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1 Introduction

On a probability space (Ω,F , P ) consider a Markov process X = (xn) taking values on
a complete separable metric state space E endowed with the Borel σ-algebra E . Assume
that (xn) has a transition operator P (xn, ·) at generic time n. Let c : E 7→ R be continuous
bounded and γ > 0. We would like to find constants λ and λγ such that the functions

w(x) := Ex

{ ∞∑

i=0

(c(xi)− λ)

}
(1)

and

ewγ(x) := Ex

{
exp

{ ∞∑

i=0

γ(c(xi)− λγ)

}}
(2)
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are well defined.
The problems above are closely related to the existence of solutions: constant λ and a
function w or constant λγ and function wγ to the following equations:
additive Poisson equation (APE)

w(x) + λ = c(x) + Pw(x) (3)

where Pf(x) := Ex {f(x(1))} =
∫
E f(y)P (x, dy),

and multiplicative Poisson equation (MPE)

ewγ(x)+λγ = eγc(x)
∫

E
ewγ(y)P (x, dy). (4)

Sufficient condition for existence of solutions to APE is (see [9] and [5]) uniform ergodicity
of (xn), i.e.

sup
A∈E

sup
x,z∈E

|P (x,A)− P (z, A)| < 1. (5)

In the case of MPE a sufficient condition for the existence of solutions can be formulated
as follows (see [2] and [5])

sup
x,z∈E

h(P (x, ·), P (z, ·)) < ∞ (6)

where h(µ, ν) := supA,B∈E ln µ(A)ν(B)
ν(A)µ(B) is so called Hilbert norm in the space P(E) of

probability measures on E.
In the paper we shall formulate more general conditions for the existence of solutions

of APE and MPE and shall explain relationship of these equations to problems (1) and
(2).

We will be furthermore interested in control of Markov processes. For this purpose we
shall assume that (xn) has a controlled transition operator P an(xn, ·) at generic time n,
where an is the control at time n taking values on a compact metric space U and adapted
to the σ-algebra σ{x0, x1, . . . , xn}.
Let now c : E×U 7→ R be continuous bounded. We are looking for control (an) minimizing
the following cost functionals:
risk neutral (average cost per unit time)

J((an)) := lim sup
n→∞

1
n

E(an)
x

{
n−1∑

i=0

c(xi, ai)

}
(7)

or risk sensitive cost functional
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Jγ((an)) :=
1
γ

lim sup
n→∞

1
n

ln E(an)
x

{
exp

{
n−1∑

i=0

γc(xi, ai)

}}
. (8)

The study of risk sensitive functional is motivated by the fact that it measures not
only average cost but also higher moments of the average cost in particular its variance
with weight γ (see [1] for financial motivation of these kind of problems). It can be also
considered as a dual problem to minimization of the probability that the average cost is
greater that a given benchmark (see [7]).

The following Bellman equations correspond to the cost functionals (7) and (8) respec-
tively

w(x) + λ = inf
a∈U

(c(x, a) + P aw(x)) (9)

where P af(x) :=
∫
E f(y)P a(x, dy), and

ewγ(x)+γλγ = inf
a∈U

(
eγc(x,a)

∫

E
ewγ(y)P a(x, dy)

)
. (10)

One can expect that λ and λγ are optimal values of the cost functionals (7) and (8)
respectively.

In what follows we shall assume the following Feller property
(F): U × E 3 (a, x) 7→ P af(x) is continuous for f ∈ C(E).
Under (F) and controlled uniform ergodicity of the form

sup
A∈E

sup
a,a′∈U

sup
x,z∈E

|P a(x,A)− P a′(z,A)| < 1 (11)

there is (see [9]) a bounded continuous function w and a unique constant λ which solve
the Bellman equation (9). Furthermore

λ = inf
(an)

J((an)) = J(û(xn)), (12)

where û is a Borel measurable function for which the infimum on the right hand side of
(9) is attained.
If additionally to (F) we have that

sup
x,z∈E

sup
a,a′∈U

h(P a(x, ·), P a′(z, ·)) < ∞ (13)

then there exist (see [2]) a bounded function wγ and a unique constant λγ for which the
Bellman equation (10) is satisfied. Moreover
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λγ = inf
(an)

Jγ((an)) = Jγ((ûγ(xn))), (14)

where ûγ is a function for which the infimum in the right hand side of (10) is attained.
We shall consider the following two classes of controls:

Markov controls UM = {(an) : an = un(xn)}, where un : E 7→ U , and stationary controls
Us = {(an) : an = u(x(n))}, where u : E 7→ U . We shall also indentify Markov control
an = un(xn) with a sequence (un) of functions un : E 7→ U . Similarly stationary control
an = u(xn) with shall identify with function u : E 7→ U . Since we shall use so called
splitting of Markov processes technique introduced (see [6]) we shall assume the following
minorization property:

(A1) ∃β>0 ∃Ccompact∈E ∃ν∈P(E) with ν(C) = 1 such that ∀A∈E

inf
x∈C

inf
a∈U

P a(x,A) ≥ βν(A)

(A2) C given in (A1) is ergodic, i.e. ∀(an)∈UM
∀x∈E E

(an)
x {τC} < ∞, where τC =

inf {i > 0 : xi ∈ C} and ∀(an)∈UM

sup
x∈C

E(an)
x {τC} < ∞

.

Given the set C satisfying (A1) and (A2) and Markov control (un) we consider a new
state space Ê = {C × {0} ∪ C × {1} ∪ E \ C × {0}} and splitting of (xn) in the form
x̂n = (x1

n, x2
n) ∈ Ê with Markov control of the form an = un(x1

n) and dynamics defined
below:

(i) when (x1
n, x2

n) ∈ C×{0}, x1
n moves to y accordingly to (1−β)−1(P an(x1

n, dy)−βν(dy))
and whenever y ∈ C, x2

n is changed into x2
n+1 = βn+1, where βn is i.i.d. P {βn = 0} =

1− β, P {βn = 1} = β,

(ii) when (x1
n, x2

n) ∈ C × {1}, x1
n moves to y accordingly to ν and x2

n+1 = βn+1,

(iii) when (x1
n, x2

n) ∈ E \C×{0}, x1
n moves to y accordingly to P an(x1

n, dy) and whenever
y ∈ C, x2

n is changed into x2
n+1 = βn+1.

Let C0 = C × {0}, C1 = C × {1}. The following properties of the split Markov process
are shown in [3]
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Lemma 1 For n = 1, 2 . . . we have P a.e.

P {x̂n ∈ C0|x̂n ∈ C0 ∪ C1, x̂n−1, . . . , x̂0} = 1− β

P {x̂n ∈ C1|x̂n ∈ C0 ∪ C1, x̂n−1, . . . , x̂0} = β.

Lemma 2 Under Markov control (an) ∈ UM the process (x̂n = (x1
n, x2

n)) is Markov with
transition operator P̂ an(x̂n, dy) defined by (i)-(iii). Furthermore the first coordinate (x1

n)
is also a Markov process with transition operator P an(x1

n, dy).

Corollary 1 For any bounded Borel measurable function f : Em 7→ R, m = 1, 2, . . . , and
control (an) ∈ UM we have

E(an)
x {f(x1, x2, . . . , xm)} = Ê

(an)
δ∗x

{
f(x1

1, x
1
2, . . . , x

1
m)

}
(15)

where δ∗x = δ(x,0) for x ∈ E \ C and δ∗x = (1− β)δ(x,0) + βδ(x,1).

2 The study of additive Poisson equation

We start with an obvious lemma which follows directly from the boundedness of c, and
conditions (A1) and (A2)

Lemma 3 Given Borel measurable u : E 7→ U there is a unique λ(u) such that for x ∈ C1

Êx









τC1∑

i=1

(
c(x1

i , ai)− λ(u)
)






 = 0. (16)

For Borel measurable u : E 7→ U let

ŵu(x) := Êx





τC1∑

i=0

(
c(x1

i , u(x1
i ))− λ(u)

)


 , (17)

By an analogy to [4], where more specific case was studied, we can show the following
results:

Lemma 4 Function ŵu is a unique up to an additive constant solution to the additive
Poisson equation (APE) for the split Markov process (x̂n):

ŵu(x) = c(x1, u(x1))− λ(u) +
∫

Ê
ŵu(y)P̂u(x1)(x, dy) (18)
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Furthermore, if ŵ and λ satisfy the equation

ŵ(x) = c(x1, u(x1))− λ +
∫

Ê
ŵ(y)P̂ u(x1)(x, dy) (19)

then λ = λ(u) (defined in Lemma 3) and ŵ differs from ŵu by an additive constant.

Corollary 2 Given solution ŵu : Ê 7→ R to APE we have that wu defined by

wu(x) := ŵu(x, 0) + 1C(x)β(ŵu(x, 1)− ŵu(x, 0)) (20)

is a solution to APE for the original Markov process (xn)

wu(x) = c(x, u(x))− λ(u) +
∫

E
wu(y)P u(x)(x, dy). (21)

Furthermore if wu is a solution to (21) then ŵu defined by

ŵu(x1, x2) = c(x1, u(x1))− λ(u) + Êx1,x2

{
wu(x1(1))

}
(22)

is a solution to (18).

Proposition 1 For Borel measurable u : E → U the value λ(u) defined in Lemma 3 is
equal to

λ(u) = lim
n→∞

1
n

Ex

{
n−1∑

i=0

c(xi, u(xi)).

}
(23)

3 The study of multiplicative Poisson equation

To study MPE we need an assumption stronger than (A2). Fix γ > 0. We shall impose
that

(A3) ∀(an)∈Us
∃d s.t. ∀x∈Ê

Ê(an)
x



exp





τC1∑

i=1

γ
(
c(x1

i , ai)− d
)






 < ∞

and for x ∈ C1

Ê(an)
x



exp





τC1∑

i=1

γ
(
c(x1

i , ai)− d
)






 ≥ 1.
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Under (A3) we easily obtain that

Lemma 5 Under (A3) for Borel measurable u : E 7→ U and there is a unique λγ(u) such
that for

Ê(an)
x



exp





τC1∑

i=1

γ
(
c(x1

i , ai)− λγ(u)
)






 = 1 (24)

for x ∈ C1.

For Borel measurable u : E 7→ U and γ > 0 for which (A3) holds define

eŵu
γ (x) = Êu

x



exp





τC1∑

i=0

γ
(
c(x1

i , u(x1
i ))− λγ(u)

)






 , (25)

We have (see [3] for the proofs)

Lemma 6 Function ŵu
γ defined in (25) is a unique up to an additive constant solution to

the multiplicative Poisson equation (MPE) for the split Markov process (x̂n):

eŵu(x)γ = eγ(c(x1,u(x1))−λγ(u))
∫

Ê
eŵu

γ (y)P̂ u(x1)(x, dy) (26)

Furthermore, if ŵ and λ satisfy the equation

eŵ(x) = eγ(c(x1,u(x1))−λ)
∫

Ê
eŵ(y)P̂ u(x1)(x, dy) (27)

then λ = λγ(u) defined in Lemma 5 and ŵ differs from ŵu
γ by an additive constant.

Corollary 3 If ŵu
γ : Ê 7→ R is a solution to MPE (26) we have that wu

γ defined by

ewu
γ (x) := eŵu

γ (x,0) + 1C(x)β(eŵu
γ (x,1) − eŵu

γ (x,0)) (28)

is a solution to MPE for the original Markov process (x(n))

ewu
γ (x) = eγ(c(x,u(x))−λγ(u))

∫

E
ewu

γ (y)P u(x)(x, dy) (29)

Furthermore if wu
γ is a solution to (29) then ŵu

γ defined by

eŵu
γ (x1,x2) = eγ(c(x1,u(x1))−λγ(u))Êx1,x2

{
ewu

γ (x1
1)

}
(30)

is a solution to (26).
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Recall now Proposition 1 of [3]

Proposition 2 If for Borel measurable u : E 7→ U

(B1) ∃d(u) such that for x ∈ Ê, N = 1, 2, . . .

Êu
x



exp





τC1
∧N∑

i=1

γ
(
c(x1

i , u(x1
i ))− d(u)

)






 < ∞ (31)

and for z ∈ C1

Êu
z



exp





τC1∑

i=1

γ
(
c(x1

i , u(x1
i ))− d(u)

)






 > 1 (32)

(B2) for x ∈ Ê

inf
N

Êu
x



exp





σC1
∧N−1∑

i=1

γ
(
c(x1

i , u(x1
i ))− λγ(u)

)






 > 0 (33)

(B3) for x ∈ Ê

sup
N

Êu
x



exp





σC1
∧N−1∑

i=1

γ
(
c(x1

i , u(x1
i ))− λγ(u)

)






 < ∞ (34)

with σC1 = inf {i ≥ 0 : x̂(i) ∈ C1}
then for x ∈ E

λγ(u) =
1
γ

lim
n→∞

1
n

ln Eu
x

{
exp

{
n−1∑

i=0

γc(xi, u(xi)))

}}
. (35)

Remark 1 Sufficient condition for (B1)-(B3) is
(D1): Ê

(an)
x {exp {γ‖c‖spτC1}} < ∞ for x ∈ Ê, for an = u(x1

n), where ‖c‖sp :=
sup(x,a)∈E×U c(x, a)− inf(x,a)∈E×U c(x, a). Notice that then we also have satisfied the con-
dition (A3) for fixed stationary control u.

8



4 Asymptotics of MPEs

Given Borel measurable u : E 7→ U assume that we have (D1) satisfied for 0 < γ < γ0.
Then by the Remark 1 there are solutions λγ(u) and wu

γ to the MPE (29) and λγ(u) is of
the form (35). We are now interested in the limit behavior of λγ(u) and wu

γ as γ → 0.

Proposition 3 We have that λγ(u) decreases to λ(u) and wu
γ (x) converges to wu(x) for

x ∈ E as γ ↓ 0, where λ(u) and wu are solutions to the APE (21).

Proof. Notice first that by Hölder inequality

1
γ1

ln Eu
x

{
exp

{
n−1∑

i=0

γ1c(xi, u(xi)))

}}
≤ 1

γ2
lnEu

x

{
exp

{
n−1∑

i=0

γ2c(xi, u(xi)))

}}
(36)

whenever 0 < γ1 ≤ γ2. Therefore by (35) λγ(u) is decreasing as γ → 0. Consequently
there is λ0 = limγ↓0 λγ(u). Consider now the split Markov process (x̂n) corresponding to
stationary control u. Let ŵu

γ be given by (25). Then

eŵu
γ (x) ≤ Êu

x



exp





τC1∑

i=0

γ
(
c(x1

i , u(x1
i ))− λ0

)






 (37)

Consequently by de l’Hospital rule we have

lim sup
γ↓0

ŵu
γ (x) ≤ lim sup

γ↓0
1
γ

ln Êu
x



exp





τC1∑

i=0

γ
(
c(x1

i , u(x1
i ))− λ0

)








= Êx





τC1∑

i=0

(
c(x1

i , u(x1
i ))− λ0

)


 (38)

Similarly for γ̄ < γ0

lim inf
γ↓0

1
γ

ŵγ(x) ≥ lim inf
γ↓0

ln Êu
x



exp





τC1∑

i=0

γ
(
c(x1

i , u(x1
i ))− λγ̄

)








= Êx





τC1∑

i=0

(
c(x1

i , u(x1
i ))− λγ̄

)


 . (39)

Therefore

Êx





τC1∑

i=0

(
c(x1

i , u(x1
i ))− λγ̄

)


 ≤ lim inf

γ↓0
1
γ

ŵγ(x)
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≤ lim sup
γ↓0

1
γ

ŵγ(x) ≤ Êx





τC1∑

i=0

(
c(x1

i , u(x1
i ))− λ0

)


 (40)

and letting γ̄ → 0 we obtain that

lim
γ↓0

1
γ

ŵu
γ (x) = Êx





τC1∑

i=0

(
c(x1

i , u(x1
i ))− λ0

)


 := w(x). (41)

Since ŵu
γ (x0) = γ(c(x0, u(x0)) − λγ(u)) for x0 ∈ C1, we have w(x0) = c(x0, u(x0)) − λ0.

Therefore by Lemma 4, λ0 = λ(u) and w(x) = ŵu(x). From (20) and (28) we immediately
have that limγ↓0 wu

γ (x) = wu(x), which completes the proof.
2

5 Approximations of the Markov process

In this section we shall introduce an approximation of Markov transition operator in the
form of a transition operator of Markov process satisfying the condition (13). We assume
first that
(A4):

P a(x,A) =
∫

A
p(x, a, y)ν(dy) (42)

where p > 0 is a continuous function. Moreover letting |x| := ρ(x, θ), where ρ is a metric
on E and θ ∈ E is a fixed point define

p̃N (x, a, y) =





p(x,a,y)
∆a

N (x) for |y| ≤ N
p(θ,ā,y)
∆a

N (x) for |y| ≥ N + 1
p(x,a,y)(N+1−|y|)+p(θ,ā,y)(|y|−N)

∆a
N (x) elsewhere

with ∆a
N (x) = P a(x,BN )+P ā(θ, Bc

N+1)+
∫
BN+1\BN

[p(x, a, y)(N +1−|y|)+p(θ, ā, y)(|y|−
N)]ν(dy), where BN = {x ∈ E : |x| ≤ N} and ā is a fixed element of U .
Then let

pN (x, a, y) = p̃N (x, a, y) if |x| ≤ N

pN (x, a, y) = p̃N

(
x
|x|N, a, y)

)
for |x| > N .

and define
P a

N (x, dy) = pN (x, a, y)ν(dy) (43)

We clearly have that
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Lemma 7
sup
a∈U

‖P a
N (x, ·)− P a(x, ·)‖var → 0 (44)

as N →∞, uniformly in x from compact sets. Furthermore for each N

sup
a,a′∈U

sup
x,x′∈E

sup
y∈E

pN (x, a, y)
pN (x′, a′, y)

< ∞ (45)

which means that (13) is satisfied.

Remark 2 For controlled Markov process with transition operator P a
N (x, dy) defined in

(43) we clearly have that conditions (F), (11) and (13) are satisfied. Consequently we have
solutions w(N), λ(N) and w

(N)
γ , λ

(N)
γ to the Bellman equations (9) and (10) respectively

with operator P a replaced by P a
N . Furthermore, there exist optimal stationary controls û(N)

and û
(N)
γ , which are in fact selectors to the right hand sides of (9) and (10) respectively,

for the cost functionals J (N) and J
(N)
γ which correspond to the functionals J and Jγ with

operator P a replaced by P a
N .

6 Solution to Additive Bellman Equation

(A5) ∃ε>0 such that ∀K compact⊂ Ê

sup
a∈U

sup
x∈K

sup
N

Êa,N
x



|

τC1∑

i=1

(c(x1
i , û

(N)(x1
i ))− λ(N))|1+ε



 = M(K) < ∞, (46)

where above we control using in the first moment control a0 = a and an = û(N)(x1
n) for

n ≥ 1.

Theorem 1 Under (A5) there exist λ and a continuous function w : E 7→ R such that

w(x) = inf
a∈U

[c(x, a)− λ +
∫

E
w(y)P a(x, dy)] (47)

Moreover λ is an optimal value of the cost functional (7) within the class Us. The control
û for which infimum in (47) is attained, is an optimal control.

If for an admissible control (an) we have limt→∞ 1
t E

(an)
x {w(xt)} = 0 then λ ≤ Jx((an)).

Proof. The proof consists of several steps:
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Step 1. We prove first that supN Êa,N
x

{
ŵû(N)

N (x̂1)
}
, where ŵû(N)

N is a solution to APE

corresponding to transition operator P û(N)
, is bounded uniformly on compact subsets of

(E0 ∪ C1)× U . In fact,

Êa,N
x

{
ŵû(N)

N (x̂1)
}

= Êa,N
x

{
χC1(x̂1)

(
c(x1

1, û
(N)(x1

1))− λ(N)(û(N))
)}

+Êa,N
x



χCc

1
(x̂1)

τC1∑

i=1

(
c(x1

i , û
(N)(x1

i ))− λ(N)(û(N))
)


 (48)

and by (A5) follows the required boundedness.
Step 2. We show now that for N = 1, 2 . . . , the functions Êa,N

x

{
ŵû(N)

N (x̂1)
}

are equicon-
tinuous in x and a from compact subsets of E0 ∪ C1 and U respectively.
Notice first that by (44) for each compact set K ⊂ E0 ∪ C1, ε′ > 0 there is a compact set
K1 ⊃ C0 ∪ C1 such that

sup
a∈U

sup
x∈K

sup
N

P̂ aN
x {x̂1 ∈ Kc

1} < ε′ (49)

Furthermore by Hölder inequality

sup
a∈U

sup
x∈K

sup
N
|Êa,N

x



χCc

1
(x̂1)χKc

1
(x̂1)

τC1∑

i=1

(c(x1
i , û

(N)(x1
i ))− λN (û(N)))



 |

≤ sup
a∈U

sup
x∈K

sup
N

(
P̂ a,N

x {x̂1 ∈ Kc
1}

) ε
1+ε sup

a∈U
sup
x∈K

sup
N


Êa,N

x



|

τC1∑

i=1

(c(x1
i , û

N (x1
i ))

−λN (ûN ))|(1+ε)
}) 1

1+ε ≤ ε′
ε

1+ε (M(K))
1

1+ε (50)

Consequently by (48)-(50)

|Êa,N
x

{
ŵû(N)

N (x̂1)
}
− Êa′,N

x′
{
ŵû(N)

N (x̂1)
}
|

≤ ‖c‖‖P̂ aN (x, C1 ∩ ·)− P̂ a′N (x′, C1 ∩ ·)‖var + 2ε′
ε

1+ε (M(K))
1

1+ε

+|Êa,N
x

{
χK1(x̂1)ŵû(N)

N (x̂1)
}
− Êa′,N

x′
{
χK1(x̂1)ŵû(N)

N (x̂′1)
}
| (51)

For δ > 0 choose K1 in (49) such that ε′
ε

1+ε (M(K))
1

1+ε < δ
6 . Since

|Êa,N
x

{
χK1(x̂1)ŵû(N)

N (x̂1)
}
− Êa′,N

x′
{
χK1(x̂1)ŵû(N)

N (x̂′1)
}
|

≤ sup
x∈K1

|ŵû(N)

N (x)|‖P̂ aN (x,K1 ∩ ·)− P̂ a′N (x′, K1 ∩ ·)‖var

12



for x, x′ ∈ E0 ∪ C1 and a, a′ ∈ U such that

‖P̂ aN (x,C1 ∩ ·)− P̂ a′N (x′, C1 ∩ ·)‖var ≤ δ

3‖c‖ (52)

and
‖P̂ aN (x,K1 ∩ ·)− P̂ a′N (x′,K1 ∩ ·)‖var ≤ δ

3 supz∈K1
|ŵû(N)

N (z)| (53)

by (51) we obtain that

|Êa,N
x

{
ŵû(N)

N (x̂1)
}
− Êa′,N

x′
{
ŵû(N)

N (x̂1)
}
| ≤ δ.

Now by (A5) supz∈K1
|ŵû(N)

N (z)| is bounded in N and therefore by (44) we can choose x,
x′ and a, a′ in (52) and (53) uniformly in N , which completes the proof of equicontinuity.
Step 3. By step 1, 2 and (20) we immediately see that

Ea,N
x

{
wû(N)

N (x1)
}

is uniformly (in N) bounded and equicontinuous in x and a from compact subsets of
E×U . Since û(N) is optimal for P a

N (x, dy) we have that wûN
N = w(N). Therefore by Ascoli

theorem (thm. 33 of [8]) there is a subsequence Nk such that

Ea,Nk
x

{
w(Nk)(x1)

}

converges uniformly in a ∈ U and x from compact subsets of E and λ(Nk)(û(Nk)) → λ (since
λN (û(N)) ∈ [infx∈E,a∈U c(x, a), supx∈E,a∈U c(x, a)]). Consequently there is a continuous
function w such that

w(x) = inf
a∈U

[c(x, a)− lim
k→∞

∫

E
w(Nk)(y)P a

Nk
(x, dy)] (54)

Step 4. To prove that function w defined in (54) is a solution to the Bellman equation
(47) it remains to show that

lim
k→∞

Ea,Nk
x

{
w(Nk)(x1)

}
= Ea

x {w(x1)} . (55)

In fact, by (A5) and Fatou lemma

Ea
x {w(x1)} ≤ lim

k→∞
Ea,Nk

x

{
w(Nk)(x1)

}
< ∞ (56)
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By step 1 and 2 one can find a compact set K1 ⊃ C such that

sup
N

sup
a∈U

Ea,N
x

{
χKc

1
(x1)|w(N)(x1)|

}
≤ ε

3
(57)

and
sup
a∈U

Ea
x

{
χKc

1
(x1)|w(x1))|

}
≤ ε

3
. (58)

Therefore

|Ea
x {w(x1)} − Ea,Nk

x

{
w(Nk)(x1)

}
| ≤

|Ea
x {χK1(x1)w(x1)} − Ea,Nk

x {χK1(x1)w(x1)} |
+|Ea,Nk

x

{
χK1(x1)

(
w(x1)− w(Nk)(x1)

)}
|

+Ea,Nk
x

{
χKc

1
(x1)w(Nk)(x1)

}
+ Ea

x

{
χKc

1
(x1)w(x1)

}

≤ sup
x∈K1

|w(x)|‖P a(x,K1 ∩ ·)− P aN (x, K1 ∩ ·)‖var + sup
x∈K1

|w(x)− w(Nk)(x)|+ 2ε

3
.

Consequently letting k → ∞ and taking into account that ε may be arbitrarily small we
obtain the convergence (55). By continuity on x and a of the right hand side of (47) we
have the existence of a Borel measurable function û for which the infimum is attained.
Step 5. We shall show now that for Borel measurable u : E 7→ U we have we have λ(u) ≥ λ.
In fact, then

w(x) ≤ c(x, u(x))− λ +
∫

E
w(y)P u(x)(x, dy). (59)

Define following (22)

ŵu(x1, x2) = c(x1, u(x1))− λ + Ê
u(x1)
x1,x2

{
w(x1

1)
}

(60)

Since by Corollary 1 for a ∈ U

Ea
x {w(x1)} = Êa

δ∗x

{
w(x1

1)
}

=

χC(x)[(1− β)Êa
(x,0)

{
w(x1

1)
}

+ βÊa
(x,1)

{
w(x1

1)
}
] + χE\C(x)Êa

(x,0)

{
w(x1

1)
}

from (59) we have

w(x) ≤ c(x, u(x))− λ + χC(x)[(1− β)Êu(x)
(x,0)

{
w(x1

1)
}

+βÊ
u(x)
(x,1)

{
w(x1

1)
}
] + χE\C(x)Êu(x)

(x,0)

{
w(x1

1)
}

=

χC(x) ((1− β)ŵu(x, 0) + βŵu(x, 1)) + χE\C(x)ŵu(x, 0).
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Therefore

Ê
u(x1)
(x1,x2)

{
w(x1

1)
}
≤ Ê

u(x1)
(x1,x2)

{
χC(x1

1)
(
(1− β)ŵu(x1

1, 0) + βŵu(x1
1, 1)

)
+ χE\C(x1

1)ŵ
u(x1

1, 0)
}

= Ê
(u(x1)
(x1,x2) {ŵu(x1)} . (61)

Consequently by (60) we have that

ŵ(x1, x2) ≤ c(x1, u(x1))− λ + Ê
u(x1)
(x1,x2) {ŵu(x1)} (62)

Iterating the last inequality for z ∈ C1 we obtain

Êu
z {ŵ(x1)} ≤ Êu

z





τC1∑

i=1

(c(x1
i , u(x1

i ))− λ) + Êu
xτC1

{w(x1)}


 (63)

Since by step 1 we have that Êz {ŵ(x1)} < ∞ we obtain

Êz





τC1∑

i=1

(c(x1
i , u(x1

i ))− λ)



 ≥ 0,

for z ∈ C1, which by Lemma 3 implies that λ ≤ λ(u).
Step 6. By Proposition 1 and step 5 we have for any Borel measurable u : E 7→ U

λ = λ(û) = Jx(û(xn)) ≤ Jx((u(xn))),

which shows optimality of (û(xn)) within the class of stationary controls. If for an admis-
sible control (an) we have lim supt→∞

1
t E

(an)
x {w(xt)} = 0, then iterating (47) we obtain

w(x) ≤ E(an)
x

{
t−1∑

i=0

(c(xi, ai)− λ) + w(xt)

}

and dividing both sides of the last inequality by t and letting t to infinity we obtain that
Jx((an)) ≥ λ which completes the proof.

2

7 Solution to Multiplicative Bellman Equation

Assume now that
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(A6) ∃ε>0 such that ∀K compact⊂ Ê

sup
a∈U

sup
x∈K̂

sup
N

Êa,N
x



exp





τC1∑

i=1

γ(c(x1
i , û

(N)
γ (x1

i ))− λ(N)
γ (û(N)

γ ))









1+ε

< ∞, (64)

where above we control using in the first moment control a0 = a and an = uN (x1
n) for

n ≥ 1.
We can now recall Theorem 1 of [3]

Theorem 2 Under (A1)-(A4) and (A6) there exist λγ and a continuous function wγ :
E 7→ R such that

ewγ(x) = inf
a∈U

[eγ(c(x,a)−λγ)
∫

E
ewγ(y)P a(x, dy)] (65)

Moreover, under (D1): Ê
(an)
x {exp {γ‖c‖spτC1}} < ∞ for x ∈ Ê, for all (an) ∈ Us

we have that λγ is an optimal value of the cost functional Jγ
x and the control (ûγ(xn)),

where ûγ is a Borel measurable function for which the infimum in the right hand side of
(42) is attained, is an optimal control within the class of controls from Us.
Furthermore, if for admissible control (an) we have that

lim sup
t→∞

E(an)
x

{(
Eat

xt

{
ewγ(x1)

})α}
< ∞

for every α > 1, then λγ ≤ Jγ
x ((an)).

8 Asymptotics of Bellman equations

Notice first that by Proposition 3 for any Borel measurable u : E 7→ U provided that (D1)
is satisfied for sufficiently small γ > 0 we have

Jγ((u(x(n))) → J((u(x(n)))) (66)

as γ → 0, and the limit is decreasing.
Consequently we have

Theorem 3 Under (A1)-(A6) together with (D1) satisfied for sufficiently small γ > 0 we
have

lim
γ→0

λγ = λ. (67)

Furthermore, risk neutral ε- optimal control u ∈ Us within the class of stationary
controls is nearly optimal for the risk sensitive cost functional with γ close to 0, within
the class of stationary controls.
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Proof. By Theorem 2
λγ = inf

u∈Us

Jγ(u) (68)

and
λ = inf

u∈Us

J(u). (69)

Therefore by (66) we immediately obtain (67). Now, if u ∈ Us is ε- optimal for J within
the class of stationary strategies, then by (66) for 0 < γ < γ0 we have

Jγ(u) ≤ J(u) + ε ≤ λ + 2ε ≤ λγ + 3ε. (70)

which is required 3ε - optimality.
2

Remark 3 Although we have convergence (67) it is not clear that wγ being a solution to
the Bellman equation (65) converges, (or at least its subsequence) to w which is a solution
to the equation (47), as γ → 0, provided that at fixed point x̄ ∈ E we have wγ(x̄) = w(x̄).
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