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Abstract. We give a simple general method of construction affine varieties with in-
finitely many exotic models. In particular we show that for every d > 1 there exists a
Stein manifold of dimension d, which has uncountable many different structures of affine
variety.

1. Introduction.

Given any smooth complex affine variety X , one can ask if there exists smooth affine
varieties Y non isomorphic to X but which are biholomorphic to X when equipped with
their underlying structures of complex analytic manifold. When such exist, these varieties
Y could be called exotic models of X.

Examples of affine varieties with exotic models was found in dimension two and three
(see [1], [9], [11]). Moreover, in [6] we showed that for every n ≥ 7 there are n−dimensional
rational affine manifolds with exotic models. The aim of this note is to give a simple general
method of construction of such examples. In particular we show that such examples do
exist in any dimension d > 1 (for d = 1 it is easy to see that such examples do not exist).
Here we modify our idea from [6] and we prove:

Theorem 1.1. Let V be a non-rational smooth affine curve. Then
(i) the affine surface Y := V × C has uncountably many different exotic models.
(ii) for every non C−uniruled smooth affine variety Z the variety Y × Z has an exotic

model. Moreover, if the group Aut(V × Z) is at most countable, then the Stein n−fold
X × Z has uncountably many different structures of affine variety.

and

Theorem 1.2. Let V be a smooth affine surface, which has a smooth completion V , such
that H0(V ,KV ) 6= 0. Then

(i) the affine fourfold X := V × C2 has infinitely many different exotic models.
(ii) for every non C−uniruled smooth affine variety Z the variety X ×Z has an exotic

model. Moreover, if the group Aut(V × Z) is finite, then the Stein n−fold X × Z has
infinitely many different structures of affine variety.

Remark 1.3. In particular we can take as V (above) any generic surface V ⊂ C3 of degree
d ≥ 4.

Date: July 3, 2013.
1991 Mathematics Subject Classification. 14 R 10, 32 Q 99,
Key words and phrases. algebraic vector bundle, exotic algebraic structure.

1



2 ZBIGNIEW JELONEK

2. Exotic models

Let us recall the definition of a C-uniruled variety which was introduced in our paper
[7]. First recall that a polynomial curve in X is the image of the affine line A1(C) under
a non-constant morphism φ : A1(C) → X. Now we have:

Definition 2.1. An affine variety X is said to be C-uniruled if it is of dimension ≥ 1 and
there exists a Zariski open, non-empty subset U of X such that for every point x ∈ U
there is a polynomial curve in X passing through x.

It is well-known, that if X is projectively smooth variety, which is C−uniruled, then
H0(X, KX) = 0, where KX denotes the canonical divisor of X. In the sequel we need the
following basic theorem, which was proved in our paper [5]:

Theorem 2.2. Let X be a non-C-uniruled smooth affine variety. Let F be an algebraic
vector bundle on X of rank r. If the total space of F is isomorphic to X × Cr, then F is
a trivial vector bundle.

We have also the following version of this theorem (compare with [5]):

Theorem 2.3. Let X be a non-C-uniruled smooth affine variety. Let F,G be algebraic
vector bundles on X of rank r. If the total space of F is isomorphic to the total space of
G, then F is isomorphic to σ∗G for some automorphism σ ∈ Aut(X).

Proof. Let F denote the total space of F and G the total space of G. In what follows, we
will identify X with the zero section of F and G. Note that

F ∼= TF |X/TX, G ∼= TG|X/TX.

Assume that there exists an isomorphism Φ : F → G. Let π : G → X be the projection
and take f = π ◦ Φ. Since the vector bundle F is locally trivial in the Zariski topology,
Lemma 3.4 in [5] shows that Φ(Fx) = Gf(x) for every x ∈ X. Consequently, the mapping
σ := f |X : X → X is an bijection. Moreover, it is easy to check that for every x ∈ X
the derivative dxσ is an isomorphism. Consequently the mapping σ is an automorphism.
Take G′ = σ∗G. Let Σ : G → G′ be the induced isomorphism of total spaces (locally given
as U × Cn 3 (x, v) → (σ−1(x), v) ∈ σ−1(U)× Cn). Replace Φ by Σ ◦ Φ and G by G′.

Now the mapping Φ|X : X ∈ x 7→ (x, t(x)) ∈ G is a section. Consider the isomorphism
Ψ : G 3 (x, v) 7→ (x, v − t(x)) ∈ G. Again we can replace Φ by Ψ ◦ Φ to obtain Φ|X :
X × {0} 3 (x, 0) 7→ (x, 0) ∈ G. Hence we can assume that Φ transforms the zero section
into the zero section, and moreover it induces the identity on the zero section. Hence
dΦ(TX) = TX and the mapping

dΦ : TF |X/TX ∼= F → TG|X/TX ∼= G

is an isomorphism. Consequently, the bundle F is isomorphic to G. ¤

Now we review some results about Stein manifolds. It is well-known that a n−dimensional
Stein manifold X has the homotopy type of a (real) n−dimensional CW complex ( see
[8]). Complex vector bundles on such CW complexes have tha following nice property:

Theorem 2.4. ([2], p. 111) Let Y be a r−dimensional CW complex and let F be a
complex vector bundle on Y of rank k. If r ≤ 2k− 1, then F has a one dimensional trivial
summand.

Now we are ready to prove our first result:
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Theorem 2.5. Let V be a non-rational smooth affine curve. Then
(i) the affine surface Y := V × C has uncountably many different exotic models.
(ii) for every non C−uniruled smooth affine variety Z the variety Y × Z has an exotic

model. Moreover, if the group Aut(V × Z) is at most countable, then the Stein n−fold
X × Z has uncountably many different structures of affine variety.

Proof. (i) Let V be a smooth compactification of V and {x1, ..., xr} = V \V. Then Pic(V ) =
Pic(V )/ < x1, ..., xr > . Since the subgroup < x1, ..., xr > is countable and Pic(V ) not,
we have Pic(V ) 6= 0 - in fact this group is uncountable. Let L ∈ Pic(V ) be a non-
zero line bundle. Hence it is algebraically non-trivial. However, by Theorem 2.4 L is
holomorphically trivial. Consequently the total space of any line bundle L ∈ Pic(X) is
biholomorphic to Y.

Note that the total space of every line bundle L ∈ Pic(V ) determines one affine structure
YL on Y. Let ρ be the relation on Pic(V ) such that L is in a relation with L′ if and only
if there exists an automorphism σ ∈ Aut(V ) : L′ = σ∗L. Since the group Aut(V ) is finite,
we see that the set S := Pic(V )/ρ is uncountable. Denote the class of relation of L with
respect to relation ρ by [L].

Structures YL and YL′ are not isomorphic for [L] 6= [L′] by Theorem 2.3. This means
that there is at least #S different affine structures on Y.

(ii) Let π : V × Z → V be a projection. Take L′ = π∗(L). Then L is holomorphically
trivial. However, it is algebraically non-trivial. Indeed, take a point z ∈ Z. If we identify
V with V × {z} ⊂ V × Z, then L′|V = L. Now we can finish as above.

Note that the mapping π∗ : Pic(V ) 3 L → π∗L ∈ Pic(V × Z) is injective, hence the
group Pic(V × Z) is uncountable. If the group Aut(V × Z) is at most countable, then
the set S′ = A2(V × Z)/ρ (where ρ is the relation as above) is uncountable. Now we can
finish as above. ¤

Corollary 2.6. Let Γ1, ...,Γr be a finite family of smooth non-rational curves (r ≥ 1)
and put X = C × ∏r

i=1 Γi. Then the Stein manifold X has uncountable many different
structures of affine variety. In particular for every d > 1 there exists a Stein manifold of
dimension d, which has uncountable many different structures of affine variety.

Proof. Let us note that κ(Γi) = 1 (where κ denotes the logarithmic Kodaira dimension).
We have κ(

∏r
i=1 Γi) =

∑r
i=1 κ(Γi) = r (see [3], Theorem 11.3). Hence the variety

∏r
i=1 Γi

is of general type and consequently it has a finite automorphisms group (see Theorem
11.12 in [3]). ¤

We show that our method can be applied also to affine surfaces. The following Lemma
is well known:

Lemma 2.7. Let X be a smooth affine surface. Let Ap(X) denotes the group of codimen-
sion p-cycles modulo rational equivalence. Let c1 ∈ A1(X), c2 ∈ A2(X). Then there exists
an algebraic vector bundle F of rank 2, such that ci(F) = ci for i = 1, 2, where ci(F) is an
ith Chern class of F.

Proof. Let X = Spec(A). Let L be a line bundle which correspond to c1. Moreover, let
A/I represent c2, where I is a product of different maximal ideals. Then Ext1A(I, L) is
cyclic, where L is a module of sections of L. Following [14] we get an exact sequence

0 → L → F → I → 0,
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where F is a projective module of rank 2. If F is a vector bundle which correspond to F ,
we get ci(F) = ci for i = 1, 2. ¤

We have also:

Lemma 2.8. Let V be a smooth affine surface, which has a smooth completion V , such
that H0(V , KV ) 6= 0. Then there exists an algebraic vector bundle F of rank two on V ,
which is algebraically non-trivial, but holomorphically trivial.

Proof. Note that H0(V , KV ) 6= 0. By Theorem 2.9 we have A2(V ) 6= 0. Take nonzero
c2 ∈ A2(V ). By Lemma 2.7 there is an algebraic vector bundle F of rank 2 such that
c1(F) = 0 and c2(F) = c2. In particular F is algebraically non-trivial and it has trivial
determinant.

We show that F is holomorphically trivial. We will make use of Grauert’s theorem on
the Oka principle for vector bundles which says that on Stein spaces the holomorphic and
topological classifications coincide. Therefore we can use the topological theory of complex
vector bundles. Moreover, since every n−dimensional Stein manifold has a homotopy type
of a (real) n−dimensional CW complex, if we study vector bundles on V , we can assume
that V itself is a 2−dimensional CW complex. In particular by Theorem 2.4 we have
F = L⊕E1, where E1 denotes the trivial line bundle. Since E1 = ∧2F = L⊗E1 = L we
have F = E1 ⊕E1 is holomorphically trivial. ¤

Moreover, we need the following result of Mumford and Roitman ( see [10], [12]):

Theorem 2.9. Let X be an irreducible, proper, non-singular variety of dimension d over
C, such that H0(X; KX) 6= 0, where KX is the canonical divisor of X. Then for any affine
open subset V ⊂ X, we have Ad(V ) 6= 0.

Finally we have:

Theorem 2.10. Let V be a smooth affine surface, which has a smooth completion V , such
that H0(V ,KV ) 6= 0. Then

(i) the affine fourfold X := V × C2 has infinitely many different exotic models.
(ii) for every non C−uniruled smooth affine variety Z the variety X ×Z has an exotic

model. Moreover, if the group Aut(V × Z) is finite, then the Stein n−fold X × Z has
infinitely many different structures of affine variety.

Proof. (i) Let F be a vector bundle as in Lemma 2.8. This vector bundle is algebraically
non-trivial but holomorphically trivial.

Let E2 be a trivial vector bundle of rank two on V. Since V is a non-uniruled variety,
by Theorem 2.2 total spaces F and E of vector bundles F and E2 are not isomorphic as
algebraic varieties. However in obvious way F and E are biholomorphic as total spaces of
the same trivial holomorphic vector bundle.

Note that the total space of every vector bundle F as above, determines one affine
structure YF on Y. Let ρ be the relation on A2(V ) such that a is in a relation with b if and
only if there exists an automorphism σ ∈ Aut(V ) such that a = σ∗b. Note that the group
A2(V ) is infinite, because by [13] we have A2(V )⊗Q 6= 0. Since the group Aut(V ) is finite
(see [4]), we have that the set S := A2(V )/ρ is infinite. Denote the class of relation of
a ∈ A2(V ) with respect to relation ρ by [a]. Structures YF and YF′ are not isomorphic for
[c2(F)] 6= [c2(F′)] by Theorem 2.3. This means that there is at least #S different affine
structures on Y.
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(ii) Since V is not C−uniruled, then also V ×Z is not C−uniruled. Let π : V ×Z → V
be a projection. Take G = π∗(F). Then G is holomorphically trivial. However, it is
algebraically non-trivial. Indeed, take a point z ∈ Z. If we identify V with V ×{z} ⊂ V ×Z,
then G|V = F. Now we can finish as above.

Note that the mapping π∗ : A2(V ) 3 a → π∗a ∈ A2(V ×Z) is injective, hence the group
A2(V × Z) is infinite. If the group Aut(V × Z) is finite, then the set S′ = A2(V × Z)/ρ
(where ρ is the relation as above) is infinite. Now we can finish as above. ¤
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