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Abstract

Moment stability for linear systems with a non-white parametric noise
is considered. A method of reduction of the study of this stability to the
study of stability for large-scale matrices is proposed. Mean square stability
diagrams for random harmonic oscillator are presented.
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1 Introduction.

Stability and stabilization is a fundamental objective in the design of controllers.
This work deals with a stability for the following linear ordinary differential equa-
tion in RN

dz

%:Aw—}—f(t)ar, 0<t< oo, (1)

where A, C' are N x N deterministic matrices and £(t) is a stochastic process.
We investigate p-stability, that is, asymptotic stability of the pth moments of the
solution of equation (1) for p to be a positive integer.

There are necessary and sufficient conditions of such stability, if £(¢) is the white
noise [5-7]. If the process £(t) is non-white and has continuous trajectories, the
study of stability turn out to be complicated. In this case there are necessary
and sufficient conditions of moment stability only if £(¢) is a Gaussian process
and the Lie algebra generated by the matrices A, C' is solvable [1,10-12].

In this paper we consider the process £(t) of the form

§(1) = sin(aw(t)), (2)

where « is a nonrandom parameter and w(t) is Wiener process. We propose a
method that reduces the study of moment stability for the equation (1) with the



noise of the form (2) to the stability of nonrandom large-scale matrices. Using this
method and numeric computation we get diagrams of 2-stability (mean square
stability) for the random harmonic oscillator.

2 Equations for moments.

Let us start first from the mean value Fz(t) of the solution of equation (1)
with excitation (2) and nonrandom initial value z(0). The solution of (1) is a
functional with respect to the process w(s), 0 < s < ¢, and therefore we shall
write z(t) = z(¢t; w(s)).

Let

1 {—k2a2t
TN
2i)F PV

+(=D)*Ez(t;w(s) — ikas)], k=1,2,3,...

vo(t) := Fz(t;w(s)), wvi(t):= HEz(t; w(s) + tkas)

To evaluate the mean value vg(t) = Fz(t) of the solution of equation (3) with
nonrandom initial value z(0) the following infinite chain of linear differential equa-
tions was obtained in the paper [2]:

dv
T; = AUO + C'Uh
% — a_Q + A + C + lc (3)
dr 2 U1 U1 ) 2 Vo,
dv k?a? 1
d—tk = — 5 v + Avg, —I—C?Jk+1 + chk—17 k=2,3,...,
1
vo(0) = 2(0), w(0) = W[l + (=1)¥2(0), k=1,2,3,....

Consequently, the 1-stability of equation (1), (2) is equivalent to the asymptotic
stability of the chain (4). Note that (see [3]) one can also obtain a similar chain
when £(t) is an Ornstein-Uhlenbeck process.

One can easily obtain a similar chain for higher order moments in the following

way. Let us introduce under [4,5] the binominal coefficient (N, p) = (N+pp_1)
and the vector zlPl(t) € RM™») of all p-th forms of the components of the vector

z(t):
2PV (t) = col (x4 (t)P, gy ()P~ 2o (1), ..., 2n ()P),
where parameters ,ug are chosen so as to obtain ||zP1(#)|| = ||z(¢)||” for the Eu-

clidean norm of vectors.
For vector z!Pl(t) we have under (1) the equation

dzlP]
= A+ £,




where the matrices A, C,) are determined from the matrices A, C' [4,5].

Using the previous approach one can obtain for FzlPl(¢) the chain (3) with Al
Clp instead of A, €. So without loss of generality one can investigate only the
1-stability.

3 Stability for the chain.

Let @, be the following n/N x n/N block matrix

A C 0 00 0
3C A C 00 0
Q,=| 0 C A C 0 0
0 0 0 00 oA
and
2 “(n—1)2a2
P, ::diag(O,—%E,...,—%E), Sy, = diag(0,...,0,C),

un (t) := col(vo(t),...,vn_1(t)),

with £ - N X N identity matrix. We can rewrite (3) in the following form:

d'n
dt
d kra? 1
%:_ ;Uk+AUk+CUk+1+ZCUk—17 k=nmn+1,... (5)

Denote by A;, j = 1,...,nN, eigenvalues of matrix P, + ¢),,. We show that
the stability of this matrix, namely the signs of real parts of its eigenvalues, for
sufficiently large n is crucial in the study of 1-stability for equation (1), (2).
Assume that there exists a v > 0 such that for sufficiently large n

max Re A\; < —v. (6)
J
Denote by || - || the Euclidean norm for vectors and induced norm for matrices.
It is known [8] that
1@nll < [|@nl[1]|@nlloo
where || || and || ||e is the maximum column sum norm and maximum row

sum norm respectively. It follows from this and the form of matrix J,, that there
exists a ¢; > 0 such that for all n

1@nll < 1. (7)



Using the triangular factorization [8], there exists a unitary matrix U, such that
Un(Pn + Qn)Uy, = Dy + B,
where
D, = diag(M, ..., \oN), Bn = (ai;), a;; =0, ¢>j, i,j=1,...,nN.
Since (7) there exists a ¢y > 0 such that for all n
Bl < ca. (8)
Let V,, be a diagonal matrix:
V, = diag(1,67", 67212 5722 5 e (0, 1).
It follows from (4) that the vector z, = V,,U,u,, satisfies the equation

dzy,
% = DnZn + VanVn_lzn + ‘/ﬂUnSnvn7 (9)

where _
22— 2—
VB, Vil = (a;;6% 777,

Using (8), we have that for each € > 0 there exist § € (0, 1), ng > 0 such that for
n > ng
IVaB. VM| < e. (10)

From (9) it follows that

d|zn]l*

dt = (DnZna Zn) + (Dn2n7 Zn) —I_ (‘/anVn_12n7 Z’“)

+(‘/an‘/n_1Zn7 En) + (‘/nUnSnﬁru Zn) + (‘/nUnSnwﬂ gn)-
Taking into account that ||V,,|| < 672 and ||S,|| = ||C]||, we obtain

| (VaUn S0, 20) + (VUnSntn, Z)| < ellzall® + €767 C)||val |

Hence,
Aol o a1 et gt 1 §
i S 2zl 3ellzll” eI vl (11)
Using (5), we get
d||vg||?
% = —k2052||'l)k|‘2 + (Aﬁk,vk) + (A'Uky qjk) + (Cﬁkﬁ—l, 'Uk)

1 1
+(Cvkt1, Ux) + Z(Cﬁk—hvk) + Z(Cvk—h@k% k=nn+1,...



dl|vxl”
—— < —E2a?|loell® + 2[|All[lol* + 1CJorl* +

1 1
HICveall* + FUCIwel® + SIC e >

From the definition of vectors vy () it follows that the series

- o~ d|vg]®
VS R B
k=n

are converged.
Therefore,

00 d Vg 2 1
> A < I+ 3 (e 42l 42, 5
k=n

\]

—

< SICHIonall* + (=n*a® + 2| Al + 2, 5]|C)) 3 [logll*.
k=n

If ¢, :=n?a? — 2||A|| — 2,5]|C]|, then from the previous inequality we have
= 1
(e X Moe®1%) < SICH ™ lona @)1,
k=n
and so

0 1 ~ . ~
> llo@)? §HCH/ 7= [v, s (5)[[*ds + € q“‘Z [0k (0)]-
k=n

Since [[vn-1]l < flunll < [IV,7 [zl < [2a]] and

O .

2 ES [z(0)]?
ZHUH <Z 4k1 —3 Jn— 27

we obtain
_ s o _
Ien®I? < SO [ e (o)Pds + EOE e )

Let 1 := 2y — 3¢. Using Gronwall inequality to (11), we have

1
Iz (B)]I* < 8‘15_4I\Cll2/0 exp{=n(t — s)}vn(s)|[*ds + €]z (0)||*.

Substituting (12) for ||v,||, we obtain
2 | 3 b 2
eI < 527 8 ICI [ [ expl=n(t = 9) = gus = )} zn(o0)|*dsrds
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_ z(0)]|? _
st O ot - ) — gushas + 011

Let ¢, ng > 0 be such that n > 0 and ¢, > 5 for n > ng. Therefore for n > ng we
have

P t o (i—s
s [ o

Hils )2 + 5 ICHIEON,

Let now ny; > ng such that for n > ny

Iz (B)II* <

Je™". (13)

ICIP

2(qn — m)edt > 0.

Pn =1 -
Taking into account that

12 ()17 = [[VaUnttn (01 < ||Vl |2 (O)]®

<5'4Z4’“H$ )I* < 5_4H$(0)H2

k=0

and applying Gronwall inequality to (13), we obtain

eIl
4r=1(gn — )

Thus, we have the mean square stability of equation (1), (2) whenever the condi-
tion (6) holds.

Now, we suppose that the matrix (), has eigenvalues with positive real parts for
sufficiently large n. Without loss of generality let ReA; > 0, 7 =1,...,k, Re); <
0, j=k+1,...,nN. Moreover, we suppose that there exists a ¢ > 0 such that for
sufficiently large n

eI < 56701 + Je=J2 0] (14)

Rel; >0, j=1,...,k ReX;<0,j=k+1,..,nN. (15)
Let zﬁj), 7=1,...,nN, be components of vector z, and
1 k nN ] 0
F(zn,vn, vn41,-.) 1= 5 Z D= 3 1=9017 = D Nowll?)
By (5), we have
denH2 dv, dv, n?a?

1
o = (— prat Un) + (vn, W) = (—Tvn + Av, + Cupgy + chn_l’ Up,)

n?a?

1
+(UTL7 _T'En + Aﬁn + C’ﬁn—}—l + Zcrﬁn—l) — _nQQQHUnHQ + (Avn7 En)



1
‘I’(Aﬁ'ru vn) + (Cvn—i—la ’Dn) + (Cﬁn—}—lv Un) + Z[(Cvn—h En) + (Cﬁn—h vn)]

n 1
< (—na® + 2|/ Al + ZHCII)anH2 +IC|Jongll* + MHCHH%—H\Q

dHIUkH2 < _kQ 2 211 A § C 2 C 2 1 C 2
o S (RS20 A+ SIICID el + IC vkl + SICvp-1l,
k=n+1,n+2,...
Therefore by (9) we obtain
dF k G2 nd G2 0 ) )
— 2 2 RN = 3 ReXlIP + 3 ajllosll® + pallnl?,
' =1 J=k+1 j=n

where ¢; = j2a? — 2||A|| — 3||C|| and by (10) for any €; > 0 there exist § € (0, 1)
and ngy such that for n > ny we have |p,| < &1.
Consequently for sufficiently large n, we have

dF o ™
=52 D)2y > g F
7 >3 I 2

from which

F(zn(t), vn(t), vag1(t), o) > F(2,(0), v,(0), voy1(0), ...)e""
Thus equation (1), (2) is not 1-stable when the condition (15) holds.

4 Random harmonic oscillator.

Consider the equation of harmonic oscillator

d? d
3 a=l+ (14 BE(B)]y =0, (16)

where @ > 0,  are nonrandom parameters and £(t) is a random process.

There are many works dealing with stability for this equation (see [9] for a rewiew).
Necessary and sufficient conditions of mean square stability of (15) are obtained
in the case of white noise process £(¢) in [7].

We use the results of previous section to obtain exact regions of mean square
stability for equation (16) with noise (2).

One can easily obtain that the vector

— col (dy)2 dy
T = co dt 7ydt7y

satisfies the equation (3) in R® with

24 -2 0 0 —26 0
A= 1 —-a -1 |, C=(0 0 -=p
0 2 0 0 0 0



The eigenvalues A;, j =1, ..., 3n, of matrix P, + ¢, with maximum negative real
parts were computed numerically for various n and o« = 0,1; 1; 4, @ = 0+ 3,
g=0+3(Fig. 1); a =0,01,a =0+12, 5 = 0+ 3 (Fig. 2) with spacing
0,01. The results for n = 40 and » = 80 up to third decimal place are the same.
The stability diagrams are presented in Figs. 1-2. The regions of mean square
stability are situated below the curves. These regions correspond the eigenvalues
of matrix P, + (J,, for n = 80 such that

max e A; < —0.0001.
J
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FIG. 1. Stability diagrams for the equation (16) and for the values @ =0, 1; 1; 4.

It follows from the Fig. 1 that the regions of mean square stability are increasing
with a. The influence of a on growth the region of mean square stability is small
when « is small.
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FIG. 2. Stability diagrams for the equation (16) and for the value a = 0,01.

It follows from Fig. 2 that we have the parametric resonance at o = 2 if damping
a is small. It is well known that this resonance exists also for nonrandom para-
metric excitation £(t) = Bsin(at).
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