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1 Introduction

Assume we are given a market with m risky assets. Denote by Si(t) the price of the
i-th asset at time t. We shall assume that the prices of assets depend on k economical
factors xi(n), i = 1, . . . , k with dynamics changing in discrete time moments denoted for
simplicity by n = 0, 1, . . . , in the following way:
for t ∈ [n, n + 1)

dSi(t)
Si(t)

= ai(x(n))dt +
k+m∑

j=1

σij(x(n))dwj(t), (1)

where (w(t) = (w1(t), w2(t), . . . , wk+m(t)) is a k+m dimensional Brownian motion defined
on a given probability space (Ω, (Ft),F). Economical factors x(n) = (x1(n), . . . , xk(n)),
satisfy the equation
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xi(n + 1) = xi(n) + bi(x(n)) +
k+m∑

j=1

dij(x(n))(wj(n + 1)− wj(n)) = g(x(n), W (n)), (2)

where W (n) := (w1(n + 1)− w1(n), . . . , wk+m(n + 1)− wk+m(n)).
We assume that a, b are bounded continuous vector functions, and σ, d are bounded

continuous matrix functions of suitable dimensions. Additionally we shall assume that
the matrix ddT (T stands for transponse) is nondegenerate. Notice that equation (2)
corresponds to discretization of a diffusion process. The set of factors may include divident
yields, price - earning rations, short term interest rates, the rate of inflation see e.g.
[1]. The dynamics of such factors is usually modeled using diffusion, frequently linear
equations eg. in the case when we assume following [1] that a is a function of spot interest
rate governed by the Vasicek process. Our assumptions concerning boundedness of vector
functions a and b may be relaxed allowing linear growth, however is such case we shall
need more complicated assumptions to obtain analogs of assertions in Lemmas 4,5 and
Corollary 3 which are important in the proof of Proposition 3.

Assume that starting with an initial capital V (0) we invest in assets. Let hi(n) be
the part of the wealth process located in the i-th asset at time n, which is assumed
to be nonnegative. The choice of hi(n) depends on our observation of the asset prices
and economical factors up to time n. Denoting by V (n) the wealth process at time
n and by h(n) = (h1(n), . . . , hm(n)) our investment strategy at time n, we have that
h(n) ∈ U = {(h1, . . . , hm), hi ≥ 0,

∑m
i=1 hi = 1} and

V (n + 1)
V (n)

=
m∑

i=1

hi(n)ξi(x(n), W (n)), (3)

where

ξi(x(n),W (n)) = exp
{

ai(x(n))− 1
2
σ2

ij(x(n))

+
k+m∑

j=1

σij(x(n))(wj(n + 1)− wj(n))





We are interested in the following investment problems:
maximize risk neutral cost functional

J0
x((h(n)) = lim inf

n→∞
1
n

Ex {lnV (n)} (4)
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and maximize risk sensitive cost functional

Jγ
x ((h(n)) =

1
γ

lim sup
n→∞

1
n

ln Ex {V (n)γ} (5)

with γ < 0. Using (3) we can rewrite the cost functionals (4) and (5) in the more convenient
forms. Namely,

J0
x((h(n)) = lim inf

n→∞
1
n

Ex

{
n−1∑

t=0

ln

(
m∑

i=1

hi(t)ξi(x(t), h(t))

)}

= lim inf
n→∞

1
n

Ex

{
n−1∑

t=0

c(x(t), h(t))

}
, (6)

with c(x, h) = E {ln (
∑m

i=1 hiξi(x,W (0)))}. It is clear that risk neutral cost functional
J0 depends on uncontrolled Markov process (x(n)) and we practically maximize the cost
function c itself. Consequently an optimal control is of the form control (û(x(n))), where
suph c(x, h) = c(x, û(x)) and function Borel measurable û : Rk 7→ U exists by continuity of
c for fixed x ∈ Rk. This control does not depend on asset prices and is a time independent
function of current values of the factors x only. The Bellman equation corresponding to
the risk neutral control problem is of the form

w(x) + λ = sup
h

(c(x, h) + Pw(x)) (7)

where Pf(x) := Ex {f(x(1))} for f ∈ bB(Rk) - the space of bounded Borel measurable
functions on Rk, is a transition operator corresponding to (x(n)). In section 2 we shall
show that there are solutions w and λ to the equation (7) and λ is an optimal value of the
cost functional J0.
Letting

ζh,γ
n (ω) :=

n−1∏

t=0

exp[γ ln

(
m∑

i=1

hi(t)ξi(x(t),W (t))

)
]

(
E

{
exp[γ ln

(
m∑

i=1

hi(t)ξi(x(t), W (t))

)
]|Ft

})−1

consider a probability measure P h,γ defined by its restrictions P h,γ to the first n time
moments given by the formula

P h,γ
|n (dω) = ζh,γ

n (ω)P|n(dω).
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Then

Jγ
x ((h(n)) =

1
γ

lim sup
n→∞

1
n

ln Ex

{
exp

{
γ

n−1∑

t=0

ln

(
m∑

i=1

hi(t)ξi(x(t), W (t))

)}}

=
1
γ

lim sup
n→∞

1
n

ln Eh,γ
x

{
exp

{
n−1∑

t=0

cγ(x(t), h(t))

}}
, (8)

with

cγ(x, h) := ln

(
E

{(
m∑

i=1

hiξi(x,W (0))

)γ})
. (9)

Risk sensitive Bellman equation corresponding to the cost functional Jγ is of the form

ewγ(x) = inf
h

[e(cγ(x,h)−λγ)
∫

E
ewγ(y)P h,γ(x, dy)]. (10)

where for f ∈ bB(Rk)

P h,γf(x) = E

{(
m∑

i=1

hiξi(x,W (0))

)γ

exp {−cγ(x, h)} f(g(x,W (0)))

}
, (11)

and where 1
γ λγ corresponds to optimal value of the cost functional (8). Notice that under

measure P h,γ the process (x(n)) is still Markov but with controlled transition operator
P h,γ(x, dy). Following [6] we shall show that

1
γ

λγ → λ (12)

whenever γ ↑ 0.
In what follows we shall distinguish the following special classes of controls (hn):

Markov controls UM = {(h(n)) : h(n) = un(x(n))}, where un : Rk 7→ U , is a sequence of
Borel measurable functions, and stationary controls Us = {(hn) : h(n) = u(x(n))}, where
u : Rk 7→ U is a Borel measurable function. We shall denote by B(Rk) the set of Borel
subsets of Rk and by P(Rk) the set of probability measures on Rk.

The study of risk sensitive portfolio optimization has been originated in [1] and then
continued in a number of papers in particular in [16]. Risk sensitive cost functional was
studied in papers [13], [6], [7], [3], [4], [12] [2], [8] and references therein. In this paper
using splitting of Markov processes arguments (see [15]) we study Poisson equation for
additive cost functional the solution of which is also a solution to risk neutral Bellman
equation. We consider then risk sensitive portfolio optimization with risk factor close to 0.
We generalize the result of [16], where uniform ergodicity of factors was required and using
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[8] show the existence of Bellman equation for small risk in a more general ergodic case.
The proof of that nearly optimal continuous risk neutral control function is also nearly
optimal for risk sensitive cost functional with risk factor close to 0 is based on modification
of the arguments of [6] using some results from the theory of large deviations.

2 Risk neutral Bellman equation

By nondegeneracy of the matrix ddT there exist: a compact set C ⊂ Rk, for which we can
take a closed ball in Rk, β > 0 and ν ∈ P(Rk) such that ν(C) = 1 and ∀A∈B(Rk)

inf
x∈C

P (x,A) ≥ βν(A). (13)

We fix a compact set C, β > 0 and ν ∈ P(Rk) satisfying the above minorization prop-
erty. Additionally assume that the set C is ergodic, i.e. ∀x∈Rk Ex {τC} < ∞ and
supx∈C Ex {τC} < ∞, where τC = inf {i > 0 : xi ∈ C}.
Consider a splitting of the Markov process (x(n)) (see [15]).
Let R̂k =

{
C × {0} ∪ C × {1} ∪Rk \ C × {0}

}
and x̂(n) = (x1(n), x2(n)) be a Markov

process defined on R̂k such that

(i) when (x1(n), x2(n)) ∈ C×{0}, x1(n) moves to y accordingly to (1−β)−1(P (x1(n), dy)
−βν(dy)) and whenever y ∈ C, x2(n) is changed into x2(n + 1) = βn+1, where βn is
i.i.d. P {βn = 0} = 1− β, P {βn = 1} = β,

(ii) when (x1(n), x2(n)) ∈ C × {1}, x1(n) moves to y accordingly to ν and x2(n + 1) =
βn+1,

(iii) when (x1(n), x2(n)) ∈ Rk \ C × {0}, x1(n) moves to y accordingly to P (x1(n), dy)
and whenever y ∈ C, x2(n) is changed into x2(n + 1) = βn+1.

Let C0 = C × {0}, C1 = C × {1}.
Following [8] and [15] we have

Proposition 1 For n = 1, 2 . . . we have P a.e.

P {x̂(n) ∈ C0|x̂(n) ∈ C0 ∪ C1, x̂(n− 1), . . . , x̂(0)} = 1− β (14)

The process (x̂(n) = (x1(n), x2(n))) is Markov with transition operator P̂ (x̂(n), dy) defined
by (i)-(iii). Its first coordinate (x1(n)) is also a Markov process with transition operator
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P (x1(n), dy). Furthermore for any bounded Borel measurable function f : (Rk)n+1 7→ R
we have

Ex {f(x(1), x(2), . . . , x(n))} = Êδ∗x

{
f(x1(1), x1(2), . . . , x1(n))

}
(15)

where δ∗x = δ(x,0) for x ∈ E \ C and δ∗x = (1 − β)δ(x,0) + βδ(x,1) for x ∈ C and Êµ stands

for conditional law of Markov process (x̂(n)) with initial law µ ∈ P(R̂k).

Proof. Since the Markov property of (x1(n)) is fundamental in this paper we recall this
proof from [8] leaving the proof of other statements to the reader. For A ∈ Rk we have

P
{
x1(n + 1) ∈ A|x1(n), x1(n− 1), . . . , x1(0)

}

= P
{
x1(n + 1) ∈ A|x1(n), x2(n) = 0, x1(n− 1), . . . , x1(0)

}

P
{
x2(n) = 0|x1(n), x1(n− 1), . . . , x1(0)

}

+P
{
x1(n + 1) ∈ A|x1(n), x2(n) = 1, x1(n− 1), . . . , x1(0)

}

P
{
x2(n) = 1|x1(n), x1(n− 1), . . . , x1(0)

}
.

In the case when x1(n) ∈ C, the right hand side of the last equation is equal to

P an(x1(n), A)− βν(A)
1− β

(1− β) + βν(A) = P an(x1(n), A).

For x1(n) /∈ C, it is equal to P an(x1(n), A), which completes the proof of Markov property
of (x1(n)).

2

By the assumption on C and the construction of the split Markov process we immedi-
ately have

Corollary 1 Êx {τC1} < ∞ for x ∈ R̂k and supx∈C1
Êx {τC1} < ∞.

Lemma 1 Given (h(n)) ∈ UM there is a unique λ((h(n))) such that for x ∈ C1

Êx









τC1∑

t=1

(
c(x1(t), h(t))− λ((h(n)))

)






 = 0 (16)

Proof. Notice that for x ∈ C1 the mapping

D : λ 7→ Êx









τC1∑

t=1

c(x1(t), h(t))− λ








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is continuous and strictly decreasing. Since the values of this mapping for ‖c‖ and −‖c‖ are
respectively nonpositive and nonnegative there is a unique λ for which the mapping attains
0. 2

For Borel measurable u : Rk 7→ U let

ŵu(x) = Êx





τC1∑

t=0

(
c(x1(t), u(x1(t)))− λ(u)

)


 , (17)

where we use notation λ(u) = λ(u(x(n)).

Lemma 2 Function ŵu defined in (17) is a unique up to an additive constant solution to
the additive Poisson equation (APE) for the split Markov process (x̂(n)):

ŵu(x) = c(x1, u(x1))− λ(u) +
∫

R̂k
ŵu(y)P̂ (x, dy) (18)

Furthermore, if ŵ and λ satisfy the equation

ŵ(x) = c(x1, u(x1))− λ +
∫

R̂k
ŵ(y)P̂ (x, dy) (19)

then λ = λ(u) (defined in Lemma 1) and ŵ differs from ŵu by an additive constant.

Proof. In fact, we have using (16)

Êx {w(x̂(1))} = Êx



χx̂(1)∈C1

Êx(1)





τC1∑

t=0

c(x1(t), u(x1(t)))− λ(u)









+Êx



χx̂(1)/∈C1

Êx(1)





τC1∑

t=0

c(x1(t), u(x1(t)))− λ(u)







 = Êx

{
χx̂(1)∈C1

{
c(x1(1), u(x1(1)))− λ(u)

}}
+ Êx



χx̂(1)/∈C1

τC1∑

t=0

c(x1(t), u(x1(t)))− λ(u)





= Êx





τC1∑

t=0

c(x1(t), u(x1(t)))− λ(u)



− (c(x1, u(x1))− λ(u))

from which (18) follows. If ŵu is a solution to (18) then by iteration we obtain that

ŵu(x) = Êx





τC1∑

t=0

(
c(x1(t), u(x1(t)))− λ(u)

)
+ Êx̂τC1

{ŵu(x̂(1))}


 , (20)

7



where by the construction of the split Markov process

ÊxτC1
{ŵu(x̂(1))} = (1− β)

∫

Rk
ŵu(z, 0)ν(dz) + β

∫

Rk
ŵu(z, 1)ν(dz).

Consequently ŵu differs from ŵu defined in (17) only by an additive constant. Similarly,
if ŵ and λ are solutions to (19) then ŵ differs from

w̃(x) = Êx





τC1∑

t=0

(
c(x1(t), u(x1(t)))− λ

)




by an additive constant Êz {ŵ(x̂(1))} with z ∈ C1. Since w̃ itself is a solution to (19) we
have that Êz {w̃(x̂(1))} = 0 for z ∈ C1. Therefore for z ∈ C1

0 = Êz {w̃(x̂(1))} = Êz



χR̂k \ C1(x̂(1))

τC1∑

t=1

(
c(x1(t), u(x1(t)))− λ

)

+χC1(x̂(1))Êx̂(1)





τC1∑

t=0

(
c(x1(t), u(x1(t)))− λ

)








= Êz





τC1∑

t=1

(
c(x1(t), u(x1(t)))− λ

)




and by Lemma 1 we have λ = λ(u) which completes the proof.
2

Corollary 2 Given solution ŵu : R̂k 7→ R to APE (18) we have that wu defined by

wu(x) := ŵu(x, 0) + 1C(x)β(ŵu(x, 1)− ŵu(x, 0)) (21)

is a solution to APE for the original Markov process (x(n))

wu(x) = c(x, u(x))− λ(u) +
∫

Rk
wu(y)P (x, dy). (22)

Furthermore if wu is a solution to (22) then ŵu defined by

ŵu(x1, x2) = c(x1, u(x1))− λ(u) + Êx1,x2

{
wu(x1(1))

}
(23)

is a solution to (18).
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Proof. By (14) we have

Êx {ŵu(x̂(1))} = Êx

{
Êx

{
ŵu(x̂(1))|x1(1)

}}

= Êx

{
χC(x1(1))((1− β)ŵu(x1(1), 0) + βŵu(x1(1), 1))

+χE\C(x1(1))ŵu(x1(1), 0)
}

= Êx

{
wu(x1(1))

}
(24)

Therefore by (18) we obtain that wu defined in (21) is a solution to (22). Assume now
that wu is a solution to (22). Then by (15)

Êδ∗x

{
wu(x1(1))

}
= Ex {wu(x(1))}

and for ŵu given in (23) we obtain (21). From (21) we obtain (24) which in turn by (23)
shows that ŵu is a solution to (18).

2

Remark 1 APE has been a subject of intensive studies in [14] (together with so called
multiplicative Poisson equation). As is shown above the use of splitting techniques gives
an explicit form for a solution to this equation.

The value of λ(u) has another important characterization. Namely, we have

Proposition 2 For Borel measurable u : Rk → U the value λ(u) defined in Lemma 1 is
equal to

λ(u) = lim
n→∞

1
n

Ex

{
n−1∑

t=0

c(x(t), u(x(t)))

}
(25)

Proof. Let λ > λ(u). For z ∈ C1 we have

Êz





τC1∑

t=1

(
c(x1(t), u(x1(t)))− λ

)


 < 0

and consequently for N ≥ N0

Êz





τC1
∧N∑

t=1

(
c(x1(t), u(x1(t)))− λ

)


 ≤ 0. (26)

Let

wu
N (x) = Êx





σC1
∧N−1∑

t=0

(
c(x1(t), u(x1(t)))− λ

)


 (27)
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with σC1 = inf {t ≥ 0 : x̂(t) ∈ C1}.
For x /∈ C1

wu
N+1(x) = Êx



c(x1(0), u(x1(0)))− λ + Êx̂(1)





σC1
∧N−1∑

t=0

(
c(x1(t), u(x1(t)))− λ

)








= Êx

{
c(x1(0), u(x1(0)))− λ + wu

N (x̂(1))
}

(28)

and x ∈ C1 by (26) we have

wu
N+1(x) = c(x1(0), u(x1(0)))− λ ≥

≥ Êx



c(x1(0), u(x1(0)))− λ + Êx̂(1)





σC1
∧N−1∑

t=0

(
c(x1(t), u(x1(t)))− λ

)








= Êx

{
c(x1(0), u(x1(0)))− λ + wu

N (x̂(1))
}

(29)

Consequently
wu

N+1(x) ≥ Êx

{
c(x1(0), u(x1(0)))− λ + wu

N (x̂(1))
}

(30)

and by iteration for N ≥ N0

wu
N+k(x) ≥ Êx

{
k−1∑

t=0

(
c(x1(t), u(x1(t)))− λ

)
+ wu

N (x̂(k))

}

≥ Êx

{
k−1∑

t=0

c(x1(t), u(x1(t)))− λ− ‖c‖N
}

.

Therefore

1
k
Êx

{
k−1∑

t=0

c(x1(t), u(x1(t)))

}
≤ 1

k
‖c‖N

+
1
k

sup
N

Êx





σC1
∧N−1∑

t=1

(
c(x1(t), u(x1(t)))− λ(u)

)


 + λ

and consequently

lim sup
k→∞

1
k
Êx

{
k−1∑

t=0

c(x1(t), u(x1(t)))

}
≤ λ

Letting λ decreasing to λ(u) we obtain

lim sup
k→∞

1
k
Êx

{
k−1∑

t=0

c(x1(t), u(x1(t)))

}
≤ λ(u) (31)
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Assume now that λ < λ(u). For z ∈ C1 we have

Êz





τC1∑

t=1

(
γc(x1(t), u(x1(t)))− λ

)


 > 0

and consequently for N ≥ N0

Êz





τC1
∧N∑

t=1

(
c(x1(t), u(x1(t)))− λ

)


 ≥ 0. (32)

Therefore for wu
N defined as in (27) similarly to (28)-(29) we have

wu
N+1(x) ≤ Êx

{
c(x1(0), u(x1(0)))− λ + wu

N (x̂(1))
}

(33)

and by iteration for N ≥ N0

wu
N+k(x) ≤ Êx

{
k−1∑

t=0

(
c(x1(t), u(x1(t)))− λ

)
+ wu

N (x̂(k))

}

≤ Êx

{
k−1∑

t=0

(
c(x1(t), u(x1(t)))− λ

)
+ ‖c‖N

}
.

Therefore

1
k
Êx

{
k−1∑

t=0

c(x1(t), u(x1(t)))

}
≥ −1

k
‖c‖N

+
1
k

inf
N

Êx





σC1
∧N−1∑

t=1

(
c(x1(t), u(x1(t)))− λ(u)

)


 + λ

and

lim inf
k→∞

1
k
Êx

{
k−1∑

t=0

c(x1(t), u(x1(t)))

}
≥ λ

and finally

lim inf
k→∞

1
k
Êx

{
k−1∑

t=0

c(x1(t), u(x1(t)))

}
≥ λ(u) (34)

which together with (31) completes the proof.
2

We summarize the results of this section in the form of Theorem
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Theorem 1 There exist unique up to an additive constant function w : Rk 7→ R and
unique constant λ which are solutions to the Bellman equation (7). Furthermore λ is an
optimal value of the cost functional J0.

Proof. Notice for û we find w and λ as a solution to APE

w(x) = c(x, û(x))− λ +
∫

Rk
w(y)P (x, dy),

which exist by Lemma 1, 2 and Corollary 2. By Proposition 2, λ is an optimal value of the
cost functional J0. Uniqueness up to an additive constant of w follows from uniqueness
of the solutions to APE for the split Markov process (Lemma 2) and Corollary 2.

2

3 Risk sensitive asymptotics

In what follows we shall assume that γ ∈ (−1, 0). The following estimation will be useful
in this section

Lemma 3 We have

eγ‖a‖ ≤ E

{(
m∑

i=1

hiξi(x,W (0))

)γ}
≤ e|γ|‖a‖+

1
2
γ2‖σ2‖ (35)

Proof. Since r(z) = zγ is convex by Jensen inequality we have

E

{(
m∑

i=1

hiξi(x,W (0))

)γ}
≤

m∑

i=1

hiE {(ξi(x,W (0)))γ} .

Using Hölder inequality twice we have

E

{(
m∑

i=1

hiξi(x,W (0))

)γ}
≥ 1

E
{
(
∑m

i=1 hiξi(x,W (0)))−γ
}

≥ 1
(
∑m

i=1 hiE {(∑m
i=1 ξi(x,W (0)))})−γ .

Then using standard estimations for ξi we easily obtain (35).
2

Immediately from Lemma 3 we have

12



Corollary 3

lim sup
γ→0

sup
x∈Rk

sup
h∈U

|E
{(

m∑

i=1

hiξi(x,W (0))

)γ}
− 1| = 0 (36)

and
lim
γ→0

sup
x∈Rk

sup
h∈U

|cγ(x, h)− 1| = 0. (37)

We furthermore have

Lemma 4
lim
γ→0

1
γ

cγ(x, h) = c(x, h) (38)

and the limit is increasing and uniform in x and h from compact subsets.

Proof. By Hölder inequality 1
γ cγ(x, h) is increasing in γ. Using l’Hospital rule for γ → 0

we identify the limit as c(x, h). Since the functions c(x, h) and cγ(x, h) are continuous by
Dini’s theorem the convergence is uniform on compact sets.

2

Lemma 5 We have that

sup
A∈B(Rk)

sup
x∈Rk

sup
h∈U

|P
h,γ(x,A)
P (x,A)

− 1| → 0 (39)

as γ → 0.

Proof. Notice that by Hölder inequality we have

P h,γ(x,A) ≤ e−cγ(x,h)e
1
2
c2γ(x,h)

√
P (x,A) (40)

and
P (x,A) ≤ e

1
2
cγ(x,h)e−

1
2
γ‖a‖

√
P h,γ(x, A) (41)

from which (39) easily follows.
2

In what follows we shall assume that for some γ < 0 we have

Ex

{
e|γ|τC

}
< ∞ (42)

for x ∈ Rk and
sup
x∈C

Ex

{
e|γ|τC

}
< ∞. (43)

where C is the same compact set as in section 2.
We recall the following fundamental result from [8]
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Theorem 2 For γ < 0 sufficiently close to 0 exist λγ and a continuous function wγ :
Rk 7→ R such that Bellman equation (10) is satisfied. Moreover 1

γ λγ is an optimal value
of the cost functional Jγ

x and the control û(xn), where û is a Borel measurable function for
which the infimum in the right hand side of (10) is attained, is an optimal control within
the class of all of controls from Us.
Furthermore, if for admissible control (hn) we have that

lim sup
t→∞

E(hn)
x

{(
Eht

xt

{
ewγ(x1)

})α}
< ∞

for every α > 1, then 1
γ λγ ≤ Jγ

x ((an)).

Notice now that by Hölder inequality the value of the functional Jγ is increasing in γ < 0
and by Jensen inequality is dominated by the value of J0. Consequently the same holds
for the optimal values of the cost functionals i.e.

1
γ

λγ ≤ λ. (44)

Furthermore there is a sequence un of continuous functions from Rk to U such that
c(x, un(x)) converges uniformly in x from compact subsets to suph∈U c(x, h). By Lemma
1 and Theorem 1 we immediately have that λ((un)) → λ as n →∞. This means that for
any ε > 0 there is a ε optimal continuous control function uε. We are going to show that
for each ε > 0

Jγ(uε(x(n))) → J0(uε(x(n))) (45)

as γ → 0. Since the proof will be based following section 5 of [6] on the large deviation
estimates we shall need the following assumption:

(A) there is a continuous function f0 : Rk 7→ [1,∞) such that for each positive integer
n the set Kn :=

{
x ∈ Rk : f0(x)

Pf0(x) ≤ n
}

is compact.

Remark 2 By direct calculation one can show that for a large class of ergodic processes
(x(n)) function f0(x) = ec‖x‖2 satisfies (A) for small c. To be more precise assume for
simplicity that k = 1 and |x + b(x)| ≤ β|x| for a sufficiently large x with 0 < β < 1. Then
for 0 < c < 1−β2

2ddT the assumption (A) holds.

Proposition 3 Under (A) for continuous control function u : Rk 7→ U we have

Jγ(u(x(n))) → J0(u(x(n))) (46)

as γ → 0.
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Proof. Under (A) using Lemma 5 we see that the set Ku,γ
n :=

{
x ∈ Rk : f0(x)

P u,γf0(x) ≤ n
}

is compact for each n. Therefore by Theorem 4.4 of [10] we have an upper large de-
viation estimate for empirical distributions of Markov process with transition operator
P u(x),γ(x, ·). Using Theorem from Section 3 of [11] we also have a lower large deviation
estimate. Consequently we have a large deviation principle satisfied with the rate function

Iu,γ(ν) := sup
h∈H

∫

Rk
ln

h(x)
P u(x),γh(x)

ν(dx), (47)

where H is the set of all bounded functions h : Rk 7→ R such that 1
h(x) is also bounded

and ν ∈ P(Rk). By Varadhan theorem (Theorem 2.1.1 of [5]) we therefore obtain that

1
γ

lim
n→∞

1
n

lnEh,γ
x

{
exp

{
n−1∑

t=0

cγ(x(t), h(t))

}}
= inf

ν∈P(Rk)

(∫

Rk

1
γ

cγ(z, u(z))ν(dz)− 1
γ

Iu,γ(ν)
)

(48)
There is a sequence of measures νγi with γi → 0 as i →∞ such that

∫

Rk

1
γi

cγi(z, u(z))νgi(dz)− 1
γi

Iu,γi(νγi) ≤

inf
ν∈P(Rk)

(∫

Rk

1
γi

cγi(z, u(z))ν(dz)− 1
γi

Iu,γi(ν)
)

+
1
i

(49)

Since from (35)

1
γ

lim
n→∞

1
n

lnEh,γ
x

{
exp

{
n−1∑

t=0

cγ(x(t), h(t))

}}
≤ ‖a‖ (50)

we have that Iu,γi(νγi) → 0. We shall show that the sequence (νγi) is tight. Using Fatou
Lemma to the sequence {f0 ∧N} with N →∞ we obtain that

∫

Rk
ln

f0(x)
P u(x),γf0(x)

νγi(dx) ≤ Iu,γi(νγi). (51)

By (39) for ε > 0 there is γ0 such that for γ ≥ γ0

(1− ε)Pf0(x) ≤ P u(x),γf0(x) ≤ (1 + ε)Pf0(x). (52)

Therefore by (51) ∫

Rk
ln

f0(x)
Pf0(x)

νγi(dx) ≤ Iu,γi(νγi) + ln(1 + ε) (53)
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for i > i0. Let ρn := infx∈Kn ln f0(x)
Pf0(x) . Then

ρnνγi(Kn) + lnnνγi(K
c
n) ≤ Iu,γi(νγi) + ln(1 + ε) (54)

where Kc
n := Rk \Kn. Consequently

lnnνγi(K
c
n) ≤ Iu,γi(νγi) + ln(1 + ε)− ρn

lnn− ρn
(55)

and since lnn ≥ 1 + ρn for sufficiently large n, we have tightness of the measures νγi . By
Prokhorov theorem there is a subsequence of νγi , for simplicity denoted by νγi and a prob-
ability measure ν̄ such that νγi → ν as i →∞. Since by (39) Iu,γ(ν) converges uniformly
to Iu(ν) := suph∈H

∫
Rk ln h(x)

P u(x)h(x)
ν(dx) as γ → 0 and Iu is nonnegative lowersemiconti-

nous function we therefore have that Iu(ν̄) = 0. By Lemma 2.5 of [9] the measure ν̄ is
invariant for the transition operator P (x, ·). Therefore by Lemma 4

lim
i→∞

1
γi

lim
n→∞

1
n

ln Eh,γi
x

{
exp

{
n−1∑

t=0

cγi(x(t), h(t))

}}
≥

lim
i→∞

∫

Rk

1
γi

cγi(z, u(z))νγi =
∫

Rk
c(z, u(z))ν̄(dz) = J0(u(x(n)) (56)

and using the fact that the cost functional Jγ is increasing in γ we obtain (46), which
completes the proof.

2

We are now in position to summarize the results of this section

Theorem 3 Under (A) a continuous ε control function uε for J is also 2ε optimal control
function for Jγ provided 0 > γ > γ0. Consequently convergence (12) holds.

Remark 3 On can expect that the convergence at least of a subsequence 1
γ wγ(x) uniformly

on compact subsets, as γ → 0 to w(x) holds, where w is a solution to the risk neutral
Bellman equation (7). The authors unfortunately were not able to show it.
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