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0. Introduction

Theorem 16a on p. 315 of D. V. Widder’s book “The Laplace Transform” says that
a C™ function f defined on (0, 00) is the Laplace transform of a function belonging to
L*(0,00) if and only if

Ak+1
(0.1) sup{ u |f<k>(A)|:A>o,k:o,1,...}<oo.

If Ais a closed operator from a Banach space X into X such that the resolvent
operator R(A) = (A — A)~! exists in L(X) for every A > 0, then
Ak+1

(0.2) S RO = (- PR

and a condition analogous to (0.1) takes the form
(0.3) sup{||[[AR(M]F| : A >0, k=1,2,...} < oc.

According to the Hille-Yosida generation theorem ([H], p. 238; [Y;1]; [H-P], p. 360;
[Y;2], p. 248), a closed operator A from a Banach space X into X is the infinitesimal
generator of a bounded one parameter semigroup (S(¢)):>0 C L(X) of class C? if and
only if the domain of A is dense in X, the resolvent set of A contains (0,00), and the
resolvent family of A satisfies condition (0.3).

The present paper connects the above-mentioned theorems in the framework of
the theory of linear maps from the Banach space L'(R*) to other Banach spaces,
and representations of the convolution algebra L'(RT). The paper contains a short
proof of Widder’s theorem in the operator theoretical version going back to B. Hennig
and F. Neubrander [H-N]. Then a result is deduced on representing a pseudoresolvent
with values in a Banach algebra A as the homomorphic image of the canonical pseu-
doresolvent with values in L*(RT). This permits us to establish a connection between
representations of L!(R*) and one parameter semigroups of operators, leading to a new
proof of the Hille-Yosida theorem, and to an almost trivial proof of the Trotter—-Kato
theorem on approximation of semigroups.

The role of LY(RT) in the present paper is analogous to the role of L. Schwartz’s
space of infinitely differentiable rapidly decreasing functions in paper [L] of J. L. Lions
concerning the semigroups-distributions.

Acknowledgements. The author is greatly indebted to Wojciech Chojnacki for
helpful discussions and for drawing the author’s attention to the factorization theorem
for representations of Banach algebras.



Notation. In the first and the second chapter F denotes a Banach space over the
field K equal either to R or to C. In subsequent chapters ¥ = A, an abstract Banach
algebra, and £ = L(X ), the Banach algebra of endomorphisms of a Banach space X.
Throughout the paper

Rt =(0,00), R¥=[0,00), C' ={\&C:Rel>0},
KT =RTifK=R, K'=CrifK=C.

1. The Widder spaces W(R™; E) and W(C"; E)

Denote by W(R™; F) the Banach space over the field K whose elements are infinitely
differentiable functions f : R* — E such that || f|lwm+,r) < 0o, where

Ak+1 .
HfHW(JRJr;E) = sup {Tuf( )(’\)HE tAE R+7 k= 0717"'}'

If K = C then denote by W (C"; F) the complex Banach space of holomorphic functions
[+ CF — E such that || f|lw(c+;m) < 00, where

Re \)k+1
fllwerey = sup { SR A e € k=01,

We call W(R*; E) and W(C*; F) the Widder spaces. This is legitimated by Theorem
16a, p. 315, in Chapter VII of Widder’s book [W], quoted in our Introduction, and also
by other theorems in the same chapter of [W]. Importance of the Widder spaces for
the generation theory of cosine operator functions and integrated semigroups manifests
itself in the papers of M. Sova [S;1]-[S;4].

1.1. PROPOSITION. Suppose that f € W(RY; E).
(A) If K = R then f is real-analytic on RT and for every p € RT the Taylor

development of [ with center at p converges to [ almost uniformly on the interval

(0,2p).
(B) If K = C then f extends to an F-valued function f holomorphic on Ct such
that f € W(C*; E) and || fllw(c+;p) = 1/ lwes;p)-

ProovF. (A) We reproduce our proof presented in [B], pp. 282-283 (see the footnote
on p. 281 of [B]). Fix a 4 € R*. By Taylor’s formula,

fA) = Z %JM)(H) + Ritq

=0

X

for every A€ R and [ = 0,1,..., where

A —v)

I Y () do.

Ry =

T e D
—~



Let M = || fllw(w+;E)- Then

A A l
A=v)t (I+1) A dv
[ Rig1lls < M|\ o | = M \1+1) S-1)
It It
[N/ =1 I+1
M MiA—p
= — l—l—laldaz—‘— ,
I
whence lim;_ o |[[Riy1||[z = 0 almost uniformly with respect to A on the interval
(0,21). m
(B)If K= C and f € W(R*; E) then
(A —p)* A —ul*
|9 )| < Bt

for every p € Rt and A € C, so that the Taylor series

(1.1) 3 %J‘W(u)

k=0

converges in the norm of F, almost uniformly with respect to A in the disc
D,={Ae C:|A—p| < pu}.

The sum of this series is an £-valued function holomorphic in D, and, as a consequence
of (A), it is equal to f on (0,2x) = D, NR. Since Uu>0 D, = C*, it follows that
[ extends uniquely to an F-valued function f holomorphic on C*. Since obviously

HfHW(@"';E) > || fllww+;E), it rtemains to show that

(1.2) 1 llwer sz < [[fllwes:z)-

We shall present two proofs of inequality (1.2), the first employing Widder’s Theorems
16a and 16b from pp. 315-316 of [W], and the second based on some direct estimations
of the Taylor series (1.1). Notice that in Corollary 2.3, we shall deduce the Widder
theorems from the case K = R of our Theorem 2.2. Notice also that our proof of this

last case is independent of part (B) of Proposition 1.1.

The first proof of inequality (1.2). By the Bohnenblust-Sobczyk complex version of
the Hahn-Banach Theorem ([Y;2], Sec. IV.6, pp. 107-108) it is sufficient to show that

(1.3) 160 fllwerso) < 1160 fllw+ o

for every C-linear functional ¢ € E* such that ||¢|| < 1. But if ¢ € E* and [|¢]] < 1
then [|¢ o fllwm+,c) < [Ifllwem+;m) < oo and hence, by Widder’s theorems, there is
g € L>=(R*;C) such that

lgllrm+;c) = esssup|g(t)] = ¢ o fllwm+;o
teRT
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and
o0

(po f)(N) = S e Mg(t)dt  for every A € RY.
0
Since ¢o fis holomorphic on C* and ¢o ﬂR"’ = ¢o f, and since the Lebesgue integral
Sgo e~Mg(t) dt exists for every A € C* and depends holomorphically on A, it follows
that

(o f)(/\) = S e Mg(t)dt  for every A € CV.

As a consequence,

and

~ o0 k!
k k,—(Re X — S —
(60 HYF N < lgllpoeqat o) S trem BN dr =100 fllwae o)+ oy

for every A € C*, proving (1.3). m

The second proof of inequality (1.2). Fix A € C*. If u € (|A]*(2ReA)™t, 00) then
A€ D, and, for k=0,1,...,

o0

FO (A Z (A - M f(k—l—n)()

so that
117 (A z|/\ pl™ (k+n)!

k-l—n-l—l HfHW(]R‘*' i E)-

Hence inequality (1.2) is an 1mmed1ate consequence of the following
LEMMA. If A€ CT and k = 0,1,... then the series

(1.4) §o Gkt - gt

Vo k+n+1
n=0 e

converges for every real u > |[A*(2ReN)™! and

. > (k4 )X = pl™ _ k!
(15) ;}gnoo z_% plpktntl ~ (Re A)F+1T

Proor. Put
|A = p
v

. K/(zwrn)!u—,qn  o(u) Im K/(n+1)(n+2)...(n+k) o)

n—o0o n!uk+n+1 PO Iuk-l—l

v = o(u) =
Then




for every > 0. If o > [A|*(2Re A)™! then

2 Re A A2
1. = 1— _ 1
(1.6) 0< a(n) ¢ 2 (1 gpen) <L

and hence the series (1.4) is convergent by the Cauchy convergence test. Furthermore,
if &> |A*(2ReM)~! then, as a consequence of (1.6),

— (k4 n)A = p|" L otk
(L.7) Z nlpktntl = R ZD [2""]
n=0 n=0
_ 1 Dk zk
Iuk-|—1 1—12
k
1 k 1
_ DR\ pligh
a2 () (7 ) e

! F(1—a)
:[H(l—x)]k“; Tt

where D stands for the derivation operator %. Since
lim z(p) =1,
H—00

it follows that

(18) D SELELI
00 4= !
Furthermore,
A
p(l—z)=p—[A—pl= QZT'AA:':'P = QRelA_;xT,
and hence
(9 lim p(1 - 2) = Re A,

H—00

Now, equality (1.5) follows from (1.7), (1.8) and (1.9). m

2. Representation theorems for elements of Widder spaces

Consider the Banach space L!(R™; K) of (the equivalence classes of ) K-valued func-
tions Lebesgue integrable on R*. The norm of an element ¢ of L}(RT;K) is

o0

ol e m) = S lo(€)] dE.
0

For every t € RT the characteristic function L(o,q of the interval (0,1] is an element of
LY (RT;R). For every A € KT the exponential function ¢, such that

$r(€) = e for £ eRY
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is an element of L'(R*;K). Furthermore,
the map ¢ : X — ¢ belongs to W(K"; L'(RT;K))and ||de|lw e+ 11+ 1) = 1.

It is sufficient to prove the above claim in the case of K = C. To this end, observe that,

for every £ € R*, A € Ct and h € C\ {0} such that |h| < Re A, one has

= (—hg)k_2 ‘6—(Re A€

|hH(emATIE 6= 4 gem ) = |n|€? i

k=2

< %|h|£26(|h|—Re Ve,
whence
. N -1 —
@\{olglhﬁo é |h7 [@atn — OA(E)] + EDn(E)[dE =0

for every A € Ct, by the Lebesgue dominated convergence theorem. Hence for every
A € C' the complex derivative %qﬁ exists in the sense of the norm topology of
LY (R*;C) and [%qﬁﬂ(f) = —£oy(¢) for every A € CT and ¢ € RY. It follows that
b is an L(R*;C)-valued function holomorphic on Ct with derivatives satisfying

[(%)k(bk](f) = (=6)*¢,(£). As a consequence,

(&) ehetne e = o
—_— = € = —— 17>
) Mpane o (Re A)FtT

so that ¢, belongs to the Widder space W(C*t; L'(R*; C)) and [|¢q|lw(c;r (r+:0) = 1.
2.1. LEMMA. The set {¢y : A € RT} is K-linearly dense in L'(RT;K).

PROOF. Because spang{l(g,q : t € R1} consists of all the K-valued, left-continuous,
piecewise constant functions on Rt with bounded supports, it follows that spany{l(o,q:
t € Rt} = LY(RT;K), the closure being taken in the norm topology of L!'(RT;K).
Hence Lemma 2.1 will follow once it is shown that 1 4 € Spang{éy : A € Rt} for
every t € RT. To this end, fix any ¢ € RT. Since

eknt ¢ eknt
7 Pkn =
for every n = 1,2,..., the series
> knt
k-1¢
k=1

is absolutely convergent in the norm of L!(R¥;R),and hence its sum p,, is in Spang{¢, :
A € R*}. Therefore in order to prove that 1 4 € Spang{éx : A € RT} it is sufficient
to show that

(2.1) Jim lpn = Yo gl s m = 0.
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Since

pa(€) = 1 — exp(—e"(i79)),

it follows that 0 < p,(£) < 1 for every £ € RT and

0
pal) = exp(0) —exp(=e"") = | exp(u)du < "7 < et
—e"(t_f)
for every £ € (t,00). Hence
(2.2) 0 < pn(€) < min(1,e'™%)

for every n = 1,2,...and £ € RT. Furthermore,

(2.3) lim p,(€) = 10,4(£) for every £ € RY\ {t}.

n— o0

Equality (2.1) follows from (2.2) and (2.3) by the Lebesgue dominated convergence
theorem. m

REMARK. The above proof was inspired by the comments on p. 165 of [H-N] concern-
ing the Phragmén real inversion formula for the Laplace—Stieltjes transform. Equality
(2.1) is stated there without proof. See also [Y;2], p. 166, Lemma 1.

2.2. THEOREM. Suppose that f is a function defined on KT and taking values in E.
Let M € RT. Then the following three conditions are equivalent:

(i) f e W(K*; E) and || fllwz+;p) < M;
(i) 1150, e f Ol < M| Ty cion,
e K and (A,...,\;) € (KM)/;
(iii) there ewists an operator T € L(LY(RY;K); E) such that ||T|| < M and T(¢y) =
F(N) for every A € KT

Li(R+;E) Whenever j=1,2,..., (e1,...,¢;)

REMARKS. The equivalence (i)« (iii) shows that the map 7" — T'(¢,) is an isometric
isomorphism of L(L'(R*;K); £) onto W(K*'; ). An F-valued function f defined on
K* belongs to W(K*; E) if and only if it may be represented in the form f = T(¢,),
where T € L(LYRT;K); F) and ¢, is the “canonical” element of W(K*; L1(RT; K))
discussed above. The importance of such a representation of elements of the Widder
spaces was emphasised by B. Hennig and F. Neubrander in [H-N], where the equivalence
(i)&(iii) is proved in the case of K = R. See [H-N], Section 2, pp. 156-162, in particular
Lemma 2.3 and Theorem 2.5. The implication (i)=-(iii) is established in [H-N] (in the
proof of Theorem 2.5, p. 160) by means of an argument similar to one in Widder’s
original proof of his Theorems 16a and 16b in Chapter VII of [W], pp. 315-316. This
argument is based on Widder’s “general representation theorem”, i.e. Theorem 11a in
Chapter VII of [W], p. 303, which is related to the Post—Widder real inversion formula
for the Laplace transform. A similar but easier proof of the implication (i)=-(iii) in
the case of K = R was presented by A. Bobrowski in [B]. His proof involves another

8



“representation theorem”, related to the R. S. Phillips real inversion formula for the
Laplace transform (see [Ph]; [H-P], p. 223).

Proor or THEOREM 2.2. In the scheme (i)=-(ii)=-(iii)=(i) the proofs of (ii)=-(iii)
and (iii)=(i) are routine and obvious. Therefore only the proof of (i)=-(ii) will be
presented. Fix j = 1,2,..., (c1,...,¢;) € K/ and (Af,...,\;) € (K)7, and define

J
= Z Ci-
=1
By Proposition 1.1(A), for f in W(K*; F) one has

o0

=X /ny —)\k/n(_n)k (k)
f(n — ne )_ze 5 ()

k=0

for every n = 1,2,...and A € KT, so that

J 0
> auftn—nei = 3 g (B ERL o)
Hence condition (i) implies that

=1 k=0
sz:cf(n—ne_ki/”) <Ml§: g k
=1 Z B K k=0 K

for every n = 1,2,... Condition (ii) follows from this inequality by passing to the limit

as n — 0o. Indeed, lim,_ o, (n — ne=*/") = X for every A € C, so that

1, -l e

Furthermore,
1 — o0 )
() HZ i = | §[Jo(G1@)| - 1ot ae
n Ll(]l&‘*' K) n
k=0 0
J 0
< S ] | [eXne—tned/n _yje=(Re e g
=1 0
<zj: |CZ| | 20/n 1|
sup leti -1,
- i1 Re A’L 03921
so that

. n
LY(R+;K)

J
i L5 ()] 35
= DO I

2.3. CoroLLARY (D. V. Widder [W], pp. 315-316, Theorems 16a and 16b). Let f
be a function defined on RT and taking values in K. Then f € W(RY;K) if and only

9



if there is a K-valued function g Lebesque measurable and essentially bounded on RT,
such that

o0

f(A) = S e Mg(&)de  for every A € RY.
0

Moreover, if f € W(RY;K) and g is as above, then esssupgeps+ [9(E)] = || fllwr+x) -

PrOOT. The space dual to L}(RT;K), i.e. the space L(L}(R*;K); K) of continuous
linear functionals 7" on L*(R*;K) is isometrically isomorphic to the space L>°(RT; K)
of (the equivalence classes of ) K-valued functions g Lebesgue measurable and essen-
tially bounded on R, equipped with the norm ||g||peg+,x) = esssupgep+ |9(€)]. The
isomorphism is determined by the equality

o0

T(e) = | p(&)g(&)de for every p € L'(RY; K).

See [Y;2], p. 115, Example 3. According to Theorem 2.2, f € W(RT;K) if and only
if there is a linear functional 7' € L(L*(R*;K); K) such that ||T = [|f|lw(r+;x) and
f(A) = T($,) for every A € RT. Hence f € W(R*;K) if and only if there is g €

L°(R*;K) such that ess supeep+ [9(9)] = (Ifllw@+ x and f(A) = Sgo d(E)g(€) dE) =
Sgo e~ Mg (€)dE for every A € RY. m

2.4. COROLLARY (W. Arendt [A], p. 329, Theorem 1.1; B. Hennig and F. Neubran-
der [H-N], p. 159, Theorem 2.5). Let f be a function on RT taking values in E, and let
M € RT. Then

(a) f € WRHK) and || fllwea+p) < M

if and only if there is a function g defined on [0,00) and taking values in F such that
(b) g(0) = 0 and ||g(&1) — g(&)||E < M & — &) for every & and & in RT, and
(c) F(N) =AY, e7g(&) dE for every A € RT.

Proor. By Theorem 2.2, condition (a) is equivalent to the existence of a linear
operator T € L(L'(RT;R); ) such that ||7]| < M and

(d) f(X\) = T(¢y) for every A € RT.

According to Lemma 2.3 in [H-N], p. 158, there is one-to-one correspondence between
functions ¢ satisfying (b) and operators T € L(L'(RT;R); E) such that ||T|| < M.
This correspondence is determined by the formulas

9(&) = T(Lo,q)

for every £ € RT, and

T(e)= | (&) dg(&)=— | &' (£)g(¢) de

10



for every ¢ € L'(R*;R) such that ¢’ € L1(R*;R). The last equality shows that (c) is

equivalent to (d). m

REMARKS. The above proof of Corollary 2.4 coincides with the proof of Theorem
2.5 in [H-N], p. 160. Arendt’s earlier proof consists in applying linear functionals and
deducing the result from Widder’s theorem. Notice that in Corollary 2.4 formula (c)
may be replaced by
(<)) fN) = S e Mg'(€)dE  for every A € RT

0
only in the case when the Banach space F has the Radon—Nikodym property, and
thus, in particular, if the Banach space E is reflexive. See [A], p. 331, Theorem 1.4.
The “canonical” element ¢, of W(RT; L}(R*;R)) admits a representation (c) with
9(&) = Lo.g> Le.

by = A S e_Agl(Of] d¢  for every A € RY.

0
The uniformly lipschitzian map RT 3 £ — Lo, € LY(RT*;R) is nowhere differentiable
in the sense of the norm topology of L'(R™;R). Furthermore, it is impossible to rep-
resent f = ¢, in the form (¢’), with a map RT 3 £ — ¢'(£,e) € LY(R';R) weakly
measurable and weakly essentially bounded on R¥, and with integral in the sense of
Pettis (see [D-U], p. 53). Indeed, by Lemma 2.1, such a representation would lead to
the equality 12° ¢(€)0(€) d€ = 12° GO g'(€, myb(n) di] dE for every o € L'(R*;R)
and ¥ € L(RT;R), and hence to the conclusion that for every n = 1,2,... the
equality cos(nf) = Sgo g'(€,n) cos(nn) dn holds for almost every & € RY, in the sense
of the Lebesgue measure. But the sequence cos(ne), n = 1,2,..., of elements of
L°(R*;R) converges x-weakly to zero, so that the last equality would imply that
lim,,_ . cos(né) = 0 for almost every ¢ € RT. However, this contradicts the Ego-
roff theorem ([Y;2], p. 16), because for every k = 1,2,... and n = 1,2,... the set

{x € [kr,(k+ 1)x]: |cos(nz)| > 1} has Lebesgue measure 27.

3. Pseudoresolvents belonging to Widder spaces as homomorphic
images of a canonical pseudoresolvent

Let A be a Banach algebra over the field K. By a pseudoresolvent with values in A
defined on Kt we mean any map r : Kt — A satisfying the resolvent equation

(3.1) r(A) = r(p) = (1 = Ar(M)r(p)

for every A and g in KT. See [D-S;I1], Sec. IX.1; [D-M;C], Sec. XIL.5; [Y;2], Sec. VIL.4;
and Appendix I of the present paper.

ExaMPLE (the canonical pseudoresolvent). The Banach space L'(R*;K) becomes
a commutative Banach algebra over the field K when the product of any two elements

11



¢ and ¢ of L}(R*;K) is defined as the convolution ¢ * ¢, so that

3 3
(2 +9)(€) = V(&€ = mw(m) dn = \ (& = n)p(n) dy

for £ € RT. See [P], Sec. 5.1.10; [Y;2], Sec. VL.5. The “canonical” element ¢, of the
Widder space W(K*; L'(R*;K)) discussed in Section 2 is a pseudoresolvent defined on
K* and taking values in the convolution Banach algebra L'(R¥;K). Indeed, if A € KT,
€ KT and A # p, then

€

[+ 8,1(6) = e | 0= gy =
0 H—

for £ € RT. See [D-M;C], p. 223.

e e 1
/\(6 M) = m[@—%](f)

3.1. LEMMA. Let 7 : Kt — A be a pseudoresolvent with values in a Banach algebra
A over the field K. If liminfycpt |z|—oo [[AT(A)]a < 1 then r vanishes identically
on K.

PrOOF. Suppose that liminfycgt |y|—oo [[AT(A)]|4 = @ < 1. Then, by the resolvent
equation (3.1), for every u € KT and A € KT one has

()[4 = Nl (A) + (A = w)r(A)r(p)lla < HAT(A)HA(|17| + %HT(H)HA)

so that ||r(p)|la < O||r(p)||4 and hence 7(u) =0. m

3.2. THEOREM. Let A be a Banach algebra over the field K and let r : KT — A be
a pseudoresolvent. Then

(3.2) |7l w(i+;4) = sup{(Re M A eKT, BE=1,2,...,
the sides of this equality being either both finite or both equal to oco. Furthermore, for
every M € [0,00) the following two conditions are equivalent:

(I) r € W(KF; A) and ||r]|w+;a) < M;
(IT) there is a unique homomorphism of Banach algebras T : L'(RT; K) — A such
that |T|| < M and T(¢5) = r(X) for every A € K.

PROOT. As a consequence of the resolvent equation (3.1), for every A € KT and
k=10,1,...one has

rO) = (1) kI ()]

whence (3.2) follows. The implication (II)=(I) follows from the equivalence (i)« (iii)
of Theorem 2.2. By the same equivalence, if (I) holds then there is a unique linear
operator T € L(LY(RT;K); A) such that [|T|| < M and T(¢,) = r()) for every A € K.
This T is a homomorphism of a Banach algebras, that is,

(3.3) T(exy)=T(L)T(¥)

12



for every ¢ and ¢ in L1(R*;K). Indeed, since according to Lemma 2.1 the set {¢) :
A € Kt} is Klinearly dense in L'(R™; K), (3.3) will follow if we check that

(3.4) T(ox*¢u) =T(o2)T(9p)

for every A € R™ and u € R*. By continuity, one may assume that A # u. But then

T(0x +0,) = T 5161 0,]) = 1) = (0] = () = T(O1T(5, ).

3.3. REMARK. If 7 is a resolvent such that ||7|lyw g+, 4y < 1, then » = 0 on K¥
by Lemma 3.1. If 7 : L*(R™;K) — A is a homomorphism such that ||7|| < 1, then
T = 0. Indeed, for any ¢ € L'(RT;K) one has lim ., ||A¢x * ¢ — el m+x) = 0 and
hence (o)1 = limy o [TOSVT(9)]14 < ITIIT()]4 becavse [Adxlpaze ) = 1
for every A € R*. But the inequality ||T(¢)|la < [T T()]|a with ||T]] < 1 implies
that T(¢) = 0. Thus if M € [0,1) then the equivalence (I)&(II) in Theorem 3.2 is
trivial.

3.4. REMARK (the Yosida approximation of a homomorphism 7). The implica-
tion (I)=(1I) in Theorem 3.2 may be proved by the following direct argument which
is an adaptation of the proof of Theorem 1, p. 286, from A. Bobrowski’s paper [B]
to the case of a pseudoresolvent. Let A be a unital Banach algebra containing A as
a subalgebra, such that ||a||; = [|a||4 for every a € A. (For instance A=Aif A
is unital, A = {the unitization of A} if A is non-unital. See [P], pp. 19-20.) Denote
by ¢ the multiplicative unit of A. Suppose that condition (I) is satisfied. Following
K. Yosida’s proof of the Hille-Yosida generation theorem ([Y;1]; [Y;2], pp. 246-248),
for every € R define the element a,, = p?r(u)—pe of ;1, and consider the exponential
map

( ~
R+t>¢— exp(ta,) = ¢ + Z au) € A.
n=1
Then
exp(ta,) = e " |e + i (,ut)”( ()"
p B n' :u :u 9
n=1
and hence condition (I) implies that
(3.5) lexp(taullz < M.

As a consequence, for every p € R¥ there is a linear operator T,, € L(L'(R*; K); %flv)
such that

o0

T, () = | o(t) exp(ta,) dt

for every ¢ € L*(R*; K), with integral in the sense of Bochner ([D-U], pp. 44-52; [H-P],
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pp. 76-89; [Y;2], pp. 132-136). Inequality (3.5) implies that
(3.6) 1o e aoay < M-

If p € LYRY;K) and ¢ € L'(RT; K), then

Ty, (px1p) = S ( ot —u)p(u) du) exp(ta,)dt

O e o

= | e exp((v+u)a,)dvdu

= |} (o)) exp(va,) exp(ua,) dodu = Ty, (9)Ta, (1),

0<u<oo
0<v< oo

so that T, , : LYRT;K) — Aisa homomorphism of Banach algebras. For every A € K
and ¢ € RT one has

o0

To, (d0)(Xe —ay) = (Ae — a,) T, (62) = | e7M(Ae — a,) exp(tay,) dt

0
0
0

so that A belongs to the resolvent set of a, and (Ae — a,)™' = T, (¢»). Further-
more,

[e™Mexp(ta,)] dt = ¢,

Sk

A ME A AP

= e Kt
At A+ pl?
for every A € Kt and x4 € RT, and hence
1 Al -1
T, =(Ae — IR P [
L00) = (Ae —ay) A+u[€ (u A+M>Nuﬂ

: 1) )]
= — et (p- r
A+u[ (M At p At p
1 wo\’ ( At )
= £ —|— — |,
At p (A+u)r At p
where the third equality follows from the resolvent equation (3.1). (See [D-M; C], p. 312,
formula (4.2).) Hence

(3.7) Jim Ta,(¢2) = 7(A)

for every A € K'. From (3.6), (3.7) and Lemma 2.1 it follows that as gy — oo
the homomorphisms T, converge pointwise on LY(RT;K) to a homomorphism T :
LY(R*;K) — A such that ||T]] < M and T(¢\) = #(\) for every A € K. As a
consequence, T(¢y) € A for every A € Kt and hence, by Lemma 2.1, T(p) € A for
every ¢ € LY(R*;K), so that T is a homomorphism of the convolution Banach algebra
LY(R*;K) into the Banach algebra A.
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4. Representations of the convolution algebra L!(R™;K)
and the associated one parameter semigroups of operators

4.1. Right translations in L'(R*;K) and convolutions. For every ¢ € L'(R*;
K) and ¢ € RT define the right translate of ¢ by ¢ as the element ¢; € L'(RT; K) such
that

0 if € € (0,1],
wile) = { pE—1) e Et,ol).

For every t € R¥ the operator of right translation by ¢, i.e. the operator U, : LY{(R*;K)
3 ¢ — ¢ € LY(R';K), is an isometry of L}(RT; K) into itself, and the operator family
(Ut),eqm C L(LY(R*;K)) is a one parameter semigroup of class C° ([H-P], p. 321;[Y;2],
p. 232).

If ¢ and 1 belong to L'(RT;K) then the L'(RT;K)-valued function ¢ — o(#)U1
is Bochner integrable on R* ([D-U], pp. 44-52; [H-P], pp. 76-89; [Y;2], pp. 132-136)

and

o0

(4.1) | o()Updt = o .

It follows that if ¢ € L}(RT;K) and ¢ € R then

t 00
(4.2) VUspds = | 10,9(s)Usipds = 10,4 * ¢
0 0

Since the function s — U, is continuous from R+ to L*(R+;K) with the norm top-
ology, it follows from (4.2) that

d
(4.3) Uip = %[1(0,1] * ]

for every t € RT and ¢ € L}(RT;K), the derivative being computed in the norm of
LY(R*;K).
For every ¢ € R+ one has

(4.4) H/\(bAHLl(]RJr;K) =1.

If o € LYR*;K) and w(t) = ||Usp — ¢|| 11 (r+ ;1) » then w is bounded and continuous on
R, and w(0) = 0. From (4.1) and (4.4) it follows that

Mor ¢ = el m = || | A (U = @) dt]| < A | ety at
0 0
< ST,
< max w(t) + 2@l im €
for every A € RY, ¢ € LY(R*;K) and § € RY, whence
(4.5) Jim Ay ¢ = @l Lt =0
for every p € L'(R*; K).
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Equalities (4.4) and (4.5) mean that the net (A¢y)yer+ (equipped with the usual
order) is a bounded approzimate unit ([H-R;II], p. 87; [P], p. 520) in the convolution
Banach algebra L'(R¥;K). Thus, if T is a continuous representation of the convolution
algebra L'(RT;K) on a Banach space X over the field K, then

(4.6) theset Y ={T(p)v:p € L} RT;K), v € X} is a closed linear subspace of X
by the factorization theorem for representations of Banach algebras ([H-R;II], p. 268,
Theorem 32.22; [P], p. 535, Theorem 5.2; see also Appendix II of the present paper).
Furthermore, from (4.3) it follows that

(47) T(Uig) = SIT(10,0)T($)]

for every t € R+ and ¢ € LY(R*;K), with the derivative computed in the norm of
L(X).

4.2, THEOREM. Let T be a continuous representation of the convolution Banach
algebra LY(R*;K) on a Banach space X over the field K. Let Y be the closed lin-
ear subspace of X defined by (4.6). Then there is a unique one parameter semigroup
(S¢);em C L(Y) of class C° such that
(4.8) SiT(p) = T(Usp)

for every t € R¥ and ¢ € L'(R*;K). Furthermore,

d
(4.9) Sy = E[T(l(o,t]y]
for every t € RY and y € Y, the derivative being computed in the norm of X, and
(4.10) T(p)= Jim | ()5 T(A) dt

0

Jor every ¢ € LY(R*:K), the limit being taken in the norm topology of L(X;Y), and
the integral of the L(X;Y)-valued function t — (1) (A¢py) being understood in the
sense of Bochner. From (4.9) it follows that

sup [|Sellzeyy < N\ oz e+ mysnx)) -
teRt

Proor. Ezistence of a semigroup (S¢),.gw C L(Y) of class C° satisfying (4.8) and
(4.9). According to (4.6) for every y € Y there are ¢ € LY(R™;K) and = € X such that

(4.11) y=T(p)z,

whence

1 1

o)y = Tyl = ~—

[T(L0,)T(¢)x = T(L0,9)T ()]

for every t € R+ and s € RT \ {t}. From this equality and from (4.7) it follows that
for every t € R and y € Y the derivative £[T(1(,q)y] = T(Upp)a exists in the norm
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topology of Y inherited from X. Furthermore,
1

T (Lo,)y = T(L0,9)y]

1
HHT(l(s/\t,s\/t])yHY
Y

ST et swy; ey 1wlly
and hence
d
Hdt[ (Lo.g)y ]H <N lzezr s sz lylly-
Y

Thus for every ¢ € RT there exists an operator S; € L(Y) satisfying (4.8) and (4.9).
Representing an element y € Y in the form (4.11) and using (4.8), one concludes that:
1° the map R+ 3t — Sy = T(Usp)z € Y is continuous,
2 Soy = SoT(p)r = T(Uop)r = T(p) =y,
3% Sti40y = S, T(9)e = T(Uy yiop)t = T(Uy, [Uy @)z = 5, T(U, )2
= 94, 5,T(p)x =S¢, S,y for every t1 € Rt and ¢, € R+.
St

)

Uniqueness of Sy € L(Y')

operator in L(Y') satisfying (4.8). Take any element y € Y and represent it in the form
(4.11). Then Syy = ST (¢)x = T(Urp)z and hence, by (4.7),

Sey = (jt[ (1o.0)T (¢ )])w:%[Tu(o,ﬂ)T(so)ﬂ: %[Tﬂw)y]-

¥

Hence the operator family v C L(Y) is a one parameter semigroup of class C°.

)z =
)
(
(

satisfying (4.8). Suppose that + € R+ and S; is an

Thus property (4.8) of an operator Sy € L(Y) implies (4.9), and (4.9) uniquely deter-
mines this operator.

(4.8)=(4.10). If A € RT and ¢ € LY(R*;K), then the functions RT > ¢ —
(U (Apy) € LHRT;K) and RT 3 ¢ — ()T (U(Ady)) € LY(X;Y) are Bochner
integrable on R¥, and

T(§etUiAon) dt) = | oOT(U(A0)) dt

0 0

From this equality, and from (4.1) and (4.8), it follows that

o0

T(Aéx+ ) = | (DS T(A6x) dt

0
This implies (4.10), by virtue of (4.5). m

4.3. COROLLARY. Suppose that T : LY(RT;K) — A is a homomorphism of the
convolution Banach algebra L*(R*; K) into a Banach algebra A over the field K. Denote
by B the closure of T(LY(R*;K)) in A. Then B is a commutative Banach subalgebra
of A and there is a unique one parameter semigroup (St),.gv C L(B) of class o
satisfying (4.8). Furthermore, whenever ¢ € LY(RT;K), then

(4.12)  T(¢p) is the unique element of B such that T(p)b = {" (1)5;b dt
for every b € B,
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the integral of the B-valued function t — ¢(t)S¢b being understood in the sense of
Bochner.

Proo¥r. Since T(L'(RT;K)) is a commutative subalgebra of A, its closure B is
a commutative Banach subalgebra of A. Consider the canonical homomorphism p :
B — L(B). Then T = poT is a continuous representation of the convolution Banach
algebra L'(RT; K) on the Banach space B. Theorem 4.1 implies that there is a unique
semigroup (5%),cg+ C L(B) of class C° such that

Stf(@)b = T(U%P)b

for every t € R¥, ¢ € LY(RT;K) and b € B. Applying this to b = T(A¢y), and
remembering that T'(¢) € B and T(U;p) € B, one obtains

SIT(or+ ) = SUT(R)T0)] = ST(£)T (M)
= T(Uip)T(Ad2) = T(Urp)T(Adr) = T(Ady + Usp),
whence (4.8) follows in virtue of (4.5), by passing to the limit as A — oo. Thus there
exists a semigroup (Sy),.gx C L(B) of class C°, satisfying (4.8).
In order to prove that such a semigroup is unique, observe that (4.8) and (4.3)
imply that
d
5el(p) = T(Uvp) = [T (Lo,0)T(¢)]
for every t € Rt and ¢ € LY(RT;K). This equality uniquely determines S; on the
dense subset T(L'(RT;K)) of B, and hence on B, since S; € L(B).
It remains to prove (4.12). Let ¢ € L*(R™; K) and ¢ € L'(RT; K). Then, by (4.10)
applied to the representation 7" and by (4.5), one has

T(e)T($) = T(9)T () = Jim V e()S TG (¢) dt
= lim_ V o) ST (AT ()] dt
= lim V o(0)S:T(Ap ) dt = | (1) S,T(w) dt.

This means that the equality

T(e)b =\ @(t)Sibdt
0
holds for every ¢ € L'(RT;K) and every b in the dense subset T(L'(RT;K)) of B.
By continuity with respect to b, the equality remains true for every b € B. Suppose
now that ¢ € LYR¥;K), ¢ € B, and ¢b = | ¢()S;bdt for every b € B. Then
[c = T(p)]b = 0 for every b € B, and in particular [¢ — T(@)|T(A¢py) = 0 for every
A€ Rt . Hence c—T(p) = limy—oo[c—T(p)]T(Ap2) = 0, because the net (T(Ady))rer+
is an approximate unit in the commutative Banach algebra B. This last fact is an
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immediate consequence of (4.5) and of the facts that T(L'(RT;K)) is dense in B and
T:LYRT;K) — B is a homomorphism of Banach algebras. m

4.4. Remark concerning the proof of Theorem 3.2 by a method of
W. Chojnacki. Assertion (4.12) is the crucial point in the proof of our Theorem
3.2 given by W. Chojnacki in [Ch]. From Lemma 2.1 it follows that the commutative
Banach algebra B considered in Corollary 4.3 may be equivalently defined by

(4.13) B =spang{r(\): A e R1},

where r(A) = T'(¢,). In his proof of the implication (I)=-(II) of Theorem 3.2, W. Choj-
nacki assumes (I), defines B by (4.13), and considers the pseudoresolvent

oor:RT — L(B).
Then equality (3.2) implies that
(4.14) (e I Nleemy = le(r)eee) < Mr(N]Flle < MATF
for every A € Rt and k£ = 1,2, ... Furthermore,
Tim Ag(r(A))r() = Tim Ar(A)r(e) = lim [r() = r(3) + pr(A) ()] = r(s0)
for every g € RT, by (I) and (3.2). Thus from (4.13) and (4.14) it follows that
(4.15) Algnoo Ao(r(A)b=1b

for every b € B. Conditions (4.14) and (4.15) imply that p o r is the resolvent of
a closed densely defined operator A from B into B, satisfying the assumptions of
the Hille-Yosida generation theorem. It follows that there is a unique one parameter
semigroup (5¢),c5 C L(B) of class C such that ||S;||rz) < M for every t € R+ and

(4.16) r(Ab = o(r(A)b= | dr(t)Sebdt
0

for every A € R™ and b € B. Therefore the formula

(4.17) T(e)b = | o(t)S:bdt,

0

in which ¢ € LY(R*;K) and b € B, defines a continuous representation T of the
convolution Banach algebra L!(R*;K) on the Banach space B such that

(4.18) T(¢) = o(r(\))

for every A € R*. Now the main difficulty of Chojnacki’s proof arises: one has to pass
from (4.17) to (4.12), i.e. one has to prove that

(4.19)  for every ¢ € LYRT;K) there is a unique element T(p) of B such that
T(p)b=T(p)b for every b € B.

The difficulty is overcome in [Ch] by showing that if condition (I) of Theorem 3.2 is
satisfied then
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(4.20)  the homomorphism ¢ : B — L(B) is an isomorphism of B onto a Banach
subalgebra of L(B).

This is proved by renorming the Banach algebra A so that the net (Ar(A))\cp+ is a
metric approximate unit in the Banach algebra B equipped with the new norm ([Ch],
p. 4, Theorem 2). As a consequence, p : B — L(B) is an isometry with respect to
the new norm in B and the corresponding new norm in L(B) ([Ch], p. 3, Proposition
1). Thus (4.20) follows, and hence (4.18) and Lemma 2.1 imply (4.19). Since T is a
representation of the convolution Banach algebra L!'(R*;K) on the Banach space B,
(4.19) implies that T : LY(RT;K) — B is a homomorphism of Banach algebras, and
the implication (I)=(II) of Theorem 3.2 is proved.

5. The Hille—Yosida theorem

Let X be a Banach space, and L(X) the Banach algebra of linear continuous endo-
morphisms of X. We will consider a pseudoresolvent on R with values in L(X),i.e. a
map

(5.1) Rt 5\ — R\ € L(X)
satisfying the resolvent equation
(5.2) R)\ — RM = (,u — /\)R)\RM

for every A and g in RT. It follows from (5.2) that (R))\cg+ is a commutative family
of operators, and that the kernel K and range § of Ry are both independent of A. See
[Y;2], pp. 215-216. The equality

(5.3) G={(z,y) € X x X : \Ryz —x = Ryy for every A € R™}

defines a closed linear subspace of X x X. Following [D-M; XII-XVI], p. 243, we will
call G the extended generator of the pseudoresolvent (5.1). Equation (5.2) implies that

(5.4) ifz € X,y € X, and there exists a g € R such that uR,2 — 2 = R,y,
then (2,y) € G.

Indeed, it follows from (5.2) that if uR,2 — 2 = R,y, then

Ryy =14 (= ANBENRuy = [1+ (0 — M R)][pRyz — 2]
= pRyr —a + p(p — M)RAR,x + (A — p)Rye
=pRyx —z+p(Ry—Rye+ (A —p)Ryx = ARz — z

for every A € RT. The domain of the extended generator G is, by definition, the set
(5.5) D(G) = {2 € X : there exists y € X such that (z,y) € G}.

It follows that

(5.6) D(G)=S.

20



Indeed, if (z,y) € G and p € RT, then 2 = R, (pz — y) € S. Conversely, if z € F and
p € RY, then x = R,z for some z € X, so that uR,x —x = R,y for y = pz — z, whence
(z,y) € G by (5.4).

Appendix I contains a necessary and sufficient condition for a subspace of X x X
to be the extended generator of a pseudoresolvent. If a pseudoresolvent (5.1) is the
Laplace transform of a measurable contraction semigroup in a function space, then the
extended generator (5.3) coincides with the full generator of the semigroup defined in
[E-K], pp. 23-24. See also [R-Y], p. 263.

If N ={0} then G is the graph of a closed operator from X into X whose resolvent
set contains R, and the pseudoresolvent (5.1) is the resolvent of this operator.

According to [D-M;C], p. 314, the regularity space of the pseudoresolvent (5.1) is,
by definition, the linear set

(5.7) R={zeX: Alim AR z — z|| = 0}.
It is obvious that
(5.8) RCS,

where I denotes the closure of I in the norm topology of X. If z € ® N K, then
x=limy_oo AR =1limy_ o A -0 =0, so that

(5.9) RNK ={0}.
From the commutativity of the family of operators (R)), it follows that
(5.10) RARCR

for every A € RT.
According to [Hi], p. 98, and [D-M; C], p. 315, the generator of the pseudoresolvent
(5.1) is defined to be the operator A from X into X with domain D(A) such that

(5.11) z € G(A) and y = Az if and only if Alim INARNz —2) —y|| = 0.
Denote by G(A) the graph of A. Definition (5.11) is equivalent to
(5.12) G(A)={(z,y) e X x X : Alim INARN2z — 2) — y|| = 0}.

It is obvious that

(5.13) D(A) C R.
Furthermore,
(5.14) (X xR®)NG C G(A) C (X xS)nd.

Indeed, if (z,y) € (X X R)NG, then limy_o AR\y = y and ARz — 2 = R,y for every
A€ R, sothat y = limy_oo A(AR 2z —2) and (2,y) € G(A). Hence (X xR)NG C G(A).
If (z,y) € G(A), then z € S, by (5.12) and (5.8), so that A(AR z — z) € S for every
A € RT, and hence y = limy_., A(AR 2 — z) € S. Furthermore, if (z,y) € G(A) and
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€ RT, then
Ryy=R, Alim AMARyz —2) = Alim MAR Ry — R, z) = Alim AMuR Ry — Ryx)

= (uR, - 1) Alim AR x = pRyx — 2,
by (5.2) and (5.13). Hence G(A) C (X x 3)NG.

ExampLE. Consider an operator B € L(X) such that B> = 0. The constant map
R* >\ — B e L(X) is then a pseudoresolvent for which S C K, G = {(—=By,y):y €
X} and ® = {0}.

From now on we will make some additional assumptions on the pseudoresolvent

(5.1).

5.1. LEMMA. If limy_. ||Rr2]| = 0 for every 2 € X, then S C R.

PrOOF. Let # € S. Fix p € Rt and choose z € X such that # = R,z. Then,
by (5.2), ARz — a2 = AR\R,z — R,z = pR,R\z — Ryz, so that ||ARyz — z|| <

(n||Rull + 1)||Raz||, and hence limy_.o |[AR 2z — z|| = 0, which means that 2 € R. m

5.2. ProprosiTION. If

(5.15) lil;n sup /\HRAHL(X) < 00,
then

(5.16) R=S

and

(5.17) GA)=(X xR)ndG.

Proor. Equalities (5.16) and (5.17) follow at once from (5.8), (5.14), Lemma 5.1
and the fact that if (5.15) is satisfied, then % is closed. To prove this fact, suppose that
x belongs to the closure of ®. Then there is a sequence x1, x4, ... of elements of R such
that lim, . ||z, — z|| = 0. Since

IABrz = ol < (1+ MRl — 2]l + [ARrzs — 24l
it follows that

lim sup |[AR 2 — z|| < (1 + limsup A||Ral|)||zn — 2],
A—00

A—00

for every n = 1,2,..., whence limy_ . |[AR 2 — 2| = 0,ie. 2 € R. m

5.3. COROLLARY. If condition (5.15) is satisfied then R is a closed linear subspace

of X, and A is a closed operator from X into X with domain and range contained

m R.
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5.4. PROPOSITION. If condition (5.15) is satisfied and A is treated as an operator
from R into R then the resolvent set of A contains RY and

(5.18) (A=A =Ry R

for every A € R*. Furthermore, D(A) is dense in R.

Proor. If z € D(A) and A € R™, then (z, Az) C G by (5.14), whence ARz — z =
R, Ax. This means that

(5.19) Ry(A = A)z = a for every A € RT and x € D(A).

If + € ® and A € RT, then, by Lemma 5.1 and Proposition 5.2, Ryz € & C R and
(Rryz, ARz —z) € (X X R)NG = G(A), so that Rya € D(A) and (A — A)R 2z =
AR z — AR)x = AR\ — [AR)x — 2] = z. Hence

(5.20) Ry € D(A) and (A — A)R z = = for every A € RT and z € R.

From (5.19) and (5.20) it follows that if A is treated as an operator from ¥ into ®, then
the resolvent set of A contains R* and (5.18) holds. As a consequence, if z € R then
ARyz € D(A) for every A € R and hence 2 = limy_., ARz belongs to the closure of
D(A), proving that D(A) is dense in R. m

5.5. THEOREM. Let X be a Banach space (over the field K which is either R or C),
and L(X) the Banach algebra of linear continuous endomorphisms of X. Suppose that
the map Rt 3 X — R, € L(X) is a pseudoresolvent such that

(5.21) sup{\*||RA [l (x) s AERT, k=1,2,..} = M < .

Let A be the generator of this pseudoresolvent, R its reqularity space, and & the range

of Ry (independent of \). Then:

1° there is a unique continuous representation T of the convolution Banach algebra
LY(R*;K) on the Banach space X such that ||T|| o1 w+ wy:n(x)y) = M and T($y) = R
Jor every A € RY, where ¢,(€) = e7¢ for £ € RY;

2°R=S={T(p)r:¢pec LM RHK), v € X};

3° there is a unique semigroup (S),czx C L(R) of class C° such that || S|z < M
and

S¢T () = T(Urp)
for every t € R¥ and ¢ € L'(R*;K), where U; € L(LY(R*;K)) is the operator of right

translation by t;

4° T(p) = limy_oo (o @(1)SARNdE for every ¢ € LY(RY;K), with limit in the
norm topology of L(X;R), the integral of the L( X ;R)-valued function being understood
in the sense of Bochner;

5° the domain and the range of A are contained in R, and A is the infinitesimal
generator of the semigroup determined in 3°.
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Proovr. Assertion 1° follows from Theorem 3.2 and Proposition 1.1(B). The equality
= S in 2° follows from Proposition 5.2. From 1° and Lemma 2.1 it follows that, for
every A € RY, § = T(¢\)X C T(LHRH;K))X C S, and hence T(LH R K)X =,
by (4.6). Assertion 2° is thus proved. Assertions 3° and 4° follow from 1°, 2°, and
Theorem 4.2.

It remains to prove 5°. From (5.21), Corollary 5.3 and Proposition 5.4 it follows
that the domain and range of A are contained in ®, and equality (5.18) holds when
A is treated as an operator from ® into . Assertions 1° and 4°, and equality (5.18)
imply that
(5.22) A=Az = | e MGt

0

for every A € Rt and # € R. The integrand Rt 3 ¢t — e~ 52 € R in (5.22) is
continuous in the norm topology of R, and is absolutely integrable on R¥, so that the
integral may be understood either in the sense of Bochner or as an improper Riemann

integral. Following [D-S;I], Sec. VII.1, notice that

o0 o0

1 1
(5.23)  3(Su—1) e S dt = | e_MStE(Sh — 1)z dt
0 0
M -1 —\t Atlh —\t
= 3 Se Sixdt —e ES@ Sy dt

0 0

for every h € R, A € RT and z € R. Let A be the infinitesimal generator of the
semigroup (5;),cr- By a passage to the limit as & | 0, from (5.23) it follows that

o0

S e MG (A — A)x dt = z for every A € Rt and z € D(A),
0

and
S e MGz dt € D(A) and (A — A) S e MSyx dt = x for every A € RT and z € R.
0 0

These equalities mean that RT is contained in the resolvent set of %T, and

(5.24) A=Az = | e MG dt
0

for every A € RT and = € R. See [D-S;I], Sec. VIIL.1, Theorem 11. From (5.22) and
(5.24) it follows that A = A. m

5.6. COROLLARY (see [D-M;C], Sec. XIIL.1.4, p. 311). Let the map RT™ 5 A — R, €
L(X) be a pseudoresolvent with regularity space ® and generator A. Let M € [1,00).
Then the following two conditions are equivalent:
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(a) there is a unique semigroup (St),.qgr C L(X) of class C° such that ||| < M
for every t € R+ and
Ry =\ e NS dt
0
for every A\ € RY and x € X;

(b) sup{\*||RY|| : N e RY, k=1,2,..} <M and R = X.
If these conditions are satisfied, then the resolvent set of A containsRT, Ry = (A—A4)7!

for every A € RY, and A coincides with the infinitesimal generator of the semigroup

(St)teﬂ&_+'

Proor. Condition (a) and equality (0.2) imply that:

o0

0 e MSxdt = Sgx = x for every 2 € X, which

1° hm>\_>oo /\R)\$ = hm>\_>oo /\S
means that ® = X,

_1)k—1 b1 (_1)k_1 d k—1 oo ~
90 pka — ( (k=1) . _ “ Y di
Be=goo® = ao o\ @ § ¢S
—_ 1 Oxotk—l —)\tS dt
k- coo
0

for every A € Rt and = € X, whence ||R%|| < Mﬁ fo t"te™Mdt = M.

This proves that (a) implies (b). The converse implication and the statements concern-
ing A follow from Theorem 5.5. m

5.7. COROLLARY (the Hille-Yosida theorem). Let A be a linear operator from X
into X with domain D(A). Let M € [1,00). Then the following two conditions are
equivalent:

(A) A is the infinitesimal generator of a semigroup (S¢),cqw C L(X) of class o
such that ||S¢|| < M for every t € RT;

(B) D(A) is dense in X, A is a closed operator from X into X with resolvent set
containing RY, and

sup{ A\ (A= A)7F| A eRT, k=1,2,...} < M.

Proor. (A)=-(B). If condition (A) is satisfied then, according to Theorem 11 of Sec.
VIIL.1 of [D-S;I] (i.e. similarly to our equality (5.24)), the resolvent set of A contains
RT, and
(5.25) A=Az = | e MGt

0

for every A € RT and # € X. It follows that the operator A is closed, and Sgo e~ M8 dt

€ D(A) for every € X and A € RY, whence & = limy_. A, e S dt € D(A),
showing that D(A) is dense in X. The estimate of the norm of (A — A)~* follows from
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(5.25) and from the inequality sup, g+ (|.5¢|| < M by an argument similar to the one
used in the proof of Corollary 5.6.

(B)=(A). Suppose that (B) holds and for every A € RT define R\ = (A — A4)~1
Then the map Rt 5 A — Ry € L(X) is a resolvent such that sup{\*||RY|| : A € RY,
k= 1,2,...} < M. Furthermore, by Proposition 5.2, the regularity space of this
resolvent is R = S = (A — A)~1X = D(A) = X. Thus condition (b) from Corollary 5.6
is satisfied, and so, according to the implication (b)=(a), there is a unique semigroup
(5¢),e5F C L(X) of class C° such that [|Sy[| < M for every t € R+, and equality (5.25)
holds for this semigroup and for the operator A satisfying (B). Theorem 11 from Sec.

VIII.1 of [D-S;I] implies that an analogous equality holds for the same semigroup and
for its infinitesimal generator. Therefore this infinitesimal generator is equal to A. m

5.8. COROLLARY (a version of the Trotter-Kato approximation theorem; [E-K], Sec.
1.6; [Y;2], Sec. I1X.12). Let M € [1,00). Suppose that for every n = 0,1,... the map
Rt 5 XA — Ry, € L(X) is a pseudoresolvent with regularity space ®,, and generator
A, such that

(i) sup{A*[|1RE o) s A €RY, k=1,2,..., n=0,1,..} < M,
(ii) there is Ao € RT such that lim, . || Ry, n® — Ry, 02||x = 0 for every z € X.
Then, according to Theorem 5.5, condition (i) implies that, for every n =0,1,..., %,

s a closed subspace of X and there is a unique semigroup (Sf7n)te]1&+ C L(R,) of class
C° with infinitesimal generator A, such that

sup ||S¢nllre,) < M.
teRY

Furthermore, the conjunction (i) & (ii) implies that

1° for every xo € Ny there is a sequence x1,xs,... such that x, € R, for every
n=1,2,...and lim,_ ||, — z0l|x =0,
2° if wg,xq,... is @ sequence such that x, € R, for every n = 0,1,... and

lim, o ||z, — zo||x = 0, then, for every a € RT,

lim sup [|S¢ 2, — Stozolx = 0.
n—00 0<t<q

Proor. Suppose that conditions (i) and (ii) are satisfied. By Theorem 5.5 for every
n =1,2,... there is a continuous representation T, of the convolution Banach algebra

LY(RT; K) on the Banach space X such that:
(a) {Tu(p)w : ¢ € LHR®K), € X} =Ry,
(b) 1Tl nenr (vt w0y (x50 ) < M,
(c) Tu(¢r) = Ry, for every A € RT,
(d) Stn n( ) Tn(Utc,o) for every t € R+ and P E Ll(R+; K).
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Condition (i) implies that
R = Run(1 = (1= MRu) ™ = R+ 3 (1= AP RS
k=1

for every u € Rt and A € (0,2u), the series being absolutely convergent in L(X),
and its terms having the estimate ||(pn — A)*REVH| 1 (x) < %|% — 1|*¥ independent of n.
Therefore (i) & (ii) implies that

(€) limy,— oo || Ranx — Ryoz||x = 0 for every A € Rt and z € X.
From (b), (¢), (e) and Lemma 2.1 it follows that
(f) im,— oo | Tn(@)2 — To(@)z||x = 0 for every ¢ € L}(RT;K) and z € X.

1°. If 29 € Ry, then, by (a), there are ¢ € LI(R*;K) and 2 € X such that
o = To(p)z. From (a) and (f) it follows that if z, = T,.(¢)z, then z, € R, and
lim,— o ||2n — z||x = 0.

2°. Let 2¢, 21, ... be a sequence with z,, € ®, (n =0,1,...) and lim,,— o ||z, — 20| x
= 0. By (a) there are ¢ € LY(R*;K) and # € X such that To(¢)z = z. As a

consequence of (a) and (d),
St,nwn - St,0900 = St,n(xn - Tn(@)x) + St,nTn(@Q)w - St,OTO(SO)x
= St = Tal@)2) + Tu(Urp)e — To(Urp)z,
so that
(8) [19en@n = Srowollx < Mlles = wollx + M| Tu(p)z = To(p)z[lx
H [ Tn(Usp)r = To(Usp)z| x-

If a € RT, then {Uyp : 0 <t < a} is a compact subset of L}(R*;K), and hence from
(b) and (f) it follows that

(h) limy— oo suPo << (| Tn(Urp)r — To(Urp)z||lx = 0.
Assertion 2° follows from (g) and (h). m

Appendix I. Pseudoresolvents and their extended generators

Let A be an algebra over a commutative field K. By a pseudoresolvent with values

in A defined on a non-empty subset A of K we mean a map r: A — A such that

(i) r(A) = r(p) = (1 = Ar(M)r(p)

for every A € A and p € A. It follows that the range of a pseudoresolvent r : 4 — A
consists of mutually commuting elements of A.

I1.1. PrROPOSITION. FEvery pseudoresolvent has a unique mazximal extension to a

pseudoresolvent.
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Proor. Consider the binary relations — and ~ on Kx A such that if (A\,a¢) € Kx A
and (p,b) € K x A, then

(A a) = (u,b)=a—b=(p— Nab
and

(Nya)~ (p,b) = (N a)— (u,b) and  (u,b) — (A, a).

An equivalent definition of ~ is
(A,a) ~ (p,0)= (N, a) — (u,b) and ab = ba.

Suppose that (A, a), (i, b) and (v, ¢) belong to Kx A, (A,a) — (i, b) and (p,b) — (v, ¢).
Thenb=a+ (A—p)ab=c+ (v —p)be,sothat a—c=[a=bl+[b—¢c]=(p—N)ab+
(v—p)be = (p— Nafe+ (v — pbe]+ (v — p)la+ (A = p)able = (v — X)ac, which means
that (X\,a) — (v,c¢). Thus — is transitive, and hence ~ is an equivalence. It follows
that

(ii) ifr: A — Ais a pseudoresolvent, \g € A, A € A and a € A then a = () if and
only if (A, ) ~ (Ao, ()

As a consequence of (ii), if r : A — A is a pseudoresolvent and A¢ is any element of A,
then the graph of r is equal to the set

{(A,a) e A X A: (AN a)~ (Ao, (o))},

while the graph of the maximal extension of r to a pseudoresolvent is the whole equi-
valence class

{(N,a) e KX A: (N a)~(Ag,7(Ag))}. m

By a mazimal pseudoresolvent we mean a pseudoresolvent which is equal to its
maximal extension to a pseudoresolvent.

1.2. ProrosiTiON. If K =R or K = C and A is a Banach algebra over the field
K, then every maximal pseudoresolvent with values in A is an analytic function defined
on an open subset of K.

Proor. Let r : A — A be a maximal pseudoresolvent. If r(A) = 0 for some A € A,
then » = 0 on A and hence A = K, because r : A — A is maximal. Thus we are
reduced to proving the proposition under the additional assumption that #(\) # 0 for
every A € A. Suppose that r : 4 — A is a maximal pseudoresolvent such that r(\) # 0
for every A € A. Take any Ao € A and let B = {A € K : |[A = Ao| < [[r(Ao)]| 7}
For every A € B one has [|[(Ao — A)*[r(Xo)]* Y| < [|r(Xo)||0% for k& = 1,2,..., where
0\ = [A=Xol||r(Xo)|| € (0,1). Hence for every A € B the series 7(Ag)+(Xo—A)[r(Xo)]* +
(Ao — A)?[r(Ao)]? + ... is absolutely convergent and its sum s is an element of A such
that s — 7(Ag) = (Ao — A)sr(Ao) = (Ao — A)7(Ag)s, i.e. (A, 8) ~ (Ag,7(Ag)). Since the

pseudoresolvent r : A — A is maximal, it follows that B C A and
r(A) = 7(Xo) + (Ao = M[r(Ao))? + (Ao = M [r( X)) +... forevery A€ B. m
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Suppose now that X is a Banach space over the field K (R or C). Denote by L(X)
the Banach algebra of continuous linear endomorphisms of X. Let § # A C K and
suppose that the map

(iii) AdAN—= Ry e L(X)
is a pseudoresolvent, i.e.
(iv) Ry — R, =(n—AR\R,

for every A € A and p € A. Then (R))xea is a commutative family of operators.
Furthermore, the kernel N and the range S of R, are both independent of A € A. See
[Y;2], pp. 215-216. Define

(v) G(Re) ={(z,y) € X X X : ARz — x = R,y for every A € A}.

Then G(R,) is a closed subspace of X x X. Following [D-M;XII-XVI], p. 243, we call
G(R,) the extended generator of the pseudoresolvent (iii). It is easy to prove that,
similarly to (5.4),

(vi)  G(Re)={(z,y) € X x X : there exists A € A such that ARz — 2 = R)y}.

I.3. THEOREM. Let § # A C K and let G be a closed linear subspace of X x X.
Then the following two conditions are equivalent:

(vil) G is the extended generator of a pseudoresolvent with values in L(X) defined

on A,
(viii)  for every A\ € A and every x € X there exists exactly one y € X such that
(y,\y —z) € G.

Furthermore, if condition (viii) is satisfied then the pseudoresolvent A 5 X — R, €
L(X) with extended generator G is unique, and, for every A € A,z € X and y € X,

(ix) y = Rz if and only if (y, Ay — ) € G.

Proor. STEP 1: ¢ = G(R,) = (ix). Suppose that G = G(R,). Take any A € A and
x € X.If y = Ryz, then AR y — y = R\(A\y — @), whence (y,\y — ) € G, according
to (v). Conversely, if (y, Ay — ) € G, then, again by (v), ARy — y = R\(Ay — ), i.e.
Yy = ka.

STEP 2: G = G(R,) = (viii). Indeed, according to Step 1, the equality G = G(R.,)
implies (ix), and (ix) implies (viii).

STEP 3: If condition (viii) is satisfied then for every A\ € A there is exactly one
operator Ry € L(X) such that

(x) G={(z,y) e X x X : ARz — 2z = Ry\y}.

Indeed, if (viii) is satisfied, then for every A € A there is a unique map Ry : X — X
such that

(Xi) (ka, ARNx — ac) eG
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for every @ € X. Since G is a closed linear subspace of X x X, it follows that Ry : X —
X is linear and closed. Hence the closed graph theorem ([D-S;I], Sec. 11.2, Theorem
4; [Y;2], Sec. 11.6, Theorem 1) shows that Ry € L(X). If (z,y) € G and A € A, then
(z, Az —(Az—y)) € G, whence, according to (xi), Ry(Az —y) = z,1l.e. ARz —2 = R,y.
Conversely, if ARyz — z = R,y, then @ = R)(Az — y), whence, according to (xi),
(z,y) = (2, e — (Az —y)) = (Ra(Az — y), AR\(Az — y) — (Az — y)) € G. Thus the map
Ry : X — X defined by (xi) belongs to L(X) and satisfies (x). Furthermore, for every
A € A the operator Ry € L(X) satisfying (x) is unique. Indeed, if Ry satisfies (x) then
(Ra(Az —y), AR \(Ax — y) — (Ax — y)) = (2, y) for every (z,y) € G, whence, by (viii),
R is uniquely determined on the set {\z —y: (2,y) € G'}. Thus the uniqueness of R,
satisfying (x) follows from the fact that if condition (viii) holds, then

(xii) {de—y:(z,y)eG=X

for every A € A. For the proof of (xii) take any A € A and z € X. By (viii) there is
x € X such that (z, Az —z) € G, so that, if y = Az — z, then (z,y) € G and Az —y = =.

STEP 4: The map A > X — Ry, € L(X) determined in Step 3 is a pseudoresolvent
such that G(R,) = G. Indeed, let A € A, p € A and 2 € X. Define y = R,z, z =
pR,x—2. Then pR,y —y = R, 2, and hence, by Step 3, (y, z) € (. Furthermore, since
(y,z) € G, again by Step 3, it follows that AR y —y = Ry z. Hence AR \R, 2 — R,z =
AR\y—y = Rz = pRy\R,x — Ryz, so that Rya — R,z = (p— A\)R\R,z, proving that
the map A 5 A — Ry € L(X) is a pseudoresolvent. The equality G(R,) = G follows
now from (x) and (vi). m

REMARK. If GG is a linear subspace of X x X and
D(G) = {2z € X :there is y € X such that (z,y) € G},

then G may be treated as a multivalued operator with domain D(G) which to every
z € D(G) assigns the set

G(z)={y € X :(v,y) € G}.
If G = G(R,) is the extended generator of a pseudoresolvent (iii), then D(G) = S and,
as a consequence of (ix) and (v), Ry = (A — G)7! for every A € A, in the sense that

1° AR e — G(Ryz) = x4 K for every z € X,
2° Ry(Az — G(z)) = {a} for every z € Q.

Appendix II. Factorization theorem for representations
of Banach algebras

Consider a Banach algebra A with left approximate unit bounded by a number
M € [1,), and a continuous representation 7" of A on a Banach space X. A left
approzimate unit for A is, by definition, a net (e,),e;r C A such that lim, [|je,a—al|4 =0
for every a € A. Boundedness by M means that |le,||4 < M for every ¢ € 3. Notice
that an approximate unit cannot be bounded by a number strictly less than 1.
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Let
TA)X ={T(a)r:a€ A, z € X},
and denote by span T(A)X the set of finite linear combinations of elements of T(A).X,
and by spanT(A)X its closure in X. Since (e,),es is a left approximate unit for A, and
the representation 7T is continuous, it follows that

() lim sup |le,a —aljl4 =0
¢ a€B

for every finite subset B of A, and

() lim sup [|T'(e.)y — yllx =0

12 yec
for every finite subset C' of spanT(A)X. Since the left approximate unit (e,),es is
bounded, the equalities (%) and (I) remain true for every compact subset B of A, and

every compact subset C of spanT(A)X.

LemMA. Let A be a Banach algebra with left approzimate unit bounded by M €
[1,00), and let T be a continuous representation of A on a Banach space X . For every
y € span 1'(A)X, every e > 0, and every sequence 61,62, . . . of strictly positive numbers,
there is a sequence €1, e, ... of elements of A such that:

(i) |lenlla < M for everyn =1,2,...,

(ii) [|[T(en)y — yllx < by, for everyn =1,2,...,

(iii) |leney - €5y — €5 - €0, |]a < £/277 whenever n =2,3,..., k=1,...,n—1
and 1 <11 < ...< 1, <mn,

(iv) ||ei -+ e lla < M 4+ ¢ whenever k =1,2,...and 1 <iy3 < ...< 1.

ProOF. Suppose that y € spanT(A4)X,e >0, and §, > 0,n =1,2,..., are given.
A sequence e,, n = 1,2,..., satisfying (i)-(iii) will be defined inductively. By (I), there
is 1 € A such that ||eq]] < M and ||[T(e1)y —yl| < 6. If n > 1 and eq,...,€,_; are
already defined, then {e;, ...e;; :h=1,...,n—1, 1 <43 < ...< i < n}is a finite
subset of A, and hence, by (*) and (7), there exists e,, € A satisfying (i), (ii) and (iii).
Property (iv) follows from (i) and (iii), because if £ > 2 and 1 < ¢y < ... < i, then

k
leizein_y el S lleall + D Neiy €y - v€i = €ipy o]
m=2

k
13
SM+ ) o5 <Mitcm

m=2

THE FacTORIZATION THEOREM ([H-R;1I], p. 268, Theorem 32.22; [P], p. 535, The-
orem 5.2). Let A be a Banach algebra with left approzimate unit bounded by M € [1, ),
and let T be a continuous representation of the algebra A on a Banach space X . Then:

(I) T(A)X is a closed linear subspace of X, i.e. T(A)X =spanT(A4)X,
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(I1) for every y € T(A)X and every 6 > 0 there are a € A and x € T(A)y such that
llalla < M, ||z —yl|lx <6 and T(a)x = y.

ReEMARK. Condition (II) is equivalent to

(III) for every y € T(A)X and every ¢ > 0 there are a € A and x € T(A)y such
that ||a||la < M +¢, ||z —y||lx <e, and T(a)z = y.

Indeed, obviously (1I) implies (III). Conversely, if (III) holds, then, given y € T(A)X
and 6 > 0 choose ¢ > 0 so small that e M ~'(||y|| + M +¢) < 6. By (III), there are ¢ € A
and @ € T(A)y such that ||a|| < M +¢, ||z — y|| < e and T(a)z = y. Define @ =
7 =Mtep Then T(a)7 = T(a)x =y, ||a|| < M and

M
M—I—sa7

3=yl 13 = ol + llz = yll = llell + ll2 = y]
€ M+ 1
< = —y|| <eM M < 4.
< vl + = lle = gll < Myl + M +6) <

Finally, notice that if A is a unital Banach algebra with unit e, then [T'(€)]* = T(e), so
that T'(e) is a continuous projection of X onto its closed subspace Y = T'(e)X, whence
(I) T(A)X =Y and (II) y = T(e)y for every y € T(A)X. Thus the factorization

theorem is trivial for unital Banach algebras.

Proof of the factorization theorem. Suppose that the assumptions of the the-
orem are satisfied, the Banach algebra A being non-unital. Let A, be the unitization
of A ([H-R;I], p. 470, Theorem C.3; [P], pp. 18-20). This means that A, is the unital
Banach algebra such that:

1° as a linear space, A, is equal to the direct sum K + A, where K is the field of
scalars of A,

2° A, = K+ A is equipped with the norm || || 4, such that [|A+ al|a, = ||+ ||a||a
for every A€ K and a € A,

3° multiplication in A, is defined by (A + a)(p +b) = Ay + (na + Ab + ab), where
Ap€eKand a,be A

The unit in 4, is 1 =14+0 € K+ A. Let T be the continuous representation of the
Banach algebra A, on the Banach space X, such that

T(A+a) =M+ T(a)

for every A+ a € Ay, where 1 € L(X) is the identity operator.

Statement (I) of the factorization theorem will follow once we show that for every
y € spanT(A)X there exist # € (0,1) and a sequence ay,az,... of elements of A such
that the elements b, = (1 — )" 4+ a,, of A, are invertible and both the limits below
exist:

(1) lim b, = lim a, =a€ A

n— o0 n— o0
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and
(2) lim T(b; )y = =.

Indeed, since b,, € A, are invertible,

(3)  T(a)T(b; )y = T(ba)T(b; )y — (L= 0)"T (b )y = y — (1 - )" T (b )y

n

for every n = 1,2, ..., whence

(4) T(a)r =y,

by (1) and (2), proving that span T(A)X C T'(A)X. Moreover, statement (II), or (1II),
may be deduced from some additional properties of the elements a, and T(b;1)y.

The above idea of the proof goes back to P. Cohen [C], who used the formulas
(5) bp=(1=0)"+a,, a,=0) (1-06)" e,
k=1

with some 8 € (0,1) and e, € {e, : ¢ € I}. See [C], the last line of p. 200, where
§ = 7. Formulas (5) are also used in the proofs of the factorization theorem presented
in [H-R;IT] and [P]. See [H-R;II], p. 266, Lemma 32.21, where § = ﬁ; [P], p. 536,

Lo _1
2M T 2M+1°

If the elements a, are defined by (5), then the existence of the limit (1) with
lla||4 < M is evident, but the proof of existence of the limit (2) is troublesome. We

where 6 =

will use another construction of a,, € A and b, = (1 — )" + a,, € A,, going back to
M. Altman [A;1]-[A;3].
In order to prove statements (1) and (III), suppose that y € spanT(A)X and ¢ > 0

are given. Fix any 6 € (0, ﬁ) and for every n = 1,2, ... define
1—0(M +1)\"

digl 2
Then take a sequence eq, e, ... of elements of A satisfying conditions (i)-(iv) of the
Lemma, and for every n = 1,2, ... define
(7) bpy=(1—-0+6e,)(1—0+0e,_1)...(1 -0+ 0e).
Then b, € A, and
(8) b, =(1-60)"+ a,,

where
(9) a, = znzek(l . O)n—k( Z € Cip_q -+ .62‘1) € A.
k=1 1< < <ip<n

Since 6 € (0, ﬁ), from (i) it follows that ||fe, || 4 < ML_H < 1-4, so that

<1
A

€n

|5
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for every n = 1,2, ... As a consequence, for every n = 1,2,...the element 1 — 0+ fe, =
(1 -6)(1 — 54e€,) of A, is invertible, and its inverse is the sum of the absolutely

convergent series

1 0 0 2
J— _1:
(1 -6+ 6e,) 1_0(1+0_16n+|:0_16n:| ‘|‘-..)7
so that
1 oM oM 1°
_ -1 <
116+ be,) uAu_l_g(Hl_ﬁ[l—o] y )
-0 18T (M + 1)

As a consequence, every element b,, € A, has inverse b1 € A, such that

(10) 167 14, < (1= 6(M +1))7".

FExistence of the limit (1) and the inequality ||al|4 < M + e. According to (7), (8)
and (9),

bn—l—l - bn
= (1= 0+ Oepny1)by — by = 8(enpr1bn — by)

= 6(1— 0)" (e — 1)+ 0> 67(1 - 0)n—k( Y (enpr - ey, e)

k=1 1<i1<..<ix<n
whence, by (i) and (iii),
bogt — bulla, <O —O(M+1)+03 051 -0+ (") =
Iouss = lla, < 0010 +1)+0 3041 ~0) ()=

<O(M+1)(1-8)" + 02%.

Since ¢ € (0, ﬁ) it follows that the series > 7 ||by+1 — bylla, is convergent, and

hence both the sequences by,by,... and aq,aq,... converge to the common limit a.
Furthermore, from (9) and (iv) it follows that

fealla < D051 — 0y ()01 +2) < a1 45
k=1

for every n = 1,2,..., whence [ja||4 < M +¢.

FExistence of the limit (2) with € T(A)y and ||z — y||x < e. Define 2y = y,
2, = T(b; 1)y for n = 1,2,... Then, according to (7),

v = oner = Ty = T(1 = 0+ 8e,)y] = 0707 )y - T(en )y,
so that, by (10), (ii) and (6),

) .
i = el < OIT(L = 6M + )76, = —

34



for every n = 1,2, ... It follows that the limit (2) exists, and

o0 00
1
|z —yllx < Z |zn — 2p_1]|x < Z o0 =€
n=1 n=1

Furthermore, for every n = 1,2,..., 0.1 = A, + ¢, where A\, € K and ¢,, € 4, so that

2 = Ay + T(cn)y € T(A)y, because T(c,)y € T(A)y and y € T(A)y by (ii), or (7).
It follows that @ = lim, . 2, € T(A)y.

[D-M;C]

[D-M;XTI-X V1]
[D-U]

[D-S;1]

[D-S;11]

[E-K]

[H-N]

(H-R;I]
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