LD(i2, i3) = i4

LU(i3, i4) = i1

LD(i4, i1) = i2,
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as displayed in Table 2. Obviously the L∗−sequence for the period of F− periodic

chain is cyclic, i.e. LF (i1, i2) = i1, LF (i2, i1) = i2.

Corollary 7.2. The examples of cycles of admissible triplets defining the basically

periodic chains are displayed in Table 3.

U -chains D-chains
(3, 2, 1) → (2, 1, 4) → (1, 4, 3) → (4, 3, 2) (2, 1, 4) → (1, 4, 3) → (4, 3, 2) → (3, 2, 1)
(4, 3, 1) → (3, 1, 2) → (1, 2, 4) → (2, 4, 3) (3, 1, 2) → (1, 2, 4) → (2, 4, 3) → (4, 3, 1)
(2, 4, 1) → (4, 1, 3) → (1, 3, 2) → (3, 2, 4) (4, 1, 3) → (1, 3, 2) → (3, 2, 4) → (2, 4, 1)
(3, 4, 2) → (4, 2, 1) → (2, 1, 3) → (1, 3, 4) (4, 2, 1) → (2, 1, 3) → (1, 3, 4) → (3, 4, 2)
(4, 1, 2) → (1, 2, 3) → (2, 3, 4) → (3, 4, 1) (1, 2, 3) → (2, 3, 4) → (3, 4, 1) → (4, 1, 2)
(4, 2, 3) → (2, 3, 1) → (3, 1, 4) → (1, 4, 2) (2, 3, 1) → (3, 1, 4) → (1, 4, 2) → (4, 2, 3)
(1, 4, 3) → (4, 3, 2) → (3, 2, 1) → (2, 1, 4) (4, 3, 2) → (3, 2, 1) → (2, 1, 4) → (1, 4, 3)
(1, 2, 4) → (2, 4, 3) → (4, 3, 1) → (3, 1, 2) (2, 4, 3) → (4, 3, 1) → (3, 1, 2) → (1, 2, 4)
(1, 3, 2) → (3, 2, 4) → (2, 4, 1) → (4, 1, 3) (3, 2, 4) → (2, 4, 1) → (4, 1, 3) → (1, 3, 2)
(2, 1, 3) → (1, 3, 4) → (3, 4, 2) → (4, 2, 1) (1, 3, 4) → (3, 4, 2) → (4, 2, 1) → (2, 1, 3)
(2, 3, 4) → (3, 4, 1) → (4, 1, 2) → (1, 2, 3) (3, 4, 1) → (4, 1, 2) → (1, 2, 3) → (2, 3, 4)
(3, 1, 4) → (1, 4, 2) → (4, 2, 3) → (2, 3, 1) (1, 4, 2) → (4, 2, 3) → (2, 3, 1) → (3, 1, 4)

Table 3. Admissible triplets defining the basic periodic tetrahedral chains.

For L∗−sequence of period for U (and D resp.) periodic chain we associate the

corresponding operator MU = R̄i4 . . . R̄i1 (MD resp.) such that the U -chain is an

infinite composition of MU (MD resp.). Here MF = R̄i2R̄i1 .

As the any two current indexes ik, ik+1 determine uniquely the third one ik+2 for

the element of the chain of type U,D, F and so on for subsequent pair ik+1, ik+2,

then we naturally define the corresponding maps

LU ,LD,LF : I→ I,(7.1)

L∗(i1, i2) = (i2, L∗(i1, i2)), ∗ = U,D, F.

#I = 12 and on the basis of Table 1 L∗ are bijections of I.

For each period Wn we define the mapping LWn : I→ I, LWn(i1, i2) = (in+1, in+2)

which is composition of the bijections, LU ,LD,LF in the order of the adjoint word

W̄n.

L∗ . . .L∗(i1, i2) = (in+1, in+2),

This composition of bijections will be called the L−sequence. Now there is a

question if any periodic tetrahedral chain is represented by some ”master” matrix

M , i.e. a finite composition of twist-morphisms with cyclic property? Such that

any part of the chain can be reconstructed by some power of . The answer of this

question gives the following
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Figure 9. Periodic tetrahedral chain

Theorem 7.3. Any periodic tetrahedral chain is represented by an operator M :

T → T which is a finite cycling composition of twist-morphisms R̄i, i = 1 . . . 4.

Proof. To each period Wn we prescribe uniquely a bijection LWn of the twelve-

element set I. LWn ∈ S12, and as an element of the symmetric group has a finite

order, say k such that Lk
Wn

= idI. Thus for any pair (i1, i2) ∈ I after nk + 2 steps we

get a cycle property. 2

8. Algebraic structure of tetrahedral chains.

The space of all finite regular tetrahedral chains, i.e. finite words build of U,D, F

or equivalently Ū , D̄, F̄ characters, we denote by ΓT . Space of the corresponding

L-sequences is denoted by ΓL. The duality in ΓT defined in Section 7 is an inner

automorphism of ΓT . To each element of ΓT (which can be treated also as a dual

word) we associate uniquely the composition of twist-morphisms R̄in . . . R̄i1 repre-

senting the corresponding configuration of Ū , D̄, F̄ elements in the chain. The space

of these compositions we identify with ΓT . By the construction of the sequence of

numbers i1, . . . , in (see Section 7) the elements of ΓT are indexed uniquely by the

finite L−sequences belonging to ΓL. These sequences form the compositions of the

three bijections LŪ ,LD̄,LF̄ which are elements of the permutation group S12, i.e
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there is a well defined map Φ : ΓT → ΓL of finite words of ΓT into the space of finite

configurations of these three elements.

Theorem 8.1. The indexing space of ΓT , i.e. the image of the indexing map Φ is

an infinite abstract group generated by three elements

LŪ , LD̄, LF̄

with the relations

L3
Ū = id, L3

D̄ = id, L2
F̄ = id, (LŪLD̄)2 = id(8.1)

Elements LŪ ,LD̄, with relations L3
Ū

= id, L3
D̄

= id, (LŪLD̄)2 = id generate

the tetrahedral group of 12 elements. Thus the indexing sequence for a chain Wn is

written in the form

Φ(Wn) = ai1LF ai2LF ai3LF . . .LF aik ,(8.2)

where aij is an element of the tetrahedral group (cf. [1])

T = {id,LŪ ,LD̄,L2
Ū ,L2

D̄,LD̄LŪ ,LŪLD̄,L2
ŪLD̄,LŪL2

D̄,L2
D̄LŪ ,LD̄L2

Ū ,LŪL2
D̄LŪ}
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