1 Preliminary results

1.1 The control problems

Given an underlying probability space (2, F, P), let E be a locally compact
separable metric space. On E consider a state/signal process (x,,) assumed to
be Markov with initial distribution g and transition kernel P*(z,dz), where
a is the control parameter with a € U a compact metric space.

The process (z,,) is observed through an observation process (y,), yn €
R?, which is statistically dependent on x,, via

P{yn+1 S A|$0,9€17 . 7$n+1,Yn} = /T($n+17y) dy (1-1)
A

forn =0,1,2,..., where A € B(R?) with B(R?) denoting the family of Borel
subsets of R4, Y™ = o{y1,...,yn}, YO ={0,Q} and r: E x R — [0, 00) is a
fixed Borel measurable function.

Notice that (1.1) includes observation models with additive noise as e.g.

Yn = h(zy) + ow,
with (wy) i.i.d. standard Gaussian for which

) = @ro?) Fexp{ = o5y~ hz)) (1.2

Although we are mainly interested in the original model having a nonfinite
number of states and observations, all results can be easily transformed to
the case when the state is ' = {1,2,...m}, and the observations take values
in the finite set D = {dy,...d,}. In this case we assume that there exists a
function r: E' x D — [0, 1] such that the D-valued observation process (yy)
of (z,) satisfies the following relation

P{yn+1 = di|x0> L1y Tyl = ja Yn} = T(ja dz) (]‘3)

forje F,1 <i<s.

We shall consider as admissible controls, sequences u = (ag, a, as, . . .) of
U-valued random variables a,, adapted to the observation o-field (Y™). The
values taken by these random variables will generically be denoted by the
letter a.



Our study concerns the following three types of stochastic control prob-
lems.

I) Finite horizon problem with cost functional

T-1

JE(u) = B elwn, an) + b(zy) } (1.4)

n=0

where T > 0 is given, E; denotes expectation given the initial mea-
sure p and the admissible control u

II) Infinite horizon problem with discounting with cost functional

o0

Jﬁ(u) = Z B E{c(Tn, an)} (1.5)

n=0

where 3 € (0, 1) is the discount factor.

IIT) Infinite horizon ergodic cost problem with cost functional

-1
Ju(u) = lirTn sup T~ > Ei{c(xn, an)} (1.6)
-0 n=0

The purpose is that of determining a nearly-optimal (e-optimal) control
for each of the three problems, namely a control for which the cost func-
tion comes within € of its infimum. This will be achieved by means of an
approximation approach.

1.2 The filter process

To study the stochastic control problems with partial observation described
in the previous subsection, it will be convenient to associate with each of
them a corresponding complete observation problem where the new state is
given by the filtering process (7%) which, for a given admissible control u,

A € B(E) and a given initial law u for (z,), is defined as

TH(A) = ()
{ Ti(A) = lzf);{xn € Ay (1.7)

n

where, analogously to E7, P} denotes the probability induced by (), given
the control u and the initial law p.



Lemma 1.1 Given (1.1), for each admissible control u we have the following
representation of the filtering process

[ 1) P (i d2)
T (4) =2 = MOy, m)(A) (18)
J () P (i d2)

E

P, a.e., with the mapping M*(y, ) defined implicitly.
Proof. Let FF € bB((R)") and A, C € B(R%). By (1.1), the properties of

conditional expectations, and Fubini’s Lemma, we have

M G ) AN 1) s - y) AP =

Q/E[M“"(ynH, T (A)X o Yn) [T, Y E (g1, ) dP =

[ Mo @ m) (A (@) dyF (o, ) P =

J [ M m A BBl @i )Y ) [V} dyF (s ) AP =
Moy, w2 (AVEL [ (2, ) P (2, d2) Y ") dy o, ) AP =

E

(w0 (A) [ 1z ) P (s, d2) dy .. yn) dP =
E

M
/r(z, y) P (my, dz) dyF (y1, ..., yn) dP =
A

[//T(z,y) dyP (xy, d2)|[Y"|F(y1,...,yn) dP =
A cC

—

BL[ (1, y) dyx y(@ne )Y 2]V F i, ) AP =

r(@nt1,Y) dYX 4 (Tns1) F (Y1, - - yn) AP =

& O~ &

[Xc<yn+1)|yn7 ‘rn-l-l]XA(‘TTH-l)F(yl? ce 7yn) dP =



X Unt1)X 4 (T ) F (Y15 - - oY) AP =

Q
/Wnﬂ(A)Xc(ynH)F(yh < Yn) AP

Therefore by the definition of conditional expectation we obtain (1.8).

In the case when the state and observation processes take their values in
finite sets ' and D respectively and (1.3) holds, by analogy to Lemma 1.1
we obtain

Corollary 1.2 For the case of finite state and observations spaces under
(1.3), for each admissible control u we have the following representation of
the filtering process

7(Js Ynta) P (7, 5)
> (K, Yoyr ) P (7, K)
k=1

To1(d) = t= M (Yny1, 7,) () (1.9)

P, a.e., for 1 < j <m, where, similarly as in (1.8), we define implicitly the
mapping M(y, ).

We point out that all the results obtained in the sequel for general £ and
D = R% hold also for the case of E = {1,2...m}, D = {dy,...ds}, provided
the assumptions and the statements are appropriately reformulated replacing
e.g. integrals over £ and R? by suitable summations. Given the filter process
(%) corresponding to an admissible control u, we can rewrite the three cost
functionals of the preceding subsection as

)
JMT(u) = E}j{ > /cn(x,an)wz(dx) (1.10)

n=0 E

+ / b(a)m(dar)}



1)

Jf(u ﬁnE" /c T, Q)T } (1.11)
n=0 B
I11)
Jy(u) =limsup T~ Z E“ /c (x,an)m } (1.12)
T—o0 n=0 E

provided ¢,,c € bB(E x U) and b € bB(E),

The recursive relation (1.8) together with the cost functionals (1.10)—
(1.12) defines the complete observation problems corresponding to the par-
tially observed problems with the respective cost functionals (1.4)—(1.6).

By applying the Bellman equations (see section 3.2 below) to the problems
corresponding to case II), we find that among the optimal controls (as far as
they exist) there is a stationary feedback control given by a function of the
current filter process, i.e. such that

an = u(my,) (1.13)

with u € B(P(E),U) and which will be referred to as ”control function”.
(For simplicity, in what follows, we shall drop the upper index « in 7%, when
writing u(m,)).

Assuming controls of the type (1.13) we obtain the Markov property of
the filtering process.

Lemma 1.3 Given u satisfying (1.13), the filter process (m) is Markov with
respect to the o-field Y™ and has transition operator

I F) = [ [ FOI )y, v)r(z,9) dyP o) (v, d2) (1.14)

E Rd

where v € P(E) and F € bB(P(E)).
Proof. By (1.1) we easily obtain

E[F(m)|Y"] = E[F(M"™) (1, m0)) Y]
= E[E[F(M"™) (i1, 7)Y ", 2 ][]



= B| / F(MY (1)) (@1, ) dy|Y"]

=4?/Ewwwmwmmm%ﬂwmmJ4@wﬂ

=F /F (M) (y, ) /7“ z,y) P (2, d2) dy|Y"}
B

—//FMww%mmww@wwwrm>

E Rd
Therefore 7l is in fact Markov with the transition operator of the form (1.14).

We obtain further properties of the transition operator II of the filtering
process making first the assumptions:

(A1) P*(x,-) is Feller for fixed a € U, that is for any ¢ € C(E), x, — = we
have
Pz, p) — P*x,p) as n— oo (1.15)

(A2) if U 5 a, — a, then for ¢ € C(FE), and compact set K C E
sup |P* (z,¢) — P*(xz, )] = 0 as n — oo (1.16)
€K

(A3) r € C(E x R%)
(A4) for E 3>z, — x, p € C(R?) we have

R(@n, )= /r(xn, yely) dy — R(z,¢),as n — o0 (1.17)
R4

Proposition 1.4 Under (A1)-(A4), for o € C(E), F € C(P(FE)), the map-

Pings
Ux R*x P(E) 3 (a,y,v) — M*y,v) (1.18)

and
Ux P(E) //F M*“(y,v))r(z,y)dyP*(v,dz) (1.19)
B Ra

are continuous.



P roof. Let us first notice that the mapping
U x P(E) > (a,v) — P*v, @) (1.20)

for p € C(F) is continuous.

In fact, let U 3 a,, — a and P(E) > v, = v, denoting by = the weak
convergence on P(FE). Clearly the set I' = {v, 1,15, ...} is compact in P(E).
Therefore by Prokhorov’s theorem (see Theorem 1.6.2 of [6]) I' is tight that
is for any £ > 0 one can find a compact set K C E such that u(K°¢) < ¢ for
each p el

For given € > 0 choose the compact set K C E as above. We then have

|Pam<yma()0) - Pa(l/?@)l S |Pam(ym790) - Pa(ym790)|
P (v, ) — P(v, 9)| < 2elleo]| + Sup [P (x, )

—Pz,0)| + |P" (U, ) — P (v, 0)]

By (A2) the second term on the right hand side converges to 0. By (A1) the
mapping = — P%x, ) belongs to C(F) and therefore the third term also
converges to 0. Since € can be chosen arbitrarily small we obtain (1.20).

We show now the continuity of the mapping (1.18). One can easily see
that it is sufficient to show the continuity of the numerator in (1.8) i.e. to
prove that for U > a,, — a, R* 3> y,, — y, P(E) 3 v,, = v we have

/gp (2, Ym ) PO (U, dz) — /go (z,y)P*(v,dz) (1.21)

for ¢ € C(E).

To show (1.21) notice that by (1.20) the set {P*(v,-), P*(vp,:) n =
1,2,...,} is compact in P(F) and consequently, by Prokhorov’s theorem,
is tight.

Therefore for given € > 0 we can find a compact set K C F such that
P (U, K¢) <&, P*(v, K°) <eform=1,2,... .

We have

| [ ey P (s d2) = [ o2z ) P (0, d)|

E E

< [1e@] 1z 9) = 1z 9P (v d2)

E



+’/90 r(z,y) (P (Vm,dz) — P“(V,dz))‘
§2||<P|| Irlle + lillsup{r(z, ym) = r(z y)l

—i—’/(p r(z,y) (P (Vm,dz) — P“(l/,dz))‘

By (A3) and (1.20) the second and the third terms on the right hand side
converge to 0, as m — oo. Therefore (1.21) holds and the continuity of (1.18)
is established.

It remains to show the continuity of the mapping (1.19). Let U 3 a,, — a
and P(E) 3 vy, = v.

We have
[ [ PO () ) dy P 1, d2)
— [ [ FOam )z, ) dyP (v, d2)|
E Rd
< [ [ 1P @.0) = PO (. 0)lr (=) dyP™ (v, 2)

| [ EOI 0z, ) dy (P (v, d2) = P(v, d2)|
= EmR—I— 11,

Since the mapping y — F(M(y,v)) belongs to C(R?), by (A4) and (1.20)
we obtain I1,, — 0 as m — oo.

Given € > 0, by the tightness of {P*"(vy,,-), m = 1,2,...} there is a
compact set K C E such that P (v,,, K¢) < e form = 1,2,.... By (A4)
the family of measures {R(x,-) z € K} is compact in P(R?), and therefore
tight. So one can find a compact set L C R? such that R(z,L¢) < ¢ for
r e K.

We can now evaluate I,,. We have

I < 2|Fle+ [ [ IO (g, ) = FQE*(,0)) (2, 9) dy P (v, d2)
K Rd
< APl sup [F(M™ (y,v) = F(M*(3,))



By the continuity of the mapping (1.18), the second term on the right hand
side converges to 0, as m — oco. Since € could be chosen arbitrarily small,
I, — 0, as m — oo. This completes the proof of the continuity of the
mapping (1.19).

From Proposition 1.4 we immediately have

Corollary 1.5 Under (A1)-(A4), for u of type (1.13) and u € C(P(E),U)

the transition operator

HU(V)(V, -) s Feller
i.e. for F € C(P(E)) the mapping P(E) > v — [[*“") (v, F) is continuous.

For a given a € U consider finally the transition operator [[*(v,-) that
corresponds to [[*““)(v,-) as defined in (1.14) for u(v) = a. We shall now
formulate a property of []%(v,-) that is associated with concave continuous
functions v : P(E) — R

We say that v : P(E) — R is concave if for v = Ay + (1 — X)vg, 11,1 €
P(E), X € ]0,1] we have

v(v) > () + (1 — Nov(ve)
We need the following

Lemma 1.6 Let m(w) be a P(E) valued random variable on (2, F, P) and F"
a sub-o-field of F'. Then for any concave continuous function v : P(E) — R
we have

v(E(r|F) = E(o(m)|F)

P roof. It is well known (see Theorem 11.7(a) of [23]) that a concave
continuous function v is a lower envelope of affine functions v;(v) = «; +
Biv(fi), fi € C(P(FE)),i € I a certain family of indices, i.e.

v(v) = 12; v;(v)

Therefore



vi( B(r|F) = E{vi(m)|F'} = E{o(m)|F'}

and

v(E(n|F)) = infier vi( E(x|F')) > E{v(m)|F'}

Proposition 1.7 Under (A1), (A3), (A4) for v : P(E) — R continuous

and concave and a € U, the function
P(E)>v— ] (vv) (1.22)
15 also continuous and concave.

P r o o f. The continuity of the mapping (1.21) follows from the proof of
Proposition 1.4. It remains to show concavity.

Let v = Ay + (1 — Ao, vq,18 € P(E), A € [0,1]. Define 7 as a P(E)
valued random variable such that

P{ﬁ'():l/l}:)\ P{ﬁ'OZVQ}:]_—)\

Let (z,) be a Markov process with transition operator P*(z, -) and initial
law v and let (y,) be the observation process satisfying (1.1).
Furthermore let, for A € B(E),
mo(A) = v(A)
mn(A) = P{z, € A|Y"} (1.23)
T (A) = P{x, € A|lY"}

with Y™ = o{y1,...,yn}, Y™ = o{y1,...,Yn, To}. By the proof of Lemma
1.1 and Lemma 1.3 we see that

ﬁn+1(A) = Ma(yn—i-la ﬁn)(A)

P ae. and 7, is a Markov process with respect to the o-field Y, with
transition operator [[*.

10



Therefore
Efo(m)} = E{o(m)lmo} = A[[ (0, 0) + (1 =N [ (y0)  (1.24)
By (1.23) we have E{7|Y'} = m, and using Lemma 1.6 we obtain
v(m) > B{v(m)|v'}
Therefore by (1.24)
[T (v,0) = E{v(m)} = A" (v1,0) + (1= M ] (v, 0)

which completes the proof of Proposition.

1.3 A general measure transformation

One of the most efficient methods to perform the approximations leading to
the construction of e-optimal controls, at least for finite horizon problems; is
based on measure transformation techniques. The main advantage of these
techniques lies in the fact that they allow to have the same admissible con-
trols in the original and the approximating problems; this in turn allows to
compare the cost functionals of the original and the approximating problems,
evaluated for a same control w.

In this subsection we describe a general measure transformation approach
assuming that the observations (y,) are given by the formula

Yn = h(xp, wy), for n=1,2,... (1.25)

where w, are R¢ valued i.i.d. with common, strictly positive density g, and,
for each n, w, is independent of z; for j < n. Furthermore, for each z € F,
h(z,-) is a C* diffeomorphism of R? with inverse function k(z, -) and Jacobian
of k(x,y) denoted by A(z,y).

Given A € B(R?) we have for n =0,1,2,...

P{yn+1 € A‘xo, LlyeeosLntl, Yn} =
P{wn+1 € k(anrl’ A)|x0,a:1, <oy T, Yn}

9w dy = [ 9(k(znsr, y)IA@nsr, )] dy
k(zn+1,4) A

(1.26)

11



with |A(z,41,y)| standing for the determinant of Jacobian A(z,1,y). Hence
(1.1) is satisfied with r(x,y) = g(k(z,y))|A(z, y)|-.
Let F,, = o{(x;,y:), i <n}, Ap =1 and

A= ﬁ g(yi)A (1.27)

9\Yn
E[Ani|F] = A E [MW’J

g(h(xn_H, wn—H))
= A E[E Tnt1, Fo||Fy
[ [g(wn+1)|A($n+1a h<xn+17 wn+1))| | ! } ’ ]

= MB{ [ g(h(@ns, w)|A @i, b, )| dwlF} = A,
Rd

using the fact that |A(x,. 1, h(z,11,w))| 7" is the determinant of Jacobian of
h(Zpi1, ).

Thus A, is an F,, martingale. Furthermore its mean is equal to 1 and so
we can define a new probability measure P° on ) such that the restrictions
P, Pl?1 of P and PY respectively to the o-field F,, for each n = 1,2, ... satisfy

P (dw) = Ay (w) Py (dw) (1.28)
Clearly
P (dw) = Ly(w) P2 (dw) (1.29)
with
Lo(w) =1
W) — ol = o (@ yi) (1.30)

Moreover we have

Lemma 1.8 Under the measure P°, the vy, are i.i.d. with common density g,
independent of x; with j < n and (x,) is a controlled Markov process with
the same transition probability P* (x,,dy) at the generic period n as under
P and where a,, are adapted to Y™.

12



Proof. Let fi, fo € bB(RY), f3 € bB(E). For j < n we have by (1.26)

Eo{fl(yn)f2(yj)} = E{\u fi(yn) fo(y )}

=E{An—lfQ(yj)E{fl(yn)r(mi o Fua))

= B{Au 1 faly; / fi()g(y) dy}

= E{An_1 fo(y;) }/f1 y)g(y) dy
= E% fa(y;)} / fi()g(y) dy

Since, letting f; = 1, from the above we obtain E°{f1(y;)} = [ f1(y)g(y) dy
R4
for any f; € bB, we finally have

B i)} = [ Fiw)atw)dy [ Fa(y)aly) dy

which means that, under P°, the y,, are i.i.d. with common density g.
Now forn > 7 >0

EY{f1 (o) fi(j)} = E{An1fs<%>E{f1<y”>r<igny)n>

= / Hia(y) dy E{A B fa(x)| Fra})

|xn7 anl}}

_ / A@)g(y) dyE{A; P51 (z; 1, f3)}

which gives the second statement of the Lemma for j = 1.
Taking into account that a;—; = dj_1(v1,...,y;-1) for some d;_; €
B((R%)~1,U) we have for j > 1

E{N; 1 P (-1, f3) }

—E{AJ QE{P] I(ZL‘] 1,f3)¥

r(Tj-1,Y5-1)

|5EJ 1, Fj 2}}

13



= E{Ajd / ijl(yla e Yi—-2,Y, 953'71)9(9) dy}
Rd

= E{AJ_2 / / Gj—l(yl» e Yi-2,Y, z)g(y)dypaj_2 (xj—Qa dZ)}

E Rd

Wlth ijl(yla Ce ,yjfl, .CL') = de_l(yl """ yj_l)($, fg)

We can iterate the last equality which leads to the conclusion that, under
P° |y, are independent of z;; with 5 < n and (x,) is a controlled Markov
process with transition operator P (z,, ).

|
For later use it will be convenient to define an unnormalized filtering
process o as follows, where A € B(E)

oy(A) = pu(A) the initial law of (z,,)

o1 (A) :/T(Z’ynH)Pan(UZ’dZ) (1.31)
% 9(Ynt1)
Clearly
u _ UZ(A) 0
T (A) = o4(E) P ae. (1.32)

Moreover
Lemma 1.9 For f € bB(E), n=0,1,..., we have under (AS3)

c"(f) = E°{L,f(x,)|Y"} PS a.e. (1.33)

P r oo f. We use induction. Since Y° = {0,Q} and Ly = 1 we have
oy (f) = u(f) and (1.33) holds for n = 0.
Assume (1.33) is satisfied for n. Then for n + 1 we have

EO{Ln—&—lf(:Bn-i-l) |Yn+1}

T<xn 15, Yn 1) n
:ED{LnEO{Mf(fﬂnﬂ)wmynﬂ}w +1}

— E'{L, b/ T;?yﬁ)l) F(2)P™ (0, dz)| Y™}

o 7“(2,’7 yn—l—l) P (gt dz
= [ sy 1A

14



by the independence of y,,; and induction hypothesis on n. Taking into
account (1.31) this means that we have obtained

EO{Ln+1f(xn+1)|Yn+1} =0 (f)
Thus by induction (1.33) holds.

From the representation (1.33) we immediately have
Corollary 1.10 The process o“(E) is a (Y™, P°) martingale with mean 1.

With the use of the measure transformation just introduced, Lemma 1.8
and the fact that a,, is Y™ measurable we can rewrite the cost functions for the
problems I-IIT (see (1.4)—(1.6)) as follows, assuming that ¢,, ¢ € bB(E x U),
bebB(E)

T-1

JEw) = EY{Lr( Y eulwn, an) + b(zy))}

n=0
T—1

S B Laenlitn, an)} + B (o)

n=
T-1

— Z EOU{EOU{L Cn(Tn,a,)|Y"}}
+E0“{E0“{LTb(xT)|YT}} (1.34)
- Eou{/ Cn(Tp, an)ot(dx)}

EOU{ /

_ EOU{Z / en(, an)ot (dz) + / b(w)o? (dx)}

1)
— Zoﬁ”Eﬂu{ / oz, ay)ot(dz)} (1.35)

15



I11)

J,(u) = limsup T_IESU{/ c(x,an)on(dx)} (1.36)
T—o0 o

The original control problems with partial observation have thus been
reformulated as control problems with complete observation where analo-
gously to (1.10)—(1.12) the new state is the unnormalized filter process o,
that satisfies the linear relation (1.31) and the cost functionals are given by
(1.34)—(1.36).

Notice also that the cost functionals (1.34)—(1.36) are expressed as expec-
tations with respect to the reference probability measure P°, with respect to
which y,, are i.i.d. with common density g(y).

In the particular case when the state and observation spaces are finite
sets we can also construct a measure transformation. For this purpose we
assume that

Yn = h(l’n, wn)

with (w,) being i.i.d.D-valued random variables, P{w, = d;} = g(d;) > 0
for 1 <i < s and for each x € E, h(x,-) is a 1 — 1 transformation of D with
inverse function k(z,-).

Then (1.3) holds with r(z,y) = g(k(x,y)), A, defined by (1.27) with
r(zi,y;) = g(k(x;,y;)) is a P martingale and Lemma 1.8 holds.

Moreover, by analogy to (1.31), one can define an unnormalized filtering
process as

oy(j) = p(j4) the initial law of (z,)

onia (i) = %PQ"@ZJ)

j=1,2,...,m for which (1.32), (1.33) and Corollary 1.10 hold.

Furthermore, replacing the integrals over E by suitable summations in
(1.34)-(1.36) we obtain the corresponding representations of the cost func-
tionals.

(1.37)

16



2 Finite horizon problem

2.1 The idea of the approximation approach

Although the basic idea underlying our approximation approach that leads
to the construction of nearly optimal controls is the same throughout, in this
section we shall present it in a context based on measure transformation for
which the original finite horizon partially observed problem can equivalently
be represented in the complete observation form (1.31), (1.34). As already
mentioned at the beginning of section 1.3, the reason for this is that the
measure transformation allows our approximation approach to be performed
in the most efficient way.

On the other hand, to perform the measure transformation, we need some
regularity of the observation function as described below (1.25); furthermore,
see section 2.2, under the measure transformation we need a strong approxi-
mation for transition operators. If the conditions for the applicability of the
measure transformation do not hold, we have to use the normalized filter
(m%) defined as in (1.7) and consider for the original problem the equivalent
complete observation form (1.8), (1.10). In the next chapter 3, in the con-
text of the infinite horizon problem with discounting, we shall discuss our
approximation approach for this latter situation. We remark here that, al-
though in chapter 3 the approach is worked out for the infinite horizon case
with discounting, it can be easily adapted also to the present finite horizon
case. Consider the original finite horizon control problem, which in its par-
tial observation form is characterized by the observation equation (1.25) and
cost (1.4) and which has the equivalent complete observation representation
(1.31), (1.34). We shall now associate with it a sequence of approximating
problems such that

a) each approximating problem admits an optimal, or nearly optimal, so-
lution that can be explicitly computed,

b) given € > 0, there exists an approximating problem such that the opti-
mal, or nearly optimal, solution for the latter is an e-optimal solution
for the original problem

The approximating problems will be obtained by suitably approximating
the original transition operator P%(z,dz) and observation function h(z,w)
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in (1.25) by a sequence of operators P?(x,dz) and functions h,,(x,w), that
induce a sequence of approximating processes () with observations (y).
For fixed , h,,(z,w) will still be a C! diffeomorphism of R?. Assume for
a moment that this has been done; given probability spaces (€2, F, P™) on
which the approximating processes (') and (y') are defined, following the
general measure transformation approach of Section 1.3, we construct on

(2, F) the reference probability measure P° such that

P%(dw) = A (w)P™(dw) (2.1)
or equivalently
P™(dw) = L7 (w)P"(dw) (2.2)
where .
9(y;") —1
AT =] —=——— and LT = (AT} 2.3
=1 ) 23)
with

Tm (2, y) = g(km (2, y))|Am(z, y)| (2.4)

km(z,-) being the inverse of h,,(z,-) and |A,,(z,y)| standing for the deter-
minant of the Jacobian of k,,(z,-). It then follows from Section 1.3 that the
unobserved processes (z!"') have the same distribution under the measures
P™ and P°. The observation processes y™, which under P™ are defined by
the relation

Y = b (7)) W) (2.5)

with w, i.i.d. independent of x;, (i < n), and having common density g(-),
under the measure P° form sequences of i.i.d. random variables, independent
of z; (i <n), with common density g(-).

Therefore, under P° we can identify (y™) with (y,). Thus the measure
transformation approach allows us to obtain the same observations (y,,), both
as perturbed functions of the original process (x,) as well as of the approxi-
mating processes (z)).

Since the admissible controls are adapted to the o-algebra generated by
the actual observations (y,), the same controls will therefore be admissible
in the original as well as in all approximating problems. For a given control
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law u and corresponding to (1.31), (1.34) we furthermore have the approxi-
mating unnormalized filter processes

g " (A) = p(A)

m,u T'm\Z; Yn an [ MU .
o) = [ i) pr e ) (2.6
2 9\Yn+1

and the approximating cost functionals

5™ () = B > / (@, an)o ™ (dx) + / b (2)ot(de)) (2)

with ¢, b™ being approximations of ¢, b respectively.

With the same admissible controls « in the original and approximating
problems, and with the cost functionals in (1.34) and (2.7) expressed as ex-
pectations with respect to the same reference probability measure P°, under
which y,, are i.i.d. with common density g(-), we can compare the cost func-
tionals of the original and approximating problems, evaluated for a same
control law w.

We shall choose the approximating transition operators P%(x,dz), obser-
vation functions h,,(z,w) and cost functions ¢, ™ in a way to obtain the
following properties

(P1) Tim_sup |77 (u) — J7 (u)] = 0
where the sup over u is for all admissible control laws

(P2) For each given m, the approximating control problem expressed in its
equivalent complete observation form by (2.6), (2.7), can be explicitly
solved to obtain an optimal or nearly optimal control law u

The meaning of (P1), (P2) is explained by the following

Lemma 2.1 Assume that for given u € P(E) and ¢ > 0 there exists my
such that for m > my

sup \sz(u) - Jg(u)] <e¢ (2.8)

Then an e-optimal control w for the cost functional JMT’m with m > mg s
3 e-optimal for the cost functional Jg.

19



P r o o f. Notice first that, for m > mq,
| inf JI (u) — inf Jo(u)] < sup |J0™ (u) — JL(u)] < e
We then have for m > my
J) < Jm(w) +e < inf J™(u) + 2 < inf Ji(u) + 3¢

and the Lemma follows.

In other words, we can say that a nearly optimal control for m-th approx-
imating problem is, for m sufficiently large, nearly optimal in the original
problem.

The uniform in the control u convergence in (P1) will be the subject of
next Section 2.2, while the solutions of the approximating problems will be
discussed in Section 2.3.

2.2 Convergence

In this section we shall prove, under various assumptions, the uniform in
admissible control laws convergence of the cost functionals as expressed in
property (P1) above. We shall do this for two cases, namely when the cost
functions ¢, (z, a), b(x) in (1.4) are bounded and when they have polynomial
growth in z. In the latter case we shall require the transition operators of
the processes z,, and z' as well as the initial measure p to admit a density
(with respect to Lebesgue measure).

2.2.1 Bounded cost functions
In this section we shall assume that
(B1) ¢, € bB(E x U) and b € bB(E),

(B2) for ¢ > 0 and a compact set L C E there exists a compact set K C E
such that

supsup P%(z, K¢) < ¢
z€L acU
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In addition, we assume that the state process (z,,) with initial law p and
transition operator P%(z,dz) is approximated by (x) with initial law g,

n

and transition operators P%(z,dz), satisfying the following conditions

(C1) ||t — pt]]var — 0 as m — oo with || ||var standing for variation norm

(C2) for each compact set K C F

sup sup || Py (z,-) = P*(@,)|[var — 0
zeK a€U

as m — oo

Furthermore the observation function h(z,w) is approximated by func-
tions h,,(x,w) satisfying

(C3) for each compact set K C F

sup | |r(z,y) — rm(z,y)|dy — 0
xEKRd

as m — oo.
We have

Proposition 2.2 Let (o]"") be the unnormalized filter process defined by
(2.6) with initial law p,, and admissible control u, and let (B1)-(B2), (C1)-
(C3) be satisfied.

Then forn =0,1,2,... we have

(i) for each e > 0 there exists a compact set K C E such that
sup E°{o"(K°)} < ¢ (2.9)
(i)
sup E{||o7" — a3t ]|var} — 0 (2.10)

as m— oo

where sup in both cases is taken over all admissible controls.
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P r o o f. We use induction. By the tightness of p, (2.9) holds for n = 0.
Also, by (C1), (2.10) is satisfied for n = 0.
Assume then that (2.9)—(2.10) are satisfied for n. We have for n + 1

B (ot = £ [ ") pre o )

= EO{//r(z,y)Pa"(a,’j,dz) dy}

= E°{P"(0y,, K°)}

= B / P (z, K)o (dx) + / P (e, K¥)ot(dar) }
< B0y, (L%)} + supsup P(z, K¢)E*{o,/(E)}

el acU

By the induction hypothesis on n, for given € > 0 one can find a compact
set L such that, uniformly in u, E°{c%(L)} < 5. Furthermore by (B2) we
can find a compact set K for which

supsup P*(z, K¢) <
z€L acU

DN ™

Using also Corollary 1.10, we finally have

sup (o, (K°)} < <

which is (2.9) for n + 1.
Now,

EO{Sup o1 (A) — on (A}

< EO / |Tm Z yn-l-l) (Zﬂyn+1>|P;rzln(O_;n,u,dZ>}
9(Yn+1)

+E{sup| / Zy‘%:l (Per (o, dz) — P™ (0", d2))|

sup / ) [ P ator i o)

yn—l—l
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B[ [ r(z,w) = 12| dyPi (o, d2)}

Rd

+B°{ [ T Y1) pon gmat g2y — pon(omn, d
([ 5 P o dz) = Pon(o, de)] )

m

+E° / ;zy"ﬁ)l) / P (2, d2)|ol (dz) — o%(dz)|}
gEO//vmzy (=) dy Py (o7 dz)}

+EN| Py (o, B) = P (o7, )|}
+E{|o"*(E) — o(E)|} = Ly + 11, + 111,
where we used the fact that, under P°, v, is independent of Y.
Clearly, by the induction hypothesis, 111,, — 0, uniformly in the admis-

sible controls w.
Moreover we have

I, < EO{///|7’m z,y) —r(z,y)| dyP (xz,dz)o)" (d:c)—l—Qam“(Lc)}

L E R
< B ///vmzy (=, )| dyPg (x, d=)o3 " (do)
L K pd
+///|Tm (z,y) — r(z,y)|dyPi (z,dz)o]""(dx) + 20m“(LC)}
L Ke R
< sup [ |r(zy) —r(z,y)l dyE{o; " (L)}
+2supsup P%(x, K)E{o™"(L)} + 2E°{o™"(L*)}
z€Ll acU
< sup [ |rm(z,y) — r(2,y)| dy + 2sup sup P*(x, K°)
xEKRd z€Ll acU
+2supsup || P*(x, ) — Py, (2, ) [var + 2E°{07 (L)}
zeLl acU

+2E oy — o llvar }

where we have used the fact that E°{c™%(L)} < 1 due to the martingale
property of o7* (see Corollary 1.10).
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Given € > 0, by the induction hypothesis, we can find a compact set L
such that sup E°{c%(L)} < §. Furthermore by (B2) we can choose a com-
pact set K for which

€
supsup P%(z, K¢) < —
z€L acU 4

Letting m — oo, by (C3), (C2) and the induction hypothesis we obtain

limsup /,, <e

m—00

Since € can be chosen arbitrarily small we have [,,, — 0, uniformly in u.
It remains to show that 11, — 0, as m — oo.

We have
I, < supsup|P%(x,E)— P%x, E)|E°{o™"(K)}
rzeK aclU
+2E o (K°)}
< supsup|Py(z, E) — Pz, E)|
rxeK acU

+2E oy (K)} + 2E°{[lon" = ollvar}

By the induction hypothesis for given ¢ > 0 one can find a compact set K
such that
sup 2E°{c"(K°)} < ¢

Letting m — oo, by (C2) and the induction hypothesis we then obtain
limsup I'1,, < e, which in view of arbitrariness of € > 0 completes the proof

m—00

of (2.9)-(2.10) for n + 1.
Thus by induction (2.9)-(2.10) holds for any n =0,1,2,...

To obtain the desired property (P1) we make further assumptions on the
cost functions in (2.7).

(C4) € bB(E x U), b™ € bB(E), n =1,2,..., ¢ and ™ are uniformly

bounded in m and for any compact set K C F

sup sup ¢ (2, a) — cu(w,a)| — 0, sup|b” () — ba)| — 0
z€K acU zeK
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From Proposition 2.2 we obtain
Corollary 2.3 Under (B1)-(B2), (C1)-(C4)
lim_sup |0 (w) — J) (u)| =0 (2.11)

Proof. Given € > 0 we can find a compact set K such that (2.9) holds for
n=20,1,2,...,T. Then we have

) = TR < B [ e, an)] Jog(de) - ot(de)

[ @) o (de) — o (da)]}

Y [l a) = e, an)los(da)

n:OK

+ 2_: / |C:Ln(x>an) - Cn(l',an)bz(dfﬂ)

[ (@) = b@)lo(de) + [ |7 () = bl (do)}

T-1

<> M IE™ o — opllvar}
n=0
Ho" [ E™{[lor — o [lvar}

T-1
+ > supsup | (2, a) — cq(x, a) |[E* {0y, (K)}
n=0 T€EK aclU
T-1
+ > (el + leal) B {oy (K<)}
n=0
+sup b () — b(x) [ ™o ()} + (0™ + [|b]]) E™{o (K<)}
T-1
< > M IE™ llon = opllvar + [0 1 E* o7 — 0| [var
n=0
T-1 T-1
+ Y supsup [ (2, a) = ca(w, a)| +e D ([l + lleall)
n=0 €K acU n=0
+sup 6™ (x) — b(z)| + ([[b™ ]| + [[b]])e
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By (2.10) and (C4) letting m — oo we obtain that the right hand side does

not exceed
T—1

a(linrgjogp [ e+ Nleall) + 1™+ 11811 )

n=0
Since we can choose ¢ arbitrarily small, and our calculation was uniform with
respect to admissible controls u we conclude that (2.11) holds.

2.2.2 Cost functions with polynomial growth

In this subsection we make the standing assumption that £ = R* and that
the transition operator of the process z,,, as well as the initial law p possess
a density with respect to the k-dimensional Lebesgue measure i.e.

(B3) there exist measurable functions
pEXEXxU—R and wk—R

such that
P(x,dz) = p(x,z,a)dz

and
pld) = p(z) da

In addition we shall assume the existence of moment generating functions
for p and pu, namely

(B4) for any positive constant K, there exist C, H > 0 such that

/u(a:)elel de < C (2.12)

and for each x € F

sup | p(z, z,a)ef? dz < Cetll (2.13)
acU
B

with |z| = |2t + ... + |[2F| for x = (2, ..., 2%) € RF.
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Remark 2.4 If p(x) is a Gaussian density, (2.12) clearly holds. Further-
more, letting

Tt = f(xn,an) + ow, (2.14)
with (wy,) i.i.d. Gaussian and f such that
|f(z,a)] < Kiz] (2.15)

also (2.13) holds with H = K K.

Under (B3) we easily see that the unnormalized filter process (o) defined
n (1.31) admits densities o%(x) which by (1.31) satisfy the following recursive

formula
o5 (z) = p(z)

01 (2) :/MP(Z,%%)UZ(Z) dz (2.16)

Moreover under (B4) (o) admit moment generating functions. More
precisely, we have

Lemma 2.5 Under (B3)-(B4) for any K >0, andn <T

sup Eg“{ /emm'(r;‘f(m) dm} < 00 (2.17)

E

with supremum over all admissible controls.

Proof. Forn =0, (2.17) holds by (2.12). If n > 0, we have by (2.16) and
(2.13)

_ 2 // Klal gxyin P2y, an 1)y (2) dz dar)
/(/ RUlp(z, 0, a,1)da) ot (2) dz)

E E

{/6H|Z|aﬁ 1 dz}

E
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and by iteration we obtain (2.17).

As mentioned above, in this section we allow the cost functions ¢,, b to
be of polynomial growth. Therefore we assume

(B5) ¢, E xU — R and b: E — R are measurable for n = 1,2,...,T and
there exist constants C';, K > 0 such that

(2, a)| < CeXll, b(z)| < CeXll (2.18)
forre F,acU,n=1,2,...,T.
Considering the cost functional J| (see (1.4)), namely
T—1
Th(u) = B elwn, an) + b(zy) | (2.19)
n=0

under (B5) it is not clear that (2.19) is well defined, namely that the expec-
tation exists and is finite. However, by Lemma 2.5 we obtain

Corollary 2.6 Under (B3)-(B5) we have

STy = B 3 [ente,anon@yde + [o(w)ot(e) o} (2.20)

n=0p
and
sup J (u) < oo (2.21)
T-1
P r oo f. Clearly ¥ ¢,(vn,a,) + b(x,) is P} integrable if and only if
n=0

T-1
LT< 20 Cn (T, ay) + b(xT)) is P)* integrable. The latter random variable

is Pg“_integrable if

T-1
Z Egu{Ln|cn(xm an)| Y™} + Egu{LT|b(xT)| |YT}

n=0
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is PJ" integrable. By (B5), Lemma 1.8 and Lemma 2.5 we have

T—1
B B Lalen(n, an)| [V} + ES{Lrlb(z,)| [YT}}
n=0

T-1
< B Y By{LaCell|y ™} + B LyCelorl|y T}

n=0

71
= EE“{ > C/eKma;‘(x) dz + C/emm'a;ﬁ(x) dx} < 00
n=0 p o

Therefore J (u) in (2.19) is well defined and consequently we have (2.20)
and (2.21).

Notice now that, contrary to the previous subsection, we neither have to
approximate the observation function nor the cost functions. We therefore
impose only conditions on initial laws p,, and transition operators P¢(z, dz)
of the approximating processes (z!'). More precisely, we assume that

(C5) there exist Borel measurable functions
Pm:EXEXxU—R and pn,E— R
such that
Pi(x,dz) = pp(x, z,a) dz, o (d2) = pm(2) dz
(C6) for any positive constant K, there exist H > 0 and A,, — 0 such that

sup | |p(,z,a) — pm(z, 2,a)|eX* dz < A, (2.22)
acU
E

for x € E, and
[ () = ()] dz < A (2.23)
E

29



By analogy to (2.16) define approximating unnormalized filter densities

as follows e
0y () = pm ()

o) = [T (o aopn(z) dz (2.24)

o g(yn+1)

We now have the following

Proposition 2.7 Under (B3), (B4), (C5), (C6), forall K >0,n=0,...,T

n{gréosupEO“ /|am“ — o(z)|efle! dx} =0 (2.25)

Proof. Forn =0, (2.25) clearly holds by (2.23). For n > 0 by (2.22),
(2.13) we have

EO,u /|O_m,u )_O_u( )|€K|a:| dZE} S

< 5" /b/

|pm 2,%,an1) — p(z,, an_l)]azlﬂ(z)emx' dz dz

) o, oA (2) — oy (2) e )

= B[ [ oz, 001) = bz, 2,00 )l07 (2)5 dz di
B
—i—//p(z,a:,an,l)lazlﬂ(z) — o | (2)]ef1* dz da:}
EE
< AmEO’“{ /6H|Z‘U,Tfi(z) dz} + CEO’“{ /eH‘Z||0,Tf{(z) —on_1(2)] dz}

E E

< AmEO’“{/eHMaﬁfl(z) dz}

E

HC+ A B [ o (=) — oty (2)] 2

E

assuming, as we can, that H from (B4) and (C6) are the same.
Now, by Lemma 2.5 the first term on the right hand side converges to 0
uniformly with respect to admissible controls.
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Therefore, if n = 1 we have the desired conclusion. In the case when
n > 1, just iterate the last term in the above inequality. Since at most T’
iterations are required, (2.25) follows.

|
Let
JTm () = B2 2;; [enle,anoprta)de+ [ow)op @ ar}  (226)

Using Proposition 2.7 we can apply Corollary 2.6 to obtain that Jg’m is well
defined.
Moreover by Proposition 2.7 and (B5), we almost immediately have

Corollary 2.8 Under (B3)-(B5) and (C5), (C6) property (P1) holds i.e.

lim_sup | J0(u) = T (u)| =0 (2.27)

Proof. By (B5) we have
T Tm
[ S () = 7 ()]

T-1
<03 B [ lioi@) - o (@) da)
n=0

E

+C’E0’“{/6K‘m||0§ﬁ(x) — o ()] dx}
B

from which the conclusion follows by virtue of Proposition 2.7.

2.3 Study of the approximating problems

In the previous section we have shown how in the cases of bounded cost func-
tions and of cost functions with polynomial growth we can, under appropriate
assumptions, construct a sequence of approximating control problems with
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cost functionals JﬂTr’nm(u) such that, uniformly with respect to all admissible
controls,

lim [J7"™(u) — J} (u)| =0

=00
It then follows from Lemma 2.1 that an optimal or even nearly optimal
control for the m-th approximating problem is, for sufficiently large m, nearly
optimal in the original problem.

In this section we shall study, for two specific approximation procedures,
the resulting approximating problems. To this effect notice first that the
unnormalized filtering processes /"™ given in (2.6) take generically their
values in the infinite-dimensional space of finite measures on E so that the
determination of an optimal or nearly optimal control for the cost function
(2.7) is computationally infeasible. The specific approximation procedures
are designed to lead either to measures taking values in a finite-dimensional
space or to measures that admit a finite dimensional representation. These
procedures are more precisely obtained by

2.3.a Assuming that the approximating state transition operator P? corre-
sponds to a finite state Markov chain

2.3.b Assuming that the approximating state transition operator P? is sep-
arated in the variables i.e.

m

Pg(x,dz) = Z wi()vi(a,dz) (2.28)

=1

where ~;(a, dz) are finite measures on F, such that for B € B(£) the
mappings U 5 a — 7;(a, B) are Borel measurable and ¢; € bB(E) with

wi(x) > 0.
Clearly,

ngz Jyi(a,E)=1 for z€E, acU (2.29)

2.3.1 Approximating finite state Markov chain

In this subsection we construct approximating processes z' and 7' where
the latter form finite state Markov chains.
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For this purpose let B}*, k = 1,2,...,k, be a finite partition of the
original state space E and let ", k =1,2,...,k,,, e}’ € B} be representative
elements of the sets B}, k =1,2,... k.

Assume furthermore that

sup diam (By') — 0 as m — o0 (2.30)
k<knm
B DB and () Bf' =0 (2.31)

and that for k& < k,, there are indices r1,...,ru) € {1,2,...,kmy1} such
that
i(k)
By =J Bt (2.32)
p=1
where the last property means that the (m + 1)-st partition of E should be
a subpartition of the m-th partition.
Let now

Pg(x,dz) ZXBm x)P(e}, dz) (2.33)

define an approximating Markov process (x]') with the same initial law as
the original process ().

Define furthermore (Z") as the embedded Markov chain with space E,, =
{1,...,kn} and transition matrix

P .(i,j) = P(e*, B*) for i, j=1,2,... kn (2.34)
Assume that

(B6) the mapping
E xU > (x,a) — P*x,A) € [0,1] (2.35)

is uniformly continuous in A € B(E), or equivalently the mapping
ExU> (z,a) — P*z,-) € M(E)

is continuous, where M(FE) stands for the set of probability measures
on £ with the variation norm metric.
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Clearly, under (B6) for P¢, defined in (2.33) the condition (C2) holds.
Define now an approximating observation function h™ by

h™(x,w) = h(el',w) for x € B (2.36)

which for each x € F is still a C! diffeomorphism so that the measure tran-
sition approach of Section 1.3 applies also to the approximating problem.
By analogy to (2.4) let

rm(2,y) = g(k™ (2, 9))| A" (2, )] (2.37)

where k™ (x, ) is the inverse function of h™(z,-) and A™ its Jacobian. Notice
also that r,,(x,y) = r(e}*, y) for x € By

Remark 2.9 Under (A1) and (A4), forry, defined by (2.36)—(2.37) the con-
dition (C3) is satisfied. In fact, by (A4), the family of measures {R(x,-), x €
K} is tight in R®. Therefore it remains to show that for each compact L C R®

sup [ (@, y) = rla,y)ldy — 0, as m— oo
rzeK
L

which in turn is obvious in view of uniform continuity of r(x,y) for (x,y) €
K x L and (2.50).

|
Let, by analogy to (2.33) and (2.36),
km
e (@,a) = 3 X (@)en(el’, a) (2.38)
k=1
and i
O™ () = Y Xy (2)b(e") (2.39)
k=1
Imposing a stronger assumption than (B1), namely that
(B1’)
¢, € C(ExU) and beC(E) (2.40)
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we easily obtain that (C4) is satisfied for ¢/ and 0™ as in (2.38) and (2.39).
Given an admissible control u, let (¢]*) be the approximating unnor-

malized filter process defined by (2.6) with r,,, P2 of the form (2.37), (2.33).
By Corollary 2.3 and the preceding discussion we immediately have

Corollary 2.10 Under (B1’), (B2) and (B6) the property (P1) holds i.e.
lim sup |0 (w) = J) (u)| =0 (2.41)

Define now the R¥»-valued process p* = (p%(1), ..., p%(kn)) where p(k) =
o™ (B"). By the recursive formula (2.6) we then obtain
po = (u(BY"), .., u(BY,,))

km

" €y, Yna1) ==an , . w/ -
o) = 3 T It e g )
D 9(Ynr)

(2.42)

Notice also, that (p) is the approximating unnormalized filtering pro-
cess that corresponds to the state process (T") with the observation density
r(ex,y). Moreover we can rewrite the cost functional JI"™(u) in (2.7) in
terms of (p) and we have

T—1 km km
() = BP{ 3 3 ealeflan)oh (k) + 3 Meo ()} (243)

Having obtained in Corollary 2.10 the property (P1), we have now to solve
problem (P2) that is, for a given m and cost functional .J MT "™ (u), find an opti-
mal or nearly optimal control law u. By (2.42) and (2.43) the latter problem
is reduced to the control of the finite dimensional process p¥ given by (2.42)
with the cost functional (2.43). Under our assumptions the approximating
control problem (2.42)—(2.43) admits now an optimal control that can in
principle be computed by the following backwards dynamic programming
relations where p € (RT)*» with R* = [0, 00).

km
V(o) = X bep)ol)

Vin(p) =min [ 3 ca(ef, a)p(k) +/Vnﬁ1(WPZ(p, ))g(y) dy]

acU —1
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where, to simplify, we have written

T(emvy>*a
9(y) Pulor)
for the vector
(3" (. 3 e ko)) (249
= ogly) ™ U gy T
We furthermore have
inf J7 () = Vi (u(BY), .., w(BE)) = JT™(@)  (2.46)
with B B
= (uo(pg), - ur—1(pr_1)) (2.47)

where uy, are selectors i.e. Borel measurable mappings from (R*)¥" into U
for which the minima in (2.44) are attained.

Although the dynamic programming equations (2.44) are based on the
finite dimensional process (p!), this latter process still takes an infinite num-
ber of values since (see (2.42)) the observations (y,) as well as the controls
(a,) do. To make these dynamic programming relations computationally
feasible, we therefore have to introduce an additional approximation leading
to a finite number of possible values of the observations and controls.

For this purpose, given a positive integer H, let R? be partitioned into
{DFY 1 sy, with s(H) = 27H?@ where, for s < s(H), D¥ are hyper-
cubes with sides of length %, while

Df([H)+1 ={y € R"|lyllm > H}

with [|y|lm = max{|yt|, ..., |y}

For each D¥ with s < s(H) choose then a representative element d €
DI and take df{,,, such that [|df{;) [lm = H + 1.

Define finally the observation projection operator Wy as

. s(H)+1 "
Wy R" 2>y +— Z X pr (y) d, (2.48)
s=1 s
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and the discretized observation process (z,)

Zn = Wy (yn) (2.49)

-----

by (akH k=12, representative control values for the sets U, ,f , and let

H
ZypU2ar— > XUkH(a)akH (2.50)
k=1
be the control projection operator onto U = {aff, k=1,2,... H}.

Recalling the definition of P/, (i, j) let

P, (i §) = Py (i,j) (2.51)

m

From assumption (B6) it then follows that for all i, j € E,,

lim sup [P}, ;(4,5) — Py,(i,5)| =0 (2.52)

H—o0 gecy

With the discretized observations and controls consider then (see (2.42))

por = (W(B"), ..., 1u(Bf))

k
” (€ Znt1) 5Zpan gy u (s 2.53
pn+1,H(k> = Z ki—i_PmH (]7 k)ﬂn,H(]) ( )
j=1 9(zn+1)
as well as the dynamic programming equations
H i
Vit (p) = > bleg)p(k)
k=1
o km s(H)+1 o or(em dH)fa "
Va7 (p) = min [k:l ca(er', a)p(k) + Z::l Vi (g(df)Pm,H(p, ) 6Y]
(2.54)
with 8% = [ g(y) dy where, to simplify, by analogy to (2.45) we have written
D

T(€m7dH) a
S P .
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for the vector

(51 g 5,000 z’" Ve

j=1 =

The dynamic programming equations (2.54) can now indeed be computed
to yield an optimal control u* = (a, ..., a%_;) for the last stage approximat-
ing problem, which, in the complete observation representation has the state
given by the sequence of finite dimensional and finite valued random variables
(py 1) satisfying (2.53) while the cost functional is given by

T-1 km

JrmH (u) = EO“{ Yo ar(er, Zyan)pu y (k) + Z b (elt) piy k:)} (2.55)

n=0 k=1

The generic term a; of this optimal control is of the feedback type a; =
u*(pn ) and therefore a function of the discretized observations i.e.

ar =a’(z1,...,2n) (2.56)
It can be extended to a function of the original obsevations (y,) putting

Gy = (Y1, Yn) = O (Wi (1), - s Wi (yn)) (2.57)

where the projection operator W, is defined in (2.48). The optimal control
u* for the approximating problem with cost functional J7"™# is therefore
admissible also in the problem with cost functional Jg”” and it remains to
show that, for sufficiently large H, it is nearly optimal for the latter.

Notice also that any admissible control u for the problem with cost func-
tion J;f’m can obviously be used also with the cost function J;f’m’H in (2.55).

To complete this subsection we need an auxiliary result, which is formu-
lated in an independent way because of its use also in the next subsection.

Proposition 2.11 Assume (y,) are under P° i.i.d. R%*-valued with common
density g, w = (ag,ay,...) is a sequence of U-valued, Y™ = o{y1,...,yn}
adapted random variables, and

(k) = a(k)
1 (k) = D2 Gy, ) (K} (5) (2.58)



0" (k) = a(k)

P - 2.59
nn+1k ZG (Wens1, Zgan) (K)ne™ (5) (2.59)

fork=1,2,...,p, H being a positive integer, o a deterministic vector in R%
and with G;(y,a)(k) being for j,k =1,2,...,p, functions in (y,a) € R* x U
such that

sup E°{|Gj(y1, a) (k)[} < o0 (2.60)

and
Jim sup E°{|G 1, 0)(8) = G (W, Zya) ()]} = 0 (2.61)

for j,k=1,2,...,p.
Then forn =0,1,2,...

sup B { |, (k)[} < o0 (2.62)

and
Jimsup E{|ng (k) — ™ (k)| } = 0 (2.63)

with k =1,2,....p.

P roof. Weshow (2.62) and (2.63) by induction on n. For n = 0, (2.62) and
(2.63) are clearly satisfied. Assume (2.62) and (2.63) are true for n. Then
for n 4+ 1 we have

sup B[, (k)] < SUPZEO{EO{!G (Wt an) (R)[Y "} (9) 1}

7j=1
p

Z up B[ G;(yr, a)(k)[} sup E*{[n;;(7)[} < o0

and
E{|nt i (k) — meli(k)|} <

< {3 1G, e o) ()] 20) = 12

+ 3 1G i Wns1, an) (k) = G (Wigtns1, Zgan) ()| ™ ()1}

J=1
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IN
M*@

E{[n2(5) — ™ (1) E{| G (yns, an) (k) Y} }

i L ) E(1Gomrsa0) () = G Wi Zgon) WY}
< 3= EkG) G s EIG o))

||
i

p

ZEO{IH 7)l} sup E{|G;(y1, a) (k) = G;(Wyyn, Zga)(k)|}
— O as H — oo

by (2.60), (2.61) and the induction hypothesis.
Therefore we have obtained (2.62), (2.63) for n + 1, which by induction
completes the proof of Proposition.

We apply now Proposition 2.11 to the processes (p;) and (pjr ).

Corollary 2.12 Assume (B6) and
(B7) g is a continuous function

(B8) the random variables

T<6ZL? WHyl)
Q(WH.%)

are uniformly integrable i.e.

k=1,2,...,p, H=1,2,...,

ek 7WHy)
i sup / N0 g (W) 9(y)dy =0 (2.64)

Then
Jimsup BI04 (k) — pl ()]} = 0 (2.65)

fork=1,2 ...k, andn=1,2,...
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P r oo f. We use Proposition 2.11 with p = k,,, a(k) = w(B}"), n* = p¥,
Mt = P and

Gy, a)(k) = g P, k)

Clearly (2.60) is satisfied.
By (B6) and (B7) the mapping

R*x U 3 (y,a) — Gj(y,a)(k)

1s continuous.
Therefore to obtain (2.61) it is sufficient to show that given € > 0, there
is M such that for any £k =1,2, ...

Slelg EO{X|y1|ZM|Gj(ylaa)(k) - GJ'(WHyla ZHa)(k)’} <é

for which in turn it suffices to prove that

S T
Since the last inequality can be achieved by the integrability of 7“(@%%??1) and
(2.64), we obtain (2.61) which allows us to use Proposition 2.11.g 7
|
We now come to our final conclusion
Corollary 2.13 Under (B1’), (B6)-(B8) we have
I}i_rpw sup |ng(u) - JMTmH(u)| =0 (2.66)
Moreover, if for H > Hy
sup \ng(u) - ngH(uﬂ <e¢ (2.67)

then any control @ that is e-optimal for the cost functional JE’m’H with H >
Hy, is 3¢ optimal for the cost functional Jg’m. If in particular w is optimal
for T  with H > Hy, then it is 2 optimal for J™.
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Proof. We have

T—-1 km

[T () = Ty w)] < 30 37 Byt (e an)

n=0 k=1
—cp (€', Zyan)|pp (k) + e (er’, Zyan) | py (k) — pp g (F)[}

30 B ) 50 = ot ()]}

and (2.66) follows from (B1’) and Corollary 2.12.
The proof of the second part of Corollary 2.13 is analogous to that of
Lemma 2.1.

Concluding this subsection 2.3.1 we have that, if all assumptions are sat-
isfied, a nearly optimal control for Jg’m can be obtained as follows: For a
sufficiently large value of H compute the dynamic programming relations
(2.54) for each of the finite number of possible values of pj; ;. The control
functions thereby obtained, lead (see Corollary 2.13) to nearly optimal con-
trols for JMT’m. If furthermore also m is sufficiently large, by Lemma 2.1 these
controls are nearly optimal also for JE.

2.3.2 Approximating operators separated in the variables

We consider now the case when P?(x,dz) has the form (2.28) with the con-
dition (2.29) which includes e.g. the case of (2.33) by putting m = k,,,
¢i(z) = Xpm(z) and v,(a,dz) = P?(e]", dz); the condition (2.29) then be-

comes in fact .
Y Xgn(x)P(e, E) =1
i=1 ¢

which is true here by definition.

Notice however, that there are situations when the approximating tran-
sition kernels are of the form (2.28) without being of type (2.33). We now
show two examples for such situations.

Example 1. Assume the state process (x,) is 1-dimensional and is given by
the recursive formula

Tpt1 = b(zy) + d(a,) + vy,
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with v, 1.i.d. N(0,1) random variables.
Then for A € B(FE)

1 1 2 oen 1 -
Po(t,A) = — [ e7 2671737 2 (2 — d(a))"(b(x))’
V2 4 =
1 2 1 1 2 m 1 ; 2 -
e~2(b@) dz( —2 (AT N (2 — d(a)) (b(x)) e 20D dz) '

moob(x): 1 . (md(a)?
Pa(e, A) =Y i [ (e = d(@)e =5 a
=0 Y bi(x 7"' \/27TA
j=0 )

with jl=1-3-5-(5—3)-(j — 1) for j-even and j!! = 0 for j-odd.
Clearly P¢ is of the form (2.28).

Example 2. Assume we are given a set E,, = {e",... e’ } C E such that
the points ef", i < k,, form a d-net of a ball B C E, ¢f'! € E\ B, and

7 7

pp(er eft) > 6 for i,k < ky,, with p, standing for a metric on E.
Let

_ o — x, e’ if r,e) <4 .
?i(@) = { 0 eque(whejre) el €5) for j < km
and
@km(l‘) = min{lv IOE(J:7 {eTa s 767]3,1—1})}
where pp(z, {e",... . ef! _1}) =min{pg(z,ef"); 1 <i < ky, — 1},
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Define now,

?;(x)
Soj(x) = Tom ’
Pi()
=1
Clearly ¢;(e") =1 for j =1,2,...,kn, @; are continuous and form a parti-

tion of unity of E i.e. Z wi(x) = 1.

Given any transition kernel P%(x,dz) and letting v;(a, dz) = P*(e*,dz),
We may define an approximating transition operator P% as P%(x,dz) =

Z ©i(x)yi(a,dz) ie. in the form (2.28). Notice that, comparing the just

deﬁned transition operator with (2.33), we see that we replaced the charac-
teristic functions x ,,,(z) by a suitable partition (¢;) of unity of E. The use

of an approximated kernel constructed in this way allows us to relax some of
the assumptions imposed on the original kernel P, for example (B9) below
can be avoided.

Although this case includes that of (2.33), here the cost functions need
not necessarily be bounded nor do we have to approximate them. Moreover,
in this subsection we do not approximate the observation function h(z,w),
and consequently neither the function r(x,y). On the other hand, the di-
mensionality of the approximating problem will be larger than in the case
of (2.33) as can be seen by comparing the dynamic programming relations
(2.54) and (2.73) below. In what follows let either the assumptions (B1),
(B2), (C1), (C2) of Section 2.2.1 or (B3)-(B5), (C5), (C6) of Section 2.2.2
be satisfied. Consequently Corollaries 2.3 and 2.8 hold, so we confine our-
selves to the study of the approximating problem with the cost functional
‘]qu:n given by (2.26) where the approximating unnormalized filter process
(o") satisfies

"oorr(z,y,
T =3 [ e G ulan =)o () (2.68)
=17 g ynJrl
for n = 0,1,2,..., and admissible control v = (ag,a,...). Therefore J;i;lm
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can be rewritten as

(2.69)

and we see that to evaluate (2.69), instead of the unnormalized measures
(o), we need only the values o (yp;), i = 1,2,...,m. Moreover by (2.68)
we immediately have a recursive formula for /" (y;), namely

m,u s T‘(Z, yn—l-l)
Oni1(pi) = Z wi(2)———"7i(an, dz)oy"" ()
- j:l! g<yn+1) (2'7())

= ZG (Ynt1, an)(0)o," (05)

Jj=1

defining implicitly the operators G".

As will be clear later on, assuming a continuity with respect to a of
certain terms, from the backwards dynamic programming equations we can
obtain the existence of an optimal control u* = (ag, ..., a%_;), where aj is a
measurable function of o, and a} for n = 1,2,...,T — 1 are measurable
functions of (yn, on 1 (p1), - 0n 1 (Pm), al_y).

However, similarly as in previous subsection, although (y,), a* ; and
(on5 (1), -y on(om)) are finite dimensional, they take an infinite num-
ber of values and therefore we cannot calculate the optimal control law in
practice. To overcome this difficulty we again discretize the observations
and controls. For this purpose we use the projection operators W, and Z
defined in (2.48) and (2.50).

Let, for k =1,2,...,m and a positive integer H,

6 (k) = pn (k)
M1 (k) = 0,55 (on)

and

778 H<k) = tm (k)

m

Z W yn U 3 .
nn—l—l k Z/Spk 2 +1) i(ZHanadz)nn7H<Z) <2 71)
IWyyni1)
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By analogy to (2.69) define the cost functional

T-1 m
r(x, Wyyn wH ;-
T ) = B0 { S5 [ enl, Zygan) "o ) 7w )+
n=1i=1p (WH n)
(x, W, :
> [ bla) H”)wwpmquz+/%@@mmMmﬂ
9Wyyr)
=g E
(2.72)
Assume
r(z,W
(CT) Sup sup Eo[sup [ en(z, a)ﬁ%(a, dx)] < 00
0 r(zWgvy)
21615) Sll_llpE [fb(ac)i(WHyl) vila, dx)} < 00
fort=1,2,....m,n=1,2,..., T —1, and
(C8) the random variables sup %, H = 1,2,..., are uniformly inte-
grable.

Then, by (C8), n# (k) are integrable and consequently by (C7) the right
hand side of (2.72) is well defined. Moreover we can find an optimal con-
trol for (2.72) by the following system of backwards dynamic programming
equations

m, m r(z, W Y )
Vit (y,m,a Z/ I >VZ(ZHa7dx)n(Z)

Z].E

ww@n,>1ﬁ{i/%uzwﬂﬁ§g?ﬂ4ﬂmw@

+E° [Vl WHyl,ZG Wiy, Zga)n(j), Zga')| } (2.73)
forn=1,2,...,T — 1

Ve () = inf { / co(t, Zyy) 1y ()

E
+EO[V1m7H(WHy1a ,um((Pl)a S :ﬂm(gpm)a ZH&)]}
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Since the equations (2.73) depend only on the discretized values of the con-
trols, all infima can be replaced by minima, and there exist measurable selec-
tors u,(y,n,a) for which the infimum in V™ is attained. Notice also that
Vet (y n.a) depends on y and a only through the values of Wy and Za.

Lemma 2.14 Under (C7), (C8) we have

inf JT () = VI (1) (274)
and the control wy = (ag y,- -, 1 ) is optimal, where
.11 = olpm) (275)

— u, H *
Un.g = Un (W, a1, ZH%A,H)

form=1,2,....,T — 1, with uy and u, being selectors for which the infima
m Vom’H and V'™  are attained respectively.

P r o o f. Conditioning succesively the right hand side of (2.72) with respect
toY", n=0,1,...,T — 1, we obtain

JTmH (4 EOu /Cn z, Zpan (x’iH%- Z 1, dx)n (1) +
pm @2 1) W) E V()

<z, WHyT 1)
cr_i(x, Zyarp_1) ——"=
12211! g 1( HEE 1) g(WHyT—l)

B AV (Wigyr i, Zyar D[V T4} + [ eola, Zyao)pn(da) =

E
— ” yn) H /.

>EO“ /canan(x’H%Z U1, dz)ny " (1)+
{;; H )g(”rHyn) (Zpan—1,dz)n, = (1)

VI Wiy 1,2, Zyar-2)} + [ colw, Zyao)im (d)

B
Ui r(z, Wyy)
> ... > Fou ez, Zyay) ———H22
- #m{iz:l 1@ Zya) IWyyr)
B V3 (Wi ™, Zyan) Y1 + [ o, Zygao) o (d)

B
> /Co T, Zyao) i (d) + EEZ{Vlm’H(WHbeg’H, Zyao)} >

Vi(Zygar—s, dr)ndth (i) +

Yi(Zgao, dx)ﬁg’H(i)+

B H
ZVO (770 )
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with equalities corresponding to the uj; defined by (2.75).
|

The vectors (Wyyn, ™, Zya,—1) are now finite valued so that for H > 0
the optimal control uj, can actually be computed. The generic term of this
optimal control is of the feedback type and thus as in (2.56) a function of
the discretized observations. Analogously to (2.57) it can be extended to a
function of the original observations (y,) so that uj; is admissible also in the
original problem. It remains to show that, for large H, u}; is nearly optimal
for Jgr’nm. For this purpose we first prove that n“ converges to n* in L'
norm.

Assume

(C9) lim sup E°{|G7(Wyy1, Zya)(k) — G7'(y1, a)(k)[} =0

1
H—oo ey
for j, k=1,2,...,m.

By Proposition 2.11 we immediately have
Corollary 2.15 Under (C9) we have
Jim sup E%{|ni " (k) — n(k)[} =0 (2.76)

fork=1,2,.... mandn=20,1,2,...

|
Let
(C10)
W

sup Esup | [ ealir, Zyga!) N2 WVEY) (7 i
aclU a’'el’ ) g(WHyl)
~ [ ety ) 0, a0

A 9(y1)

form=1,2,....m—1, as H — >
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ilellIJ)EOHE/b( ) 9Wryr) W Zut d)
r(x,yl) (a.dz)|] — as — OO
_E[b(x) gy N =0 e

sup [ |eo(z,a) — co(x, Zya)|pm(dx) — 0 as H — oo
acU
E

We conclude this section with the following
Corollary 2.16 Under (C7)-(C10)
I}iinoo sup ]Jgr’nm’H(u) - ngm(u)\ =0 (2.77)

Moreover, if for H > H

s%p \JmeH(u) — ngm(u)| <e
then any e-optimal control uj; for Jg;nm’H 1s for H > Hy, 3e-optimal for the
cost functional Jg;:”. If in particular wy; is optimal for Jlﬂ”’H for H > H,,

then it is 2e-optimal for JI™.

P r oo f. We show (2.77) only, since the second assertion can be proved
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analogously to Lemma 2.1. We have

[T () = T ()] <

T-1 m
Egifw{ Z Z EO{|/Cn xz, ZHCLn <:U WHyn) (ZH(ln_l,dZL‘)—
9Wyyn)

n=1 i=1

/ ez, an) r;x, yn) Yi(@pn_1,dx) |Y”’1}nn’_1(z)—|—

£ Cn@‘van>T;f’yf’;)vi<an_1,dm>|Y"—1}|nZﬂ<i> — (D)) +
> B / . (Zyaga, o)~

/ ba) (:E I ) 1Y Y )+

B [ @) I )T Y ) — )]+

2 g(yT)
/ lco' (z, Zyrag) — cp'(z, a0)|pm(dz)} = Iy + 1 g + 1115 + IV 4 Vi

By (C8) and (C10), Iy+II1y — 0as H — oo. From (C7) and Corollary 2.15,
Iy +1Vy — 0 as H — oo. Since by (C10) also Vg — 0 as H — oo and all
limits are uniform in u, we obtain (2.77).

|

Concluding this subsection 2.3.2 we have that, if all assumptions are
satisfied, a nearly optimal control for Jg;im can be obtained as follows:

For a sufficiently large value of H compute the dynamic programming
relations (2.73) for each of the finite number of values of (Wgy,n, Zga). The
control functions thereby obtained, lead (see Lemma 2.14 and Corollary 2.16)
to nearly optimal controls for Jﬁm. If furthermore also m is sufficiently large,

by Lemma 2.1 these controls are nearly optimal also for Jg.
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3 Infinite horizon with discounting

3.1 Introduction

This chapter considers the problem of determining nearly optimal controls for
the infinite horizon problem with discounting, where the cost functional .J (u)
is given by (1.5), or equivalently by (1.11). The previous chapter, dealing
with the finite horizon problem, was entirely based on the representation
(1.34) of the cost function in terms of the unnormalized filter process. The
reason for this has already been given at the beginning of Sections 1.3 and
2.1. In this chapter we shall work only with normalized filters, and therefore
with the cost functional given in the form (1.11), and this will be useful
also in the next chapter concerning the average cost per unit time case. An
alternative approach, based as in chapter 2 on measure transformation and
using unnormalized filters, can be found in [29].

Similarly to the previous chapter, here too our approach to the construc-
tion of nearly optimal controls is based on an approximation approach. The
main tool in the previous chapter was the uniform in the control approx-
imation of the cost functional. Here, without the benefits of the measure
transformation that made it possible to consider the same observations in
the original and the approximating problems, we shall instead have to make
use of some compactness arguments which will be achieved by either assum-
ing that the state space is compact, or approximating the class of admissible
controls by a compact family of controls. Furthermore, the approach in this
(and the following) chapter will be structured into two parts. A first part
consists of the construction of nearly optimal control functions which, when
applied to the true filter values, lead to nearly optimal controls. Since the
true filter process takes its values in an infinite dimensional space of mea-
sures, a direct construction of nearly optimal controls is computationally
infeasible. The approximation approach for this first part now allows the
original problem to be approximated by problems for which the associated
filtering process takes its values in a finite dimensional space of measures so
that for these problems the construction of nearly optimal control functions
becomes computationally feasible. Notice that these approximating problems
are auxiliary problems and that the associated filtering processes, based on
observations that are not available in practice, are fictitions processes serv-
ing only the purpose of allowing a computationally feasible construction of a
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control function. These functions can however be extended to become func-
tions defined on the infinite-dimensional space of measures, where the true
filtering process of the original problem takes its values, and it will be shown
that these extended functions are the desired nearly optimal control functions
for the original problem. At this point there remains to compute the true
filtering process. Again there is the problem of its infinite dimensionality, so
that the purpose of the second part of our approach in this chapter is the
construction of a computable approximating filter process and the proof that
the nearly optimal control functions, provided they are continuous, still lead
to nearly optimal controls when applied to the approximating filter.

We finally remark that, under some boundedness assumptions, the ap-
proach of the previous chapter can also be used for the construction of nearly
optimal controls in infinite horizon problems with discounting. Defining in
fact a finite horizon truncation of (1.5) as the finite horizon problem with
cost functional

P-1
Jﬁp(u) = Eﬁ{ ;} Bhe(xy, an)}

where the terminal cost b(zp) is zero, it is easily seen that for a bounded
cost function ¢, i.e. |¢(z,a)| < C for x € E, a € U, we have

B _ B
Sup sup [ (w) = Ty ()] < 1— 3
It follows that, for sufficiently large T', a nearly optimal control for the finite
horizon problem, when extended to an infinite horizon control by taking
arbitrary values after T, is nearly optimal also in the infinite horizon case
with discounting. Vice versa, the methods of this chapter can be easily
adapted to the finite horizon case.

In the next subsection 3.2 we recall the Bellman equation (value iteration)
for the infinite horizon case with discounting. This equation will be the basis
of our approach for the case when the state space F is compact.

The following section 3.3 concerns the construction of nearly optimal con-
trol functions. It will be devided into further subsections: In 3.3.1 we give
general convergence results related to approximations of the state transition
kernel, observation structure and cost function that satisfy suitable assump-
tions. This will then be particularized both to the case of a compact state
space F using the Bellman equation (subsection 3.3.1.a) as well as when the
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controls are suitably approximated to become a compact class (subsection
3.3.1.b).

In 3.3.2, paralleling section 2.3.1 we present a specific method to obtain
approximating transition operators, observation structure and costs that sat-
isfies the required assumptions.

Although the approximation leads to finite dimensional filters, still a
nearly optimal control function cannot be computed in practice, since these
filters take an infinite number of values. In 3.3.3 we therefore perform addi-
tional approximations and show various possibilities to actually compute a
nearly optimal control function.

In subsection 3.4, for the case of compact state space E and in connec-
tion with a generalized Bellman equation, we consider an additional specific
approximation method which parallels that of section 2.3.2.

Finally, in subsection 3.5 we consider the problem of filter approximation.

3.2 The Bellman equation

First consider the additional assumption

(A5) ¢: E x U — [0, 00) is continuous and bounded
We have

Theorem 3.1 Assume (A1)-(A5). Let

v (p): = inf Jf(u) (3.1)
Then v° € C(P(E)) is the unique solution to the following Bellman equation

o () = it { [ e, aplda) + BT (0"} (3.2

aclU
E
for n e P(E).
Moreover there is a Borel measurable function u”’: P(E) — U for which
ub
o) = [ elw,wf(w)uldz) + BT 0 0%) (33)
E
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for € P(E) and this u”(-) is an optimal control function of the type con-
sidered in (1.13) which, when applied to the normalized filter process (),
leads to optimal controls so that we have

V() = J((W () (3.4)

In addition, v® can be uniformly approzimated by the increasing sequence
v? € C(P(E)) obtained from the so called value iteration algorithm

vy (1) =0 1 s
0al) = inf { [ @, @n(de) + AT (n, )} (3:5)

and we have
[v* = vl < (1= 8)"' 8" lell (3.6)

with ||v|| standing for the supremum of |v(v)| over v € P(E).
Furthermore, for each n there exists a Borel measurable function u®™:

P(E) — U such that

o) = [ etw,a utdn) + ST el (37)

for we P(E).
Finally, each v? is concave i.e. for u, v € P(E) and o € [0, 1]

vap+ (1 - a)v) > avd(u) + (1 - a)pl(v) (3.8)

P roof. Define, for v e C(P(E))

Tv(p) = inf {/c(:c,a)p(dx) + ﬁHa(u,v)}

acU
E

By Proposition 1.4, T is a contraction on C'(P(E)). Thus, by the Banach
contraction principle there is a unique fixed point v* € C(P(FE)) of T, which
is the unique solution to the Bellman equation (3.2). Since by (A5) and
Proposition 1.4 the mapping

Usawr /c(x,a),u(d:l:) + ﬁna(,u,vﬁ)

o4



is continuous, there exists a Borel measurable selector u” for which (3.3)
holds. The identity (3.4) is then almost immediate. By similar arguments
there exist Borel measurable functions u*": P(E) + U satisfying (3 7). Since
the operator 7' is monotonic and contractive, the sequence v =0,1,...,
is increasing and converges to v” with the rate (3.6). It remains to show the
concavity of v2. We prove this by induction.

Clearly vg = 0 is concave. Provided v’ is concave, by Proposition 1.7,
for fixed a € U, [1%(u,v?) is concave i.e. for p, v € P(E), a € [0,1]

H(O‘M—i—(l_g >O‘H Ky U 'n, 1_@)Ha(y>v7ﬁl)
and therefore from the definition of vﬁ 41 we obtain

Ug+1(04/i + (1 —-ay) > warﬁlﬂ(ﬂ) + (1 - Oé)vgﬂ(’/)

ie. vfz 1 is concave, and by induction v? is concave for each n. The proof of
Theorem 3.1 is complete.

Corollary 3.2 Under the assumptions of Theorem 3.1
va () = inf J7 (u) = J7, (@17 () (3.9)

with
J/6 E“{ Zﬁ’ c(x;, a; }

where w = (ag,ay,...). Moreover, given € > 0, there is ng such that for
n > ng the control function u®™ obtained at stage n from the value iteration
(3.5) is e-optimal, i.e.

T (@ (m)) < o(p) +e (3.10)

P r o o f. The equality (3.9) is almost immediate from (3.5) and (3.7).
Combining (3.7) with (3.6) we obtain

)+ (1= 59l = w2 () z
> [ e, ntdn) + BTT " (n,0%) = (1= )57 e]

E
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and therefore

T () = 3 B [ elw,uP(m))mi(dr))

=0 E
< v7() +2(1 = B)723"c|

Choosing ng such that for n > ng

2(1 = B)7B"|cl < €

we obtain (3.10).

Remark 3.3 When the cost function c is bounded Borel measurable only,
the value function v° defined by (3.1) may not be Borel measurable. How-
ever, since the transition operator P*(x,dz) is Borel in the sense that, for
B € B(E), the mapping U x E > (a,z) — P%x, B) is Borel measurable,
it can be shown, using the results of Chapters 7-9 of [5], that v° is a lower
semi-analytic solution to the Bellman equation (3.2). Moreover, v° can be
uniformly approzimated by the sequence of lower semi-analytic functions v/’
given by (3.5). In addition for a given ¢ > 0 we can find (see Prop. 7.50 of
[5]) an analytic function u? € A(P(E),U) such that

W) e > [ elwul@utdn) + 51w 311)

for e P(E)

Clearly, u? will be an 5&1 — )~ t-optimal control function for Jf, namely
T ((ul(mn))) < 07 () + 1-5

The value iteration (3.5) as well as (3.11) give a (theoretical) possibility to
determine an e-optimal control function. In practice however these relations
cannot be computed since the functions entering (3.5) and (3.11) are defined
on the space of measures P(F) that is infinite-dimensional. As a result, an
approximation leading to a space of finite dimensional measures is required
even if we use the Bellman equation to determine a nearly optimal control
function.
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3.3 Construction of nearly optimal control functions
3.3.1 Convergence

Assume that the state process (z,,) is approximated by a process (x!'') corre-
sponding to a transition kernel P?; assume furthermore that the observation
density r(x,y) is approximated by r,,(z,y) and ¢(z,a) by ¢p,(x,a) and we
have

(D1) if U > a,, — a, then for ¢ € C(FE)
Pim(x, o) — P%(x,¢), as m — oo,
uniformly in x from compact subsets of E,

(D2) r,, € bB(E x R%) are uniformly in m bounded, r,(z,y) — r(z,y)
uniformly on compact subsets of Ex R? and for any compact set K C E

sup [ [rm(z,y) —r(z,y)|dy — 0, asm — oo
zeK
Rd

(D3) ¢, € bB(E x U), are uniformly in m bounded, and
cm(x,a) — c(x,a), as m — oo,
uniformly on compact subsets of ' x U.

Given an admissible control u = (ag, a1, ...) let

TP (w) =Y B Ei{em(a)) an)} (3.12)
n=0
and define

VP (1) = inf ng(u) (3.13)
Furthermore given an initial measure p of 2", by analogy to (1.8) define the

approximating filter process (/") taking values in P(FE), as

T (A) = p(A)
/ (2. Y P (T d2) (3.14)
Tpi1(A = My (Y1, ™) (A)

Tm 2y Yn+1 Pan( muvdz)

P]\:b
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Notice that, corresponding to controls of the form a, = wu(7"), the filter
process (") is clearly Markov with transition operator

10, F) = [ [ FOR w0 ndyPi (v.d) - (3.15)
E Rd

for ' € bB(P(E)).

In the case when the control is given by the sequence a, = u(m,), for
a Borel measurable function u: P(FE) — U, below we shall identify the cost
functional J ((u(m,))) with JJ(u); similarly for J7™((u(x})"))).

n

Lemma 3.4 Under (A1), (A2) and (D1), for each compact set H C P(E)
and € > 0, there is a compact set K C E and a positive integer mg such that

inf P*(v,K) >1—¢ inf P'(r, K)>1—¢ (3.16)

acU aclU

forv e H and m > my.

Proof. By (A2) and (A3) the set of measures {P*(v,-), v € H, a € U} is
compact in P(FE). Therefore by Prokhorov’s theorem (see Theorem 1.6.2 of
[6]) for a given € > 0, there is a compact set K such that for v € H, a € U,
Pi(v, K1) >1—5.

Let

{ 1 — inf pE(z x) if inf pE(z ) <1
90(1' — z€EK z€EK
0 elsewhere

with p, standing for a metric on £ compatible with the topology.

Clearly ¢ € C(FE). Therefore for a sufficiently large m, say m > my

supsup | P (v, ) = P*(v,0)| < < (3.17)

acU veH

since otherwise we would have for some a,, — a, v,, = v, v,, € H

a A €
P2 (s ) = P (0, 9)] >

a contradiction to (D1).
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Let K ={x € E: 1611]5 pp(z,2) <1} Forve H,a € U, m > my we then
2€K

have
Pr(v,K) > Py (v, ) > PYv,p) —
EPG(V,Kl)—%E 1—6

>

N[O

Since E is locally compact, the set K is also compact and (3.16) holds.
|

The next two propositions are devoted to the study of the limit properties
of the operators M}, and []; for m — oo.

Proposition 3.5 Under (A1)-(A3), (D1)-(D2) for ¢ € C(E)

Sup | My, (y, v) () — M*(y,v)(p)] — 0 (3.18)

as m — oo, uniformly in (y,v) from compact subsets of R* x P(E).

P r oo f. It suffices to show that for any ¢ € C(E)

sup ’ /go(z)rm(z,y)Pﬁl(V, dz) — /(p(z)r(z,y)P“(V, dz)‘ —0 asm— o0

acU

(3.19)
uniformly in (y,v) from compact subsets of R? x P(E).
By Lemma 3.4 and (D2)

sup ’ /(p(z)(rm(z,y) —r(z,y))Ps (v, dz)‘ —0 asm— oo (3.20)

acU

uniformly in (y,v) from compact subsets of R x P(E).
In fact, for any € > 0 and a compact set H C P(E), by Lemma 3.4 we
can find a compact set K C E such that for m > mg, v € H

sup Py (v, K¢) < e
acU

Therefore, for m > mq

acU

sup| [ ¢(2)(rm(,y) = r(2,9) Pav. dz)| <

< il 11 - & + fleoll sup rim(z, ) = (2, y)]

99



Since by (D2) |rm(z,y) — r(z,y)] — 0 as m — oo, uniformly on compact
subsets of E x R%, ||r,,|| are bounded and e could be chosen arbitrarily small,
we obtain (3.20).

It remains to show that

sup ‘ /gp(z)rm(z,y)(Pﬁl(u, dz) — P%(v, dz))‘ —0 asm— (3.21)

aclU

uniformly in (y,v) from compact subsets of R? x P(FE).
By (D1) and (3.17), for any ¢ € C(F)

sup |Ps (v, ) — PY(v, )] — 0 as m — o0 (3.22)

acU

uniformly in v from a compact subset H of P(E).
To show (3.21) we need the following simple lemma, the proof of which
is left to the reader.

Lemma 3.6 Let (M, p1), (Ma, p2) be metric spaces. F: (M, p1) — (Ma, p2)
be a continuous mapping and K C My be a fixed compact set. Then, for a
given € > 0 there is § > 0 such that forx € K, ' € My, pi(z,2') < § implies
p2(F(z), F(2')) <e.

Let L C R* and H C P(E) be compact sets. By (A1) and (A2), the set
H={P"v,.), foracU, ve H}

is compact in P(E).
Let
F:R*x P(E) > (y,v) /gp(z)r(z,y)l/(dz)
E
and My = R*x P(E), My =R;, K = L x H.
Then by Lemma 3.6, for a given € > 0, there is 6 > 0 such that

if for some v € H, v € P(E), po(v,/) < & then for all y € L,
[ [e()r(zy)(vldz) = v'(dz))] <,
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with p,, standing for a metric compatible with the weak convergence topology
of P(E).
By (3.22), for a sufficiently large m
sup sup py, (P, (v, -), P*(v,-)) <6

veH acU

and consequently

sup supsup‘/gp V(P2 (v,dz) — P*(v, dz))‘ <e

veH acU yeL

from which (3.21) follows.
The proof of Proposition 3.5 is complete.
|

We use now Proposition 3.5 to obtain the convergence of the approxi-
mating transition operators [[%, i.e. of [[“*)(v,-) corresponding to a control
function u(v) =a € U.

Proposition 3.7 Assume (A1)-(A4) and (D1), (D2). IfbB(P(E)) 3 F,, —
F € C(P(E)) uniformly on compact subsets of P(E) and F,, are uniformly
bounded, then

Sup|H (v, F) — Ha(y,F)|—>O (3.23)

acU

as m — oo, uniformly in v from compact subsets of P(E).

Proof. We have
sup |12 (v, B) — T1%(v, )| <
ac

<sup| [ [ (M (y,0) (2. ) = 7(2))dy Pa(v, d)

+sup| / / (Fu(M; (9. ,,»_F(Ma<y,y>>>r<z,y>dyp;<y,dz>\ (3.24)
+325\/ e ) P8
=1, +H + 111,

61



Let H C P(E) be a compact set. By Lemma 3.4 for a given ¢ > 0 we can
find a compact set K C F and a positive integer mg such that

supsup P (v, K¢) <e, for m >mg (3.25)
veH acU

Therefore, for v € H and m > my

lon < 2 Blle + 500 |1Fll [ Irn(z:9) = r(z,9)ldy
zE
Rd

By (D2), and the fact that € can be chosen arbitrarily small, we obtain that
I, — 0.

By (A4) the family of measures {R(z,-), z € K} is compact. Therefore
there is a compact set L C R? such that

sup R(z,L°) < ¢ (3.26)

zeK

Hence, using (3.25), for v € H, m > mgy we have

11,y < 2|[Eulle + 20| Flle + supsup | F (Mg (y, 1)) — FOM*y,0))|  (3.27)

acU yelL

Notice now, that by Proposition 3.5,
M2 (g, )(-) = M*(y,0)() s m — oc,
uniformly in a € U, y € L, v € H, and by Proposition 1.4 the set
H={My,v), acU, yeL, ve H}

is compact in P(E).
At this stage we need the following, easy to prove, slightly strengthened
version of Lemma 3.6.

Lemma 3.8 Assume (M, p1), (Ma, p2) are metric spaces, Fp,: (My, p1) —
(Ms, ps) is a sequence of Borel measurable mappings, F,, — F uniformly on
compact subsets of My, as m — oo, F: (M, p1) — (Ma, p2) is continuous
and K C M; is compact.

Then

Vv 3 3 V V. pi(z,a') <6 = po(Fn(a)), F(z)) <e

e>0 m1 §>0 m>m1 zeK,z'€M;
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Taking now M; = P(E), My = R and K = H, by Lemma 3.8 we obtain
that

sup sup sup | F,, (M, (y,v)) — F(M*(y,v))] — 0 as m — oo
acU yeL veH

which comletes the proof of I1,, — 0.
The proof that 111, — 0 is based on Lemma 3.6. Let

G:CM(E) x P(E) / oz (3.28)

where CM stands for the space of continuous functions on F that are bounded
by a constant M, with a metric generated by the supremum norm on compact
sets.

Define

H; = {mappings EBZH/F (M*(y,v))r(z,y)dy, a € U, ve H}
Hy = {P*(v,-), a €U, I/EH}

By (A1) and (A2), H, is compact in P(FE).

We shall now show that H; is compact in CI”Il(E). By (A4) and Propo-
sition 1.4 we clearly have H, c CIFI(E).

Consider a sequence of functions

hn(z):= /F(M“”(y, vo))r(z,y)dy a, €U, v, € H.
Rd

Since U and H are compact, we can choose subsequences (ny), for simplicity
denoted again by n such that a, - a€ U, v, - v e H.
If we showed that, as n — oo,

ha(=) = h(2) / (M (y,0)r(2, 5)dy

in CIFI(E) i.e. uniformly on compact subsets of E, we would obtain the
compactness of H.
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Fix a compact set K C E. Given € > 0, by (A4) there is a compact set
L C R? such that (3.26) holds; consequently we have

sup [ (2) = h(2)| < 2| Flle + sup |[F(M* (y,vn)) — F(M*(y,v))]
z€K yeL

Since by Proposition 1.4

supsup |F(M* (y,v)) — F(M*(y,v))| — 0
veH yel

we obtain the convergence h,,(z) — h(z) uniformly on compact subsets of E,
and therefore the compactness of H;.
We claim now that the mapping G, defined in (3.28) is continuous i.e.

for ¢, — ¢ in C’CHFH, and v, = v in P(FE), we have G(n, vn) — G(¢, V)
as n — 00.

In fact, the family {v,v,, n = 1,2,...} is tight. Therefore for a given
e > 0 there is a compact set K C E such that v,(K¢) < e, v(K°) < e,
n=1,2,..., and consequently

G(,0) = Gl )| < | [ 9l2)(0(d2) = vald2)))
+2Fll +sup len(2) = ()] — 2 Flle

as n — oo, and since € can be chosen arbitrarily small, the mapping G is
continuous.

Applying now Lemma 3.6 with M; = CIFI(E) x P(E), My = R, F = G,
and K = H; X Hy, by (3.22) we finally obtain that IT1,, — 0 as m — oo,
uniformly for v € H.

This way we complete the proof of Proposition 3.7.

|

Given u € B(P(F),U) define the following iterations of the transition
operator H“(”)(V, ),
() v, ) = 11" (v, )
(TN () = | ([T, )" T (v, dv) (3.29)
P(E)

From Proposition 3.7 we obtain the following

E i
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Corollary 3.9 Assume (A1)-(A4), (D1), (D2). Let B(P(E),U) > u,, —

u € C(P(E),U), and bB(P(E)) > F,, — F € C(P(FE)), uniformly on

compact subsets of P(E) as m — oo, and let F,, be uniformly in m bounded.
Then, for any compact subset H C P(E), and n=1,2,..., we have

sup [(TT")" (v, F) = (IT")" (1, F)] = 0 as m — oo (3.30)

veH
Proof. We use induction in n. For n =1

sup | H;an(y)(’/’ FM) - HU(V)(”? F)l

veEH

< sup | 1% (v, Fy) — 14 (v, F)|
ve

+sup | [1“" (v, F) = [[""(v, F)| = I, + I1,,
veEH

Clearly, I,, — 0 as m — oo by Proposition 3.7, and I1,, — 0 as m — oo by
Proposition 1.4. Therefore (3.30) holds for n = 1.
Assume that (3.30) holds for n. Then for n + 1 we have

sup | ([T @)™ (v, Fr) — ()" (v, F)| =
veH

— — 3.31
sup T 7,,) = T2 F) 30
ve

with B )
Fow)=(1"")"( F)
and

Fv) = (1) (v, )

By the induction hypothesis F',,,(v) — F(v) as m — oo uniformly on compact
subsets of P(E).
Therefore by step n =1

Sup | 1—‘[urn(V)(V7 Fm) . HU(V)(V, F)| N 0 as m — 00
veH m

and by (3.31), the convergence (3.30) holds for n + 1. Thus by induction
(3.30) holds for n =1,2,3, ...
|
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For a general approximation scheme satisfying (D1)-(D3) we have so far
obtained convergence results for operators related to the approximating filter
process. In the following two subsections we shall apply these results for the
construction of nearly optimal controls in two specific cases, namely when
the state space F is compact and when the admissible control functions are
continuous.
3.3.1.a Compact state space F
We first prove the following general result where E need not to be compact
Theorem 3.10 Assume (A1)-(A5) and (D1)-(D3). Then

VP () — 0P (1) as m — oo (3.32)
uniformly on compact subsets of P(FE).
Proof. By Theorem 3.1 we have

107 — vl < (1= 5) 716" |e]
and, using also Remark 3.3

[o9 — S < (1= )7 8" el

where v?™ are defined, by analogy to v?, by the value iteration algorithm

v " (1) =0
020 = inf { [em(@, a)ulde) + BT, ( 03m)}. (333)

E
Therefore it suffices to show that for each n =1,2, ...,
v (1) = vh (i) as m— oo (3.34)

uniformly on compact subsets of P(FE).
We prove the convergence (3.34) by induction in n. For n = 0, clearly
ve™ = v, Given (3.34) true for n, we have for n+ 1

(03 (1) = via ()] < sup [ Jem (@, @) = e, @)l pu(de)
Y E
+03 sup | T18, (e, v5™) — T1% (e, v5) — 0
ac
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as m — oo, uniformly on compact subsets of P(E), by (D3) and Proposi-
tion 3.7. Thus, (3.34) holds for n + 1 and consequently by induction for any
positive integer n. The proof of Theorem 3.10 is completed.

|

Considering now a compact state space E, we obtain

Corollary 3.11 Under the assumptions of Theorem 3.10, if E is compact
and ul, € B(P(E),U) satisfies

/ p(dx) + ﬂH (p,v*™)  for p € P(E),
B
(3.35)
4
then for sufficiently large m, u® is a 1 55 optimal control function for the
cost functional Jf i.€.
B((uf 8 de
T inm)) < ) + 7

Proof.If Fis compact, then P(F) is also compact and the convergence in
(3.32) is uniform. Also, ¢, (z,a) converges then uniformly to ¢(x, a). There-
fore we can choose mg such that for m > mg

supsup |¢p,(z,a) — c(z,a)| < e
z€FE a€U

and

sup 0" () — o (n)| < e
HEP(E)

By Proposition 3.7, for m > m,

sSup sup ’ H (:ua ) o Ha(:ua Uﬂ)‘ <e
weP(E) acU

An easy transformation of (3.35) gives
s — o8+ 03(p0) & = [ el ul (1)n(d) = fle = el
B
5
+BTT ) (1, 0%) = Bsup |11 (p, 07) =TI (s, 07|
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Therefore, for m > max{mg, m; }, we obtain
e+ o)+ e 2 [ el ud (m)u(de) - <
B

FBTT W) (11, 0% — &

and thus

V() e > [ ol u (w)utdn) + ST (1, 0%)

from which the 4¢(1 — 3)~! optimality of the control function u? follows.
|

For actual construction of a nearly optimal control function with the use
of Bellman’s equation, relation (3.35) seems to present the same difficulties
as (3.11), since it involves functions that are at least formally defined on
the infinite dimensional space of measures P(FE). The difference however is
that (3.35) corresponds to the approximated state and observation processes,
and approximated cost function satisfying (D1)—(D3). By suitable particular
choices of these approximations, the functions in (3.35) may actually turn
out to depend on finite dimensional projections of measures only. In the next
subsection 3.3.2.a a particular such approximation is presented.

3.3.1.b Continuous control functions

In this subsection we restrict ourselves to continuous control functions, i.e.
elements of the set A = C(P(F),U). We shall also assume that the compact
set of control parameters U is a convex subset of R, [ > 1.

Given a fixed element T of E, let forn =1,2,..., B, = {x:p,(T,z) < n},
and define 1, € C(P(F)) as follows

1 —=pp(z,B,) foraze By
¥n(w) = { 0 for x & B,4q (3.36)
Let (¢;) be a dense sequence in Cy(E) the space of continuous functions
vanishing at infinity. Moreover assume that (¢;) contains a subsequence
given by ¢,, n =1,2,...
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We shall now approximate A by a family of compact classes of controls
A(L,n) with L > 0 and n a positive integer, defined in the following way

A(Lyn) = {u € A, u(v) = a(ulen), .. vlgn)
where u: [—[[1]], [[all] % ... % [=llnll, [lenll] = U (3.37)
is Lipschitz with Lipschitz constant L}

where on [—||@1]], [|e1ll] X - - - X [=|l@nlls [|€nll]] we consider the metric p,(z, 2’)
generated by the norm ||z|| = max |z;].
We have

Proposition 3.12 Any function u € A can be approximated uniformly on
compact subsets of P(E) by a sequence uy,,, € A(L,n) with L — oo, n — 00,

P r o o f. Notice first that it is sufficient to prove Proposition 3.12 for U C
R!'. For approximation purposes we can also assume that {0} € intU. Let
r:[0,1] — [0,1] be given by

0 1fx§i
r(z) =< 2@x—13) ifi1<z<3 (3.38)
1 1fx2%

Let u € A be a fixed function. Since the family A(L, n) is increasing in L and
(o]
n, it is sufficient to construct an approximating sequence u,, € U U A(L, k).
L>

0 k=1
The construction is partitioned into several steps.

Step 1. For any compact set H C P(FE) there is ny such that for v € H and
n Z No, T(V(¢n)) =1

Step 2. Let p,: P(E) — P(B,+1) be defined as follows

_ V(XA%) ’ (V<wn))_1 if v(¢n) >0
Pav(A) = { X, (@) if (1)) = 0

Notice that for the case v(1¢,) = 0 we could have chosen any measure
from P(B,+1). Then we have that p,v = v as n — oo uniformly on
compact subsets of P(E).

(3.39)
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In fact, let H C P(E) be a compact set. Then for a given £ > 0 there
is g such that for n > ng and v € H, v(B,) > 1 —¢.

For any ¢ € C(F) we have
pv(@) = (@)l = {Iv(e(¥n = 1)) + [(D)I(L = v(¥n))} (v (¥n))

for ve H

Step 3. By the Stone-Weierstrass theorem (Therorem 9.28 of [28]) each u €
A can be uniformly approximated on P(B,) by functions @, €

U G A(L, k) such that

L>0k=1
sup u(v) — (1)) < =
vEP(By) n
Step 4. Let
Un (V) = U1 (P 2)r (v (¢n)) (3.40)

We claim that w, is the desired approximation of u. In fact, w, is
o0
a continuous function and u, € U U A(L,k). Moreover, for any

L>0 k=1
compact set H, by step 1, we have r(v(1,)) = 1 for v € H and n > ny.

Therefore
SUp |un (v) — u(v)] < SUP [t 1 (pav) — ulpnv) 7 (v(vn))+
ve ve
+sup |u(pv)r(v(y,)) —uv)| = I, + 1,
veH
By step 3, I, < n%rl By step 2, p,v = v uniformly in v € H; therefore

by Lemma 3.6, I, — 0, and u,, in fact approximate v uniformly on
compact subsets of P(FE).

As a consequence of Corollary 3.9 we obtain now the following

Theorem 3.13 Assume (A1)-(A5) and (D1)-(D3). Let B(P(E),U) > u,, —
u € C(P(E),U) uniformly on compact subsets of P(E), as m — oo. Then

J[fm(um) — Jf(u), as m — 00 (3.41)

uniformly in p from compact subsets of P(E).
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Proof. Let, for u e B(P(E),U),

/cm x,u(p))p(dx)

E

= [ o, ulu)u(dz)

Then, using the notation of (3.29), we have

and

T () = Com (1) + Z AL (s Cr) (3.42)
and
50 = )+ 3 T € (3.43)
We show first that for any compact set H C P(E)
sup |[Crm () — C*(pn)] — 0 as m — oo (3.44)
neHd

In fact, for a given € > 0 we can find a compact K C E such that for each
we H, p(K)>1-¢, and

ig}g@%’""(u) — C*(p)] < sup sup |en (2, um (1)) = c(a, u(p))|+

pneEH xeK
(llemll +llell)e < sup sup |em(2, a) — c(z, a) |+
a xe
sup sup |c(x, um(p)) — c(z, u(w))| + ([lemll + llef)e
neH xeK

Therefore by (D3) and (A5) we obtain (3.44), and we can apply now Corol-
lary 3.9 with F,,, = C», F' = C", which gives us the convergence

(), ey — (1) (us ) (3.45)

as m — oo, for each n = 1,2, ..., uniformly on compact subsets of P(E).
Finally, by (3.44), (3.45) and the representations (3.42), (3.43) we obtain
(3.41).

By Proposition 3.12 and Theorem 3.13 we immediately have
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Corollary 3.14 Under (A1)-(A5), for u € P(E) we have

lim inf J7(u) = inf J) (u) (3.46)

L—oo n—oo ucA(L,n)

Since the controls from A(L,n) belong also to A, in order to obtain a
nearly optimal control function in A, by Corollary 3.14 it is enough to find
one in A(L,n) for sufficiently large L and n. Notice that, as for the class
A, also the controls in A(L,n) are defined on the infinite dimensional space
of measures P(F). The compactness of the class A(L,n) however will allow
us, with the approximation introduced in the next section 3.3.2, to restrict
ourselves to measures that are finite dimensional (see subsection 3.3.2b).

3.3.2 A specific approximation

This section corresponds to section 2.3.1 for the finite horizon case and leads
to a specific approximation satisfying assumptions (D1)-(D3). Correspond-
ing to this approximation, the normalized filtering process will turn out to be
a process taking values in a finite dimensional space of measures. As a conse-
quence, the measures p in the Bellman equation corresponding to a compact
state space E will be finite dimensional and this case will be discussed in
3.3.2.a below.

On the other hand, in the case of continuous control functions, we may
further approximate the class of admissible controls by considering controls
from the compact classes A(L,n) that are functions of finite dimensional
measures. This will be discussed in 3.3.2.b below.

A further specific approximation, corresponding to section 2.3.2 for the
finite horizon case, will be described in section 3.4 and used only in connection
with a generalized version of the Bellman equation.

The specific approximation of this section is now obtained as follows.
We partition the state space E and observation space R? by choosing for
each positive integer m sequences of disjoint Borel sets Bf* C E, D™ C R¢,
k=1,2,....kpn, s=1,2,...,8, such that

km Sm
i) UBr=E, UD"=R?
k=1 s=1
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(i) B, D™ have nonempty interiors and the closures By, D™, for k < k,y,,
s < 8, are compact

(iii) sup diam (B}*) — 0
k<km

sup diam (D) — 0

§<Sm

where diam (B) stands for the diameter of the set B.

0

(iv) By > Bt and () B
) m=1

km+1

oo

Dy D Dg;fl and m(ll Dy =10

(v) for b = 1,2,...,kp, s = 1,2,...,5,, there are indices r1,...,ru),
t1,...,tj() such that

i(k) . i(s) .
B,T:UB:;H, D(T:UD;Z+
p=1 q=1

We choose next sets of selectors {b7*, k =1,2,... ky,},{d, s=1,2,...,

S )

Sm} of (BF*) and (D7) respectively with the following properties
b cint B, b, k=1,2,..  kyy C{O k=1,2,...  kpy1}
byl — 00 as m — 00

d™eint D™ {d™, s=1,2,...,8,} C{d™ s=1,2,..., 81}

s

(3.47)

d’;}n—m)o as m — oo

In what follows we shall assume that the partition (By") and selectors
(b7") are chosen in such way that

(B9) Pe(by*,0B)) =0 for k, p=1,2,... kp, a€U

Then we approximate the functions r(z,y) and c(z,a) in the following
way

-1
rm(T,y) = ( / dz) ( / (b, 2)dz + p—" / 7(bj ,z)dz)
be b D (3.48)
for x € Bj" and y € D, s < sy,

s

"m(z,y) =0 for y € D"

73



and
cm(r,a) = c(b]',a) for x € B} (3.49)

Clearly, for a fixed x, r,,(x,y) is a density function. Moreover we have

Lemma 3.15 Under (A3) and (A4), r, defined in (3.48) satisfy (D2). Fur-
thermore, under (A5) c,, given by (3.49) satisfy (D3).

The proof of the first statement follows noticing that by (A4) we have
(3.26). The second part is immediate.

Let i
Po(z,-) = Z_: X e (2) P (B ) (3.50)

By (Al) and (A2), for U 3 a,, — a, P¢(x,-) = P%(z,-) uniformly in = from
compact subsets of E, as m — oo.
Thus P? satisfies (D1), and summarizing we see that P%, r,,, ¢,, satisfy
(D1), (D2), (D3) respectively.
Now let
En={1,2,....kn}, Dp={d",....d;} (3.51)

and
?Zl(k;,p) = P(by, B;”) for k,pe E,, ac€U (3.52)

Notice that by (B9) and (A2) and Theorem 1.2.1(v) of [6] the mapping
U>aw P%(k,p) for k,peE, (3.53)

is continuous.
Analogously to section 2.3.1, the specific approximation method defined

M

here leads now to a controlled Markov chain (Z7') on E,, having transition

matrix P% (k,p) in the generic period n. The observations are given by the
D,,-valued random variables §* that satisfy the following analog of (1.1)
(compare also to (1.3))

P{Titr = A = b, Vb = [ r( p)dy: =k, @) (3.54)

Dy

where Y71 = o{77{, ..., 70}, Yi' = {0,Q}. As admissible controls we have
sequences u = (ag,as,as, ...), where a, is U-valued and adapted to Y.
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Given such an admissible control u and an initial law n = (91,...,7,,) €
P(E,,) for () consider the cost functional

M) = 3° BB, 0,)} (3.55)

n=0

where for simplicity we identify c(j,a) with c(b}*,a) and define
w™(n) = inf me(u) (3.56)

For the given specific approximation, corresponding to (3.14), we obtain (see
(1.9)) an approximating filter process (7"*) € P(E,,) satisfying

—m,u k=1
n-‘rl(]) = km, ko (357)

with j € E,, and 7" = n. For feedback controls of the form a, = u(

),
the filter process (7") is again Markov with transition operator (see (3.15))
7,“( km Sm km o
1 0F) =3 FOI )P (3, d2) D Pt (e, ) (3.58)
j=1s=1 k=1

where F' € bB(P(E,,)) and n € P(E,,).
With the use of the filter process 7", the cost functional J"(u) in
(3.55) can be rewritten as
00 km
Ty () = 3 5B 3 el u(m ) (k) (3.59)

n=0 k=1

In what follows it will be useful to introduce the mapping
L, EN Z v(By")oym € P(E) (3.60)

where dym stands for Dirac measure concentrated at by’
We have
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Lemma 3.16 L,,v = v, as m — oo, uniformly on compact subsets of P(E).

Proof.If HC P(E)is compact then by tightness, for any € > 0, there is a
compact set K C E such that v(K¢) < € for v € H. Therefore for ¢ € C(E)
we have
sup () — Lav ()] < 2z]|¢]|+
veH .
+supYs [ (@) — e (bp)lv(dr) — 22|l
Ve k=1pcpm
k

since, as m — oo diam (B}") — 0 for k < k,, and K N B}' — 0.

Almost immediately, by Lemma 3.16 we obtain
Corollary 3.17 If v, = v, then L,,v,, = v as m — 00.

We now apply the specific approximation outlined above to the cases of
compact state space E (subsection 3.3.2.a) and of continuous control func-
tions (subsection 3.3.2.b).

3.3.2.a Compact state space F

Similarly as in subsection 3.3.1.a we formulate first a general result in which
FE need not to be compact.

Theorem 3.18 Under (A1)-(A5) and (B9) we have
WP G(BE), o p(BR)) - %) asm—oo  (361)
uniformly in p from compact subsets of P(E).

P roof. Let (z]') be an approximation of (x,) with transition operator
Pz, -) in the generic period n and density of the observation r,,, defined
in (3.50), (3.48) respectively. Consider the cost functional .J7™ (u) of the form
(3.12) with ¢, defined in (3.49). Since by Lemma 3.15 and the comment
following (3.50) assumptions (D1)—(D3) hold, by Theorem 3.10 we obtain
that

VP (1) — P () as m — oo (3.62)
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uniformly on compact subsets of P(F).
We shall now show that

o™ () = w™ (u(BYY), ..., u(BR)) (3.63)

By Remark 3.3, the functions v*™ and w®™ can be uniformly approximated
by the following sequences

vy (1) = 0
vpti(p) = inf / em(x, a)p(dz) + BT (,0f™)] (3.64)

E

where []% is as defined in (3.15) with u(u) = a, and r,,, P% given by (3.48),
(3.50) respectively, and

wp™ () =0 )
wifi(n) = inf [ 3 ek, a)m + BT (n, wi™)] (3.65)

k=1

with [T, defined in (3.58) for u(n) = a.
Therefore, to prove (3.62) it suffices to show that

v () = wp ™ (u(BYY), ... (ByE)) (3.66)

We prove this by induction. For n = 0, (3.66) clearly holds. Assume (3.66)
is satisfied for n. Then we have

1502 = [ [ ol (0 (g 1) )y P d2)

E Rd
km Sm
= D 5wl M )BT, M ) (B, )b )
k=1 s=

prn(j, k)u(Bj")
j=1
Since for s < s,,, k < k,,,

My (d", p) (By") = My, (d", w(BY"), ... u( By, ) (k)
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we obtain that

T (eofmy = TL (u(B), .. ul B ), wi™)

and consequently

o li(1) = Wiy (u(B), ... pl(B))

Thus by induction (3.66) holds for n = 1,2,..., and therefore we obtain
(3.63), which together with (3.62) completes the proof.

We may now consider control functions in the classes B(P(E,,),U) or
C(P(Ey),U) noticing that a given function u,, € B(P(E,,),U) can be ex-
tended to a function v € B(P(E),U) by putting

u(p) = um((BY"), .., u(By )

As corollary to Theorem 3.18 now we have

Corollary 3.19 Assume (A1)-(A5), (B9) and E compact. If for a given
e>0

sup [0 (u(BYY), ..., u(BE)) — v ()] < (3.67)

neP(E)

for m > myg, and u?, € B(P(E,,),U) satisfies

k
m 7’L(
W) re >3 etk + BIL (n,w®™) (3.68)
k=1

for n € P(E,,), then the control with generic term a, = ub (m,(B7),...,
T, (B})) is f’fﬁ-optimal for the cost functional JJ.

Proof. Follows directly from Corollary 3.11 and the proof of Theorem 3.18.
|

Remark 3.20 The construction of a nearly optimal control function in the
case of a compact state space E can now be reduced to finding for any € > 0
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a Borel measurable function u: P(E,,) — U such that for n € P(Ey,) the
following inequality holds

km —u(n
W) +e > 3 el umne+ AIL, 0wt (3.69)

To obtain u € B(P(E,,),U), satisfying (3.69) we may use the value iteration
algorithm (3.65) truncating it at a sufficiently large value of n as we did in
Corollary 3.2. This however does not result in a computationally convenient
approach. Therefore in subsection 3.3.3.a, after a further approrimation lead-
ing to control functions taking a finite number of values, we shall mention
some computationally feasible approaches recalling also from the literature
an algorithm for the solution of the Bellman equation associated to (3.69),

namely
k

w?™(n) = inf { c(k,a)n, + ﬁﬁ;(n,wﬁ’m)} (3.70)

acU el

3

3.3.2.b Continuous control functions

The first step consists of defining compact classes of controls A,,(L,n) that
correspond to the classes A(L,n) and consist of functions in C(P(E,,),U).
More precisely let

An(Lin) = {u € C(P(E) U):u(n) =a( S (e z a0,

k=1
where u: [—[|¢1], [l ll] % - % [=llenll, leal] = U
is Lipschitz with Lipschitz constant L}

Recalling the mapping £,,: P(E) — P(FE) introduced in (3.60), define also
the following mappings

Ln:C(P(E),U)3u— Lyu with Lyu(v) =u(L,v)

and

k77l
Ly A3u— LyueC(P(E,),U) with L,u(n) = u( > 77k5b;€")
k=1
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It follows immediately that

km
(Z V(B ) = Lau(v(BY"), ..., v(B})) (3.71)
k=1
Consequently N
L A(L,n) = A,(L,n) (3.72)
In fact, if u € A,,(L,n), then
_ km km km
(Lot () = w( Y- mdup ) =7( D o107 mes - Y a0 )me) € An(L,n)
k=1 k=1 k=1

On the other hand, let @ € A,,(L,n). Then there is a Lipschitz function @
with Lipschitz constant L such that

a(n) = a( gj e1(by ) - - - gj on (V7))
Define, for v € P(FE),
a(v) =u(v(pr), ..., v(en)) (3.73)

Obviously @ € A(L,n) and furthermore

N km km
(L) (m) =7( > a3 on (b7 i) = T()

We shall need the following properties of the operator £,,.

Lemma 3.21 We have

(i) forue A, Lou(v) — u(v) as m — oo, uniformly on compact subsets

of P(E)
(ii) of B(P(E),U) 3 up, — u € C(P(E),U) uniformly on P(E), as m —

u
00, then Lyum(v) — u(v) as m — oo uniformly on compact subsets of

P(E)
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P roof. Part (i) is an almost immediate implication of Lemma 3.16 and
Lemma 3.6. For the proof of (ii) notice that, letting p,; be a metric compatible
with the topology of U, we have

o (Lot (1), u(pt)) < py (Lot (1), Lnti(p1)) + py (Lot (1), u(p))

The first term on the right hand side converges to 0 by the assumption. The
convergence of the second term follows from (i).
|

Consider now again the controlled Markov chain (Z}') on E,,, with tran-
sition matrix P (k,p) in the generic period n, where this time a, = u(77),
with v € A,,(L,n) and 7" is the filtering process corresponding to the
observation structure (3.54) and given by (3.57). Let the cost functional cor-
responding to an initial law 1 of (Z!) and control function u € A,,(L,n) be
given by (compare to (3.55))

o0

Ty () =3 " Ey{em (@ w(m))} (3.74)

n=0

For given p € P(E) denote by fi the vector (u(BT"),...,u(By")). We have

Theorem 3.22 Assume (A1)-(A5) and (B9). Then, for given L > 0, n =
1,2,.. . )
sup |2 (Low) — J2 (u)| — oo (3.75)
u€A(L,n)

as m — oo, uniformly in p from compact subsets of P(E).
Proof. Assume (3.75) does not hold uniformly on a compact set H C P(E).

Then, by the compactness of the class A(L,n) and of the set H, there are
sequences A(L,n) 3 u,, — u uniformly as m — oo, and H > p,,, = p, such

that for some § > 0 and m = 1,2, ..., we have
| T (Loti) — T ()] > 6 (3.76)

By Theorem 3.13

T () — J (u)] -0 as m — oo (3.77)

Hm

81



and by Lemma 3.21 (ii) and Theorem 3.13 again

| SO (Lontin) — ) (w)] — 0 as m — oo (3.78)
Notice that the cost functional J2™(Lp,u,y,) used above corresponds to an
approximating process (x), defined on E as in Section 3.3.1, with initial
law i, transition operator P (z7",-) in the generic period n, where now
Ay = Loy (7™, and (77%) is given by (3.14).

Now, since the cost functions ¢,,(x,a) and transition operators P%(z, -)
defined in (3.49), (3.50) respectively, do not change their values for € B},

1 <k <k, we have
TIM(Loti) = T2, (L) (3.79)

Notice also that the filtering processes (') and (7"), corresponding to initial
laws (L ptm) and i, and controls a,, = L,u,(7™) and a, = Lty (77)
respectively, satisfy the following relation

(B =m(k) for 1 <k <k,

Therefore B
Jgm (Lotin) = g (Lntin) (3.80)

and by (3.77), (3.78), (3.79) we obtain a contradiction to (3.75). This com-
pletes the proof of the theorem.

|
Corollary 3.23 Under the assumptions of Theorem 3.22 we have
(i) inf  J2™(u) - inf JP(u) (3.80)

wEAm (L,n) u€A(Ln) *

uniformly in p from compact subsets of P(E), as m — oo,

(ii) ifu € A, (L,n) is e-optimal for Jg’m with m sufficiently large so that

sup |2 (Lou) — T2 (u)| < e (3.81)
u€A(L,n)

then any 4 € A(L,n) such that Lol =T is 3e-optimal for Jﬁ.
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P r oo f. For the proof of part (i) it is sufficient to notice that

| inf  JP™(w) - inf  JP(u)| <

u€EAm (L,n) _ u€A(L,n)
< sup |J2(Lgu) — TP ()]
u€A(L,n)

and apply Theorem 3.22.
In part (ii), if o € A,,,(L,n) is e-optimal for Jg’m, then for u € A(L,n)
such that Zmﬁ = u we have

Jﬁ(&)gjg’m(ﬁmf&wr sup ]Jf(u)—Jg’m(Lmuﬂ
u€A(L,n)

< inf JP™(u)t+e+e< inf JP(u)+3e

~ u€Anm(L,n) u€A(Lm) *

provided m is so large that (3.81) holds.
|

Remark 3.24 Once @ is gwen, an @ € A(L,n) such that Lt = @ can
be constructed according to (3.73). Also in the case of continuous control
functions the problem of determining a nearly optimal control function is
thus reduced to the problem of determining a nearly optimal control function
for JP™ (see 3.73) in the class An(L,n) that contains functions of finite
dimensional measures of P(E,,). A further approrimation, allowing such
controls to be determined explicitly, unll be described in subsection 3.3.3.0.

3.3.3 Further discretizations

By the results of the previous subsections 3.3.1, 3.3.2, the problem of the
construction of a nearly optimal control function for the original problem is
now reduced to the same problem for the partially observed Markov chain
Z™ on E,,, having transition matrix P2 (k,p) in the generic period n and
D,,-valued observations (7"") satisfying (3.54). The corresponding cost func-
tional JJ™ is given by (3.55). The controls (a,) are Y = o{g{",... .70}
adapted, U-valued random variables. In the particular case, when we con-
sider control functions that are continuous, we restrict ourselves to controls
of the form a,, = w(7)), where v € A,,,(L,n) and 7" is the filtering process

corresponding to (z') and given by (3.57).
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The purpose is to find, for the above finite state control problem, a nearly
optimal control function that by the previous results can then be extended
to become a nearly optimal control function for the original problem with
cost function Jf . We shall again distinguish between the two cases when the
state space F is compact and when the control functions are restricted to be
continuous.

We first summarize several simple consequences of assumptions (Al),
(A2) and (B9).

Lemma 3.25 Under (A2), and (B9)
(i) the mapping U > a — P (i,7) is continuous fori,j € E,,

(ii) the mapping U x P(E,,) > (a,n) — M% (y,n) € P(E,,) is continuous
fory € Dy,

(iii) the mapping U > P(E,) 3 (a,n) — I1%(n, F) is continuous provided
FeC(P(Ey))

(iv) for u € C(P(E,,),U), the transition operator T[“"(n,-) is Feller i.e.
for F € C(P(E,,)) the mapping P(E,,) > n — [[“"(n, F) is continu-
ous.

P roof. The statement (i) follows from (3.53). The remaining conclusions
follow from the previous ones.
|

3.3.3.a Compact state space F

The processes (70) and (7') take a finite number of admissible values.

n

However, the set of control parameters is still infinite. Below we shall
therefore also consider the possibility of discretizing the control set by us-
ing partitions (Uf)g=12.. 1, H — o0, of U, and representative elements
(o101, off € UF, such that for H > H, (U )10, 1 is a re-
finement of (U )y—10.. and (af! )12, g are contained in (af 1o, 1
furthermore the diameters of U converge to 0 as H — oc.

Define the projection operator Z, as in (2.50). From Lemma 3.25(iii) we

easily obtain
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Corollary 3.26 Under (A2) and (B9) for F € C(P(E,,))

ﬁi 7, —>H n, F) as H— oo

uniformly in (a,n) € U x P(E,,)

Analogously to (3.56) denote by w™(n) the optimal value of the cost
functional JJ™ of (3.59) over the controls (a,) that in this subsection will
always take the values in Uy = {af?,... o }.

We have

Theorem 3.27 Under (A2), (A5) and (BY9)

wh™(n) — wP™(n) as H — oo (3.82)
uniformly in n € P(E,,).
Moreover, if for a given ¢ > 0 and H > H,

sup [wi™ () —wPm(n)| < e (3.83)
NEP(Em)

and ug € B(P(E,,),Ug) satisfies

m (7]
wi™(n) +5>Z (k,up(n 77k+5HH (n, w§™) (3.84)
=1

forn € P(E,,), then the control a, = uy(71) is, for H > Hy, 1% optimal

for the cost functional Jg’m over controls a, adapted to Y™ with values in U.

P r oo f. By Theorem 3.1, w?™ and w%m can be uniformly approximated
by sequences w?”™ and w?,’j; respectively given by the value iterations

we™ (1) =0

m [ e —a . 3.85
Wi = inf [ 35 etk + ST (™| (3:55)

k=1

and 5

Wi (n) =0 )
m . e ¢ m 3.86
Wil = inf [ etkham + 0T o] O

k=1
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For the first statement therefore it remains to show that for each n =
0,1,2,...
wgﬁf(n) — w’g’m(n) as H — oo (3.87)

uniformly in n € P(E,,).
Since by (A5) and (3.49) the mapping

U>saw c(k,a)

is continuous, in view of Corollary 3.26 we easily obtain (3.87) by induction
in n. Thus (3.82) holds.

The second part of Theorem 3.27 follows from (3.83) Theorem 3.18 and
(3.11) of Remark 3.3.

Remark 3.28 Combining Theorem 3.27 with Corollary 3.19 we have that
for H and m such that (3.83) and (3.67) are satisfied, the control a, =
upg(mn(BY), ..., m(B))) s 15_—55 optimal for the cost functional J.

|

Although the partially observed controlled process (1), its observations
(g) and controls (a,) take now a finite number of admissible values, the
corresponding filtering process 7" takes its values in the infinite space P(E,,).
At this stage we have two possibilities: Either we look for nearly optimal
controls of a completely observable problem with states given by the filtering
process T'; this approach will lead to a discretization of P(FE,,), making it
possible to use Howard’s policy iteration procedure (see [18]) for completely
observed discounted problems with finite state space and finite set of control
parameters. We may however also adapt the so called Sondik algorithm that
concerns the construction of nearly optimal controls for partially observed
Markov chains with finite state space, finite observation space, and finite set
of control parameters. The two approaches are described in the following
two subsections.

3.3.3.a; Discretization of P(E,,)

Let (G})k=12,..k,-q = 1,2,... be a sequence partitions of P(E,,), such that
for ¢ > ¢ the partition (GZl)k:LQ,m,kq,, is a subpartition of (G})i=12..x, and
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the diameters of G} go to 0 as ¢ — oo. Furthermore, assume that we are

given a sequence of selectors (ef,...,ef ), ef € G for k = 1,2,...,k, such

q q g q /
that {ef,... ef } C {61,...,6qu} when ¢ > gq.
Let, for k,p=1,2,... .k,

[T, (k.p) =TI, (ch. G2) (3.88)

Consider now a completely observed controlled Markov process (7,) with
values in the finite set {1,2,...,k,} indexing the selectors for a given ¢ and
with transition matrix ﬁiﬁf o(k,p) is the generic period n. Assume the controls
u = (a,) are Ug-valued and adapted to o{7y,...,7m,}. Given 7y = p €
{1,2,...,k,}, let the corresponding cost functional J| g’q(u) be given by

JBa(u) = io g Ey{ gj ok, an)el (k)} (3.89)

where e (k) is the k-th coordinate of the selector eX in P(E,,) (Clearly
e = (L (1), e (k) € P(Ey).

Tn ~
Denote by @5™%(p) the optimal value of the cost functional .J B4(u) over
controls u = (a,) that are Ug-valued and adapted to o{7,..., T, }.
Furthermore, denote by @), the projection operator on {1,2,...,k,}, i.e.

QupPE,)on—k ifneGlk=12...k (3.90)
Proposition 3.29 For given m and H we have
sup |@3"™(Qqn) — wi™ ()] — 0 (3.91)
neP(Em)
as q — 0.
Moreover, if for a given € > 0
sup (@5 Qqn) — wl" ()] < ¢ (3.92)
nEP(Em)
and ug:{1,2,...,k,} — Uy is such that
km
™ (p) +e =D ek, ug(p))ed (k)
s (3.93)

~B.m uq(p)
oy a L (0.0)
=1
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then the control function uy € B(P(Ey,),Un) defined as ug(n) = uy(Qqn) is

1f optimal for the cost functional Jﬁm over controls with values in Uy .

P r oo f. We use again the value iteration procedure from which we know

that w%m is approximated uniformly by a sequence of functions wgﬁ(n) as

in (3.86) and, analogously, w5 is approximated uniformly by

Wrie(p) =0
km 3.94
@ity (p) = inf [ ek, a)ed +ﬁz~ﬂmq oI, w0 Y
H k 1 )

Therefore it suffices to show the convergence of

WU Qqn) — wh(n) as g — oo (3.95)

for each n =0,1,2,..., uniformly in n € P(E,,).
We use induction in n. For n = 0, (3.95) clearly holds. Given (3.95) for
n, for (n + 1) we have

@y (Qqn) — an+1( )| < K e]| max diam(GF)

+ﬁ / | " q an | H qum dC

P(Em) (3.96)
+8 [ wh \ [T (b d<) — TT, (1.0

P(Em)
=1, + I, + 111,

As ¢ — oo we have by the construction of the partition G}, I, — 0 and, by
induction hypothesis, that 11, — 0.

To estimate /11, notice first that, by Lemma 3.25 (iii), an € C(P(En)).
Therefore, by the same Lemma 3.25 (iii), /I, — 0 as ¢ — oo. Since the
limits are uniform in n € P(E,,), we obtain (3.96) for n+1 and, by induction,
foreachn=20,1,2,....

The second part of Proposition follows from Remark 3.3.

|

Remark 3.30 Since the Markov process (7,,) with transition matriz ﬁ;vq(k, p)
has a finite number of possible states and we are left with only a finite num-
ber of possible controls u,(p) (uy,(p) € Un, p €{1,2,...,k,}), we can obtain
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(3.93) by using e.g. the value iteration procedure truncated after a sufficiently
large number of iterations; we may also obtain (3.93) using Howard’s policy
improvement procedure (see [18], or Lemma 3.37, below).

Combining the second statement of Proposition 3.29 with Remark 3.28
we have that for q such that (3.92) is satisfied the control

tn = Ug(Qq(mn(B1")) - T (BE,,)))

s 15 optimal for the cost functional Jf.

3.3.3.a; Sondik’s algorithm

This section is again concerned with the partially observed control problem of
the Markov chain (Z7) on the finite state space E,,, having transition matrix
P (k,p) and the finite D,,-valued observations (g™). We shall assume that
the controls (a,) are Ug-valued i.e. finite, (Y™) adapted random variables
and the cost functional to be minimized is Jf’m given by (3.55). For such
partially observed problems where the state space F,,, the observation space
D,,, and set of control parameters Uy are finite, we now describe a further
method to obtain nearly optimal control functions, namely the so called
Sondik algorithm.

Let us first notice that, since the optimal value wi;™(n) of the cost func-
tional Jﬁ’m over the Uy-valued controls is a solution to the Bellman equation

Wi () = min [ e(k, aym + AL, (n.wi™)] (3.97)

aeUg =1

we can restrict ourselves to stationary controls i.e. controls of the form
a, = u(m’), for v € B(P(E,),Uy), where (7") is the filtering process
corresponding to the Markov chain (Z7") and the observations (7).

Next we recall the notion and some basic properties of finitely transient
controls. Since Uy is finite, any u € B(P(E,,), Ug) is piecewise constant.
Given u € B(P(E,,),Ug), denote by A, the set of discontinuity points of w.

Moreover, let for A € B(P(E,,))

M"(A) = closure {M“"(y,n):y € D,,, n € A}
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and (3.98)
So = P(Em), Sy = M*(5;)

We say that a control function u € B(P(E,,),Ug) is finitely transient if for
some positive integer n we have A, N'S* = (). The smallest such number n
is called index and will be denoted by n,,.

Clearly, if u is finitely transient with index n, then, since M"(S*) C S¥,
we have A, NSY = for n > n,.

Define the sequence of sets

A=A, A" = {n: MU ¢ A" for some y € D,,}

u

We can say equivalently that a control function u € B(P(E,,), Uy) is finitely
transient if and only if A” = for n > n,.

A finite partition V* = {V;, V,,...,V,} of P(E,,) is called Markov with
respect to a control function u € B(P(E,,), Uy) if

a) wu is constant on V;, 1 <i < «
b) there exists a mapping 7
{1,2,...;a} x D,, 5 (i,y) — v(i,y) € {1,2,...,a}
such that for any y € D,,, the mapping
P(Ep) 30— My (y,n)
transforms sets V; into V. ).

With a given control function v € B(P(E,,),Un) we can associate a
sequence (V') n = 0,1,2,..., of partitions of P(Ey,), V' = {V{*,..., V] }
such that: V* is the minimal partition (i.e. the partition that consists of
minimal number of sets) into sets V..., V2 on which the control function
u is constant; given the partition V,* we construct the partition V)%, , as the
subpartition of V" such that for each fixed y € D,,, the mapping

P(E,) 31— MY (y,n) (3.99)

transforms sets of V" | into sets of V".
We have
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Lemma 3.31 If u € B(P(E.,),Ug) is finitely transient, then the partition
Ve is Markov.

P roof. It suffices to notice that the set of boundaries of the partition V"
is AYUALU---UA", and if u is finitely transient then A" = () for n > n,,.
|

Denote by v”™(n|u) the value of J?™((ay,)) for a, = u(my). By the

Markov property of (77) we clearly have that v®™(n|u) is the unique solution
to the following equation

vﬁm(n\U)
Z —1—621;57" MU (@™ ) |u) Z 7, P (e, 5) i
P =
1 k7YL
=Y d(k, nfu)m
k=1

(3.100)
where we implicitly defined d(k,n|u).

Proposition 3.32 Foru € B(P(E,,),Uy) the vector function d(k,n|u), k =
1,2,..., ky, n € P(E,,) is the unique solution to the equation

Sm km

d(k;, 77|u) = C(k, u(n)) -+ ﬁ Z Z d(ja M%n) (d;n7 77)|u) (3.101)

s=1j=1

T (7, A2 P (k, )

Moreover, if u is finitely transient, then d(k,n|u) are constant on subsets
of the partition V', = {V{" 71 Vgn=t L ViTlY and, letting d(k, i) =
d(k,n|u) forn € V"™ ' k = 1,2,...,k;m, i=1,2,...,Qn,-1, we have that
d(k,i) form the unique solution to the following system of equations
Sm  km
Ak, i) = clh, w) + B S d(G, (i )G, VP (R, ) (3.102)

s=1j=1

where by u; we denote the value of u on V™, and y is the mapping defined
by the Markov partition V! ;.
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P r o o f. By the Banach contraction principle there is a unique solution
d(k,n|u) to (3.101). Furthermore, by taking into account the definition of

_ ki
the operator M,, (see (3.57)), it can be easily checked that > d(k, n|u)ny is a
k=1

solution to (3.100). Since the solution v»™ to (3.100) is unique, we therefore
have

km
P (mlu) =" d(k, n|w)n
k=1

If u is finitely transient, by Lemma 3.31 the partition V! _; is Markov. As a
consequence, the control function u is constant on the subsets of V! _, and
the function ~ is well defined. Again by the Banach contraction principle the
solution d(k,7) to the equation (3.102) is unique. Since the vector function
that is equal to d(k, 1) for n € V™! is a solution to (3.101) and as we noticed
earlier d(k,n|u) is the unique solution to (3.101), we obtain that d(k,n|u) is
constant equal to d(k,4) on V;™ ',

|

From Proposition 3.32 and equation (3.100) we see that for a finitely
transient control function u € B(P(Ey,), Uy), the cost functional JJ™ (u) =
v?™(n|u) as a function of the initial law 7 is piecewise linear and can be
calculated from the finite system of linear equations (3.102). The practical
solvability of the equations (3.102) is based on the existence of the function
v, induced by the Markov partition VV*. The piecewise linearity of the cost
functional for finitely transient controls gives the starting point for Sondik’s
algorithm. Since a generic control function v € B(P(E,,), Uy) will not be
finitely transient and, even if it is, it will be difficult to verify such a property,
we shall approximate the cost functional ng(u) by piecewise linear func-
tions. These functions are constructed from the solutions of (3.102) where
the function ~ is obtained from a truncation of the sequence of partitions
(V*) corresponding to the control u as follows: given the sequence of parti-
tions (V),=12,., we fix a certain n and select points 7, ... ; M, such that

n

m; € V", i < ay, letting
Wliyy) =k if MO (y,7,) € V? (3.103)

Clearly, when u is finitely transient and n > n, — 1, then Yo = 7. In general
however, it may happen that n € V", 7,(i,y) = k and MM (y,n) & V"

(2
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Given 7, we thus solve the following analog of the system (3.102)

Sm km L
dp(k,i) = c(k,u;) + ﬁz Z dn (J; v (25 d5")) T (3, A ) P (K, 5) (3.104)
s=1j=1
for k = 1,2,...,ky, © = 1,2,...,a,, where by u; we denote the constant

value of the control function v on V;".
By the Banach contraction principle, there is a unique solution to (3.104),
and therefore d,,(k, i) is defined in a unique way.

Letting
km
VI (nlu) = 37 do(k, i) for € V" (3.105)
k=1
we obtain

Proposition 3.33 For a given u € C(P(E,,),Uy) we have

B,m B,m,n /ﬁn K
sup |v u) —v u)| < .
neP(Em)l (n|w) (nu)] 1_3" 1-3

with K = sup  sup |c(k,d') —c(k,a)l.

k=1,2,....km a,a’€Ug

(3.106)

P roof. It will be convenient to introduce the following operators 7, T)*
defined on bB(P(E,,)) and the set of functions that map {1,2,...,k;,} X
{1,2,...,a,} into R respectively,

km sm

=3 N w(M ™ 1)) Zrm (4, d™YPY (k. ), (3.107)

k=1s=1

for v € bB(P(Ey,)), n € P(E,,), and

Sm km

Trd(k, i) = 30 3 d(G. iy A7) (G, AP (. ) (3.108)

s=1j=1

for a function d:{1,2,...,k,} x {1,2,...,0,} — R, and 1 < k < k,,
1 < < a.
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By (3.100)

v (nlu) = C*(n) + nfj BP(TPC™(n) + B (T™)"v*™ (n|w) (3.109)

p=1

with C*(n): = Z c(k, u(n))ng.
Furthermore by (3.104), (3.105), given n € V", we have

km n—1 km

P (nlu) = X E(k‘ e+ X BT, i)

(3.110)
+ﬁ” (T“)"d (., )
with ¢(k,i): = c(k,w;), where by (T%)?, (T**)? we denote the p-th iterations
of the operators T, T respectively.

Notice now that, by the definition of the operator M" and the construc-

tion of the function =, (see (3.103)), it can be checked that

Zﬁp (T*yC*(n Zﬁpz ek, i)

p=1 p=1 k=1
forn e V.
Therefore

VP () — 0P () = (T 0P () — I§<T5>ndn<k,i>nk1

forn € V.
Consequently,
sup [0 (nlu) — 0P (nlu)| <
neP(Em) 5 5
< sup ﬁn T B (plu) — (TP (nly

km
+sup sup 5T (nfu) = 35 (1) D

1=1,2,...,an neV”
Since for n € V!
|(T) v (n|u) — z (T d,, (k, )| <

< sup sup ‘kZ( dn (k1) — dn(k,j))nkl

T]EP(Em) 7/7]:172 7777 an ' k=1
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and by (3.102)

km ) .
sup sup | 3 (da(k. ) — du(k. )]
nEP(Em) 1,j=1,2,...,a0n ' k=1

<(1—=p)"" sup  sup |c(k,a) = c(k,d)
k=1,....km a,a’ €Uy
from (3.111) we obtain (3.106).
|

It will be important to have an interpretation of the function v®™" de-
fined in (3.105) as value of a certain cost functional corresponding to a con-
trolled Markov process.

To this effect consider the pair (77, 5""), consisting of the filtering process
7, corresponding to the Markov chain 7' with transition matrix in the
generic period n equal to P (k,p), and the observation process y™, where
for y{* we take a fixed element of D,,.

We have almost immediately that (see (3.57) and (3.58))

Lemma 3.34 If the control a, in the generic period n is of the form a, =
u(my, gy) with w € B(P(Ey,) X Dy, Un), the pair (7, 7,) forms a Markov
process with respect to the o-field Y " with transition operator

Tu(ny)(n y,v) =
33 W (A n), ) 35 T PO (K, (3:112)
k=1 s= j=1
for v € bB(P(Ey,) X Dy,).
||

Recalling now that the cost functional J?™((ay)), corresponding to a
control (a,), where a, is adapted to Y™, can be written as follows

0o km
Jm((a,)) = Zo 8 Ey{ kz o(k, an)m (k) } (3.113)
n= =1
we see that the partially observed control problem of the process Z)" with
observations 7' and adapted controls a,, can be replaced by the completely
observed control problem of the Markov process (7', 7)) with transition
operator T (7™, 5™, -) in the generic period n.
In particular
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Corollary 3.35 If foru € B(P(E,,),Ug), the partition V' = {V",..., V2 }
and the function v, (see (3.103)) have been constructed, if

ap = u; for an initial law n € V"

all = u%w (Lyl)

(3.114)
Ap = UnP (i1 ,....yp)
where for simplicity we use y; to denote ', for j =1,2,...,p, u; stands for
the value of w on V" and forp=1,2,...,
Ty, Yp) = Yl V(Wi y1), 92), -+ ) Up)
then we have
T ((ap)) = 0™ (nlu) (3.115)

We still need an additional definition, namely for a given control function

u € B(P(En),Ug) let
7™ (plu): = _min Zd (k,1) (3.116)

Clearly this function 77" satisfies
o (nlu) < 0P (nlu) - for n € P(E)

and represents the concave hull of the piecewise linear function v”™"(n|u).

We show below that 7*™" too is the value of the cost functional J,ff’m
corresponding to a certain control for the process given by the completely
observable pair (ﬁ;, @Zl)pﬂ,?...-

Lemma 3.36 There is an adapted control (a,) for the pair (7,7 for
which we have

T3 (@) = 0 (nu) (3.117)
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Proof.Forj=12,... a,, define the sets

km

W; = {ne P(Em):@@m’n(mu) = Z d (K, 3)0r}
k=1

and choose representative points 77 € W,
We construct now (a,) as follows:

— if the initial law 7 is such that v#™"(n|u) = v*™"(n|u) we put @, = a,,
p=0,1,2,..., with (a,) defined by (3.114)

— if, for the initial law 7, v#™"(n|u) > V™" (n|u) and n € W; construct
(a,) as (a,) with the initial law n replaced by 7.

By a direct calculation one can check that for the strategy (@,) as defined
above, (3.117) holds.

For the purpose of being now able to describe Sondik’s algorithm we recall
the Howard-Blackwell policy improvement procedure (see e.g. [18]).

Lemma 3.37 Assume we are given a completely observed controlled Markov
process (z,) on a state space Z, with transition operator P®™(z,,-) in the
generic period n, control (a,), and corresponding cost functional

oo

J2 ((a,)) = Y. B E{c(zn, an)} (3.118)

n=0

where ¢ is a bounded cost function, and the set of admissible control param-
eters U is finite. Let (a,) be a control strategy that is defined for each initial
state z = zy € Z and takes values (a,(z)). Define the corresponding value
function as

w(z) = J((an(2))) (3.119)

and denote by u a Borel measurable function u: Z — U, for which

minlc(z, a) + P(z, w)] (3.120)

aclU

is attained for a = u(z) (policy improvement).
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Then we have

T2 ((u(za))) < w(2)

(3.121)

and if w(z) # (mf) J%(ay), there is = € Z for which the strong inequality in

(5.121) holds.

Lemma 3.37 is now used to obtain our main result, on which Sondik’s

algorithm is based, and this result can be formulated as follows

Theorem 3.38 Assume that for given u € B(P(E,,),Uy) and positive in-
teger n, the partition V;* = {V[",..., V" } and the functions v,, v>™" and

7™ have been constructed.

Let u € B(P(E,,),Uy) be such that

km —_—a
min [ > e(k,a)m + BT, (0, 7°")]
aSVH "1

Then
T STl < 0k S
<) + T
with K= sup  sup |c(k,a) — c(k,d’)|.
k=1,2,....km a,a’ €Uy
Moreover,
sup [0%" (1) — wy™ ()] <
nEP(ETVL)
km
<=8 sup [p¥™"(nlu) — min |3 e(k, a)n
NEP(Em) g

+B I (n, 7%

where w%m is defined in section 3.3.5a.
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P r oo f. By Lemma 3.36, 7%™" is the value function corresponding to the
control (@,). According to Lemma 3.37 applied to the pair (7', 7;") with
transition operator T%(n,y, ) and cost functional Jff’m, construct now the
control function w: P(E,,) X D, — Uy, for which

km

min [Z c(k, a)ns + BT (y,n, @ﬁ’m’n)}

aeUg =1

is achieved.
Since (see 3.116) ©»™" does not depend on y

a

T°(y,n, 0™ =1, (0, 7"™")

for y € Dp, and, consequently, we can take @ = 4. By (3.121), J2™((au(m)"))) <
o7 ().
The second part of the inequality (3.123) follows from Proposition 3.33.
It remains to show (3.124). By (3.97) we have

km
B,m _ =Bmn < . k7
9P () ™ () =T )] < n:ﬁégm){ acUn {];C( @)k
—a km e
AL, ™) = min [32 et e+ 5T, 0097
k=1
b —a
T Iglljn [ Z c(k, a)m, + 6Hm(77, @ﬁ’m’")] — @ﬂ,m,n(mu)‘}
GEVH T =1
< sup |w%m(n) — Uﬁam,n(mu” +
neP(Em)
km

+ sup | min [ c(k, )+ BT (0,057 = 00m (nlu)

nEP(Em) €U -7

from which we obtain (3.124).

The algorithm

Sondik’s algorithm, whose convergence is guaranteed by the results of this
subsection, can now be synthesized in the following steps:
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Step 1: Choose two levels of accuracy, a level ¢ > 0, and a much smaller
level ¢* > 0 that will be the actually desired one, as well as an initial
control function u € B(P(E,,), Ugn)

Step 2: Choose an integer n > 1

Step 3: Corresponding to the chosen u and n, determine the function
oo (nfu)

Step 4: Perform the policy improvement in (3.122) to obtain a new control
function @ and determine € as the value of the right hand side of (3.124)

Step 5: If € > ¢, increase the originally chosen value of n to n’ and return
to step 3; otherwise continue to

Step 6: If £ > &*, replace u by @ and € by € and return to step 2; otherwise
stop.

Once the algorithm is stopped, the first inequality in (3.123) together
with the inequality (3.124) imply that the control function @, determined in
step 4, when applied to the filter (7, is é-optimal for the control problem

described at the beginning of this subsection which, we recall, has Jﬁ’m as

its cost functional with minimal value w%m over the controls in Ugy.

Furthermore, recalling the Bellman equation (3.97), by (3.122) and (3.124)
we may now write

Z (n) + B >

)k + 0 H 76’m’n) >

> 3t
km
Z mﬁﬂ]—[ (o, i) - 52

which shows that the control function @ obtained from Sondik’s algorithm
satisfies relation (3.84) of Theorem 3.27 for ¢ = 23¢. Combining this finally
with Corollary 3.19 we have that, for H and m large enough that (3.83) and
(3.67) hold, the control with generic term

an = W(my(BY"), ..., (Bg))

is, with e = 23¢, f’_%—optimal for the original cost function J 5
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3.3.3.b Continuous control functions

We now restrict ourselves to the controls of the form a, = u(7)"), where
u € Ay, (L,n) and 7 is the filtering process corresponding to (7)), defined
in (3.57).

As already pointed out in subsection 3.3.3.a although 7" and 7" take a
finite number of values, (77) still takes its values in the infinite space P(E,,).
Of the two possibilities described in 3.3.3.a for the actual construction of a
nearly optimal control function, here we consider only the analog of the first
one which is based on the discretization of the space P(E,,).

For a given partition (G)i=1,2,..k, of P(£,,) with representative elements
{ef,... ei,} we thus define a projection operator Qq as

Qg P(Em) 30— €, (3.125)

where @, is as in (3.90). Define furthermore a transition operator [] on

q q
{el,... e, } as
~ u(ey) T=uley)

I1, " (chen) =TI,

(e, GT) (3.126)
with u € A,,(L, n).

Denote by (#,) a Markov process on {ef, ..., e} } with transition matrix

~ u(el N
Hm( ’“)(ez, e?), and let the corresponding cost functional Jf gjq(u) be given by

[e’e) km
Tot(u) = 3 B EL{ Y ek, u(ia)) (k) } (3.127)
n=0 k=1
for u € A,,(L,n), where by 7,(k) we denote the k-th coordinate of 7, in
P(E,,).
We have

Theorem 3.39 Under (A2), (A5) and (B9) we have for given m

sup sup |J7"(u) — jg’qn(uﬂ —0 (3.128)
UEAm (L,n) nEP(Em) q

as q — Q.
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Proof. For agiven u € A,,(L,n), consider a process (7,) on P(E,,) with

transition operator
- u(n)

1w =" @)

and corresponding cost functional jg’ (u) defined as follows

o

Joa(u) :%ﬁ"Es{;mjl FEQuAR))
Letting
= S el Q)
we have - .
Tyta) = €3+ 32 ([T, "€ (3129)
and clearly
Jgjn( ) = J2(u) (3.130)

Assume now, for some sequences u, € A,,(L,n), n, € P(E,) ¢=1,2,...,
we have

T (ug) — T (ug)| > 6 (3.131)

"q
forqg=1,2,....
By the compactness of A,,(L,n) and P(E,,) we may assume that u, — u
and 7, — 1 as ¢ — 0.
However by Lemma 3.25 (iii) if bB(P(E,,)) 3 F, — F € C(P(E,)),
uniformly as ¢ — oo, we have

uq (n)

(7]7 q) ﬁ?n(n)(n7p> 3 132
“mma 1" (n, F) 1
(£

as ¢ — oo, uniformly in n € P(E,,).
Since by the continuity of ¢(k, a) with respect to a € U, C{/(n) — C*(n) =

km
> c(k,u(n))ng, uniformly in n € P(E,,) and v € A,,(L,n), and
k=1

Jéim(u) — Ou(n) 4 Zﬁn H ncu
n=1
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by (3.129), (3.132) we obtain a contradiction to (3.131). Consequently

sup sup |Jﬁm( ) — jg’q(u)| —0 as q—
wEAm (L,n) neEP(Em)

and in view of (3.130) we have (3.128).

By Theorem 3.39 we immediately have

Corollary 3.40 Under the assumptions of Theorem 3.39 if u € A,,(L,n) is
an e-optimal control function for the cost functional ngnf n € P(E,), and

q s so large that

sup  sup [JP(u) — Jﬁq( )| < e (3.133)
UEAm (L,n) nEP(Em)

then u 1s a 3e-optimal control function for the cost functional Jf’m

We have now reduced the problem of the construction of a nearly opti-
mal control function for J7™ in the class A,,(L,n) to that for Jg’qn with ¢
q
sufficiently large.

Notice now that the controls for J g are obtained by applying a control

function v € A,,(L,n) to the completely observed Markov process (7,),
restricted to take Values in the finite set {ef, ..., e} }. A crucial consequence
of this is that, for a given u € A,,(L,n), we need only a finite number of its
values, i.e. u((),i=1,...,k, where

6= ( z o1 (el (k), ... z ea(B7)e () (3.134)

with @: [—||e1]l, [|ell] X - - X [=|lenlls llenll] = U the Lipschitz function cor-
responding to u in the definition of the class A,,(L,n), and b} the selectors
n (3.47).

It therefore suffices to consider the values a',...,a* € U corresponding
to the various control functions in A, (L, n), when the process (7,) is in the
states ef, ..., eZq respectively, with the restriction that a', ..., a" satisfy the
following Lipschitz condition

pull,a) < L max |3 o)) — cf(k)]  (3135)

103



for 1 < j,1 <k, Condition (3.135) implies in fact that, given the values of

a Lipschitz function @ with constant L at the points (i,...,(,. ie. given
a' =u(¢), 1 < i < kg, by linear interpolation we obtain again a Lipschitz
function @ with the same constant L, that is defined on [—||¢1]], |le1]|] x

.. X [=|lenlls lenll] and that takes the same values at the points ;. This
procedure gives us the possibility to construct control functions in A,,(L,n)
from their values at the points ef. In what follows we shall denote by U%(L)
the set of vectors a = (a',...,a") € U" that satisfy condition (3.135).
As a consequence of the foregoing, in what follows we shall also use jf ?’)q(a),
a € U?(L), to denote the value of the cost functional (3.127) that corresponds
to a control function in A,,(L,n) which at e} has value a for j=1,... k,.
We immediately have

Lemma 3.41

3 f jIB7q — : f jﬁ7q
uE.AlrInl(L,n) e (U) aeg{l(L) e (CL)
The admissible control values a', ..., a* now belong to U, which is still
infinite. For actual computation we therefore again introduce a partition
(UkH Jk=1,...n of U and choose representative elements forming a set Uy =
{ad ... af}. Inthe same way as described at the beginning of section 3.3.3.a

assume that the partition (G} )r=1, . x, of P(E,,) satisfies

q

(B10) the mapping U > a — [[.,(ef, G1) is continuous for 1 <k, p < k.

Let U%(L) denote the subset of U9(L) consisting of vectors a € Ut
For easier reference we state as lemma the following fact

Lemma 3.42 Given k,, L and H, there exists an operator Z:Uks — UZq
such that

(i) Zy(a) € UL(L) for a € UY(L)
Moreover
(ii) Zy(a) — a uniformly in a € Uk as H — oo.

From the Lemma we obtain
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Corollary 3.43 Under (B10) there exists Hy such that, for H > H,,

sup |jfc;q(a) — jféq(ZHa)| <e (3.136)
acU4(L) P P

To find a nearly optimal control function in A,,(L,n), by Corollary 3.43,
Lemma 3.41 and the discussion preceding it, we are now left with the problem
of finding an e-optimal vector in U}, (L), namely a* € Uf;(L) such that

Jo(a*) < inf J%%(a) + e (3.137)

T acUf (L) P
In this way the problem has been reduced to a finite search problem that can
be approached by adapting any of the existing methods of global optimization
with constraints (see e.g. [33], [41]).
Given an e-optimal a* € U} (L), let u* € A,,(L,n) be the function ob-

tained by linear interpolation from a* as mentioned below (3.135).

We have

Theorem 3.44 If H is sufficiently large that (3.136) holds, then

Ty < inf o JE(u) + 2 (3.138)

u€Am (L,n)
Proof. By (3.136) and (3.137) we have

J5%a*) < inf  J%%(a) + 2 (3.139)
€p acUa(L) ©p

By the construction of u*, Lemma 3.41 and the discussion preceding it,

(3.139) is equivalent to the statement of the Theorem.

Remark 3.45 Combining Theorem 3.44 with Corollary 3.40 we have that,
if q is so large that (3.133) holds, the control u* € A,,(L,n) is 4e-optimal for
J,f’m. Combining this in turn with Corollary 3.23, if m is such that (3.81)
holds, the extension of the control according to (3.73) is be-optimal for J/f
over A(L,n). Finally, by Corollary 3.1/ this extension will be 6e-optimal for
Jﬁ over A if also L and n are taken sufficiently large.
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3.4 Approximating operators separated in the vari-
ables

In this section we present an alternative general approximation approach,
that can be used instead of the specific approximations studied in 3.3.2 and
3.3.3 and that is applicable only for the case when the state space E is
compact.

Namely, following section 2.3.2 we assume that the approximating tran-
sition operators P?(z,dz) are of the form (2.28) i.e.

Ps(x,dz) Z(pz (a,dz) (3.140)

with ¢ € bB(E), ¢ > 0, and 7" (a,dz) being for a € U finite measures
on E, such that for B € B(E), the mappings U > a — 7/"(a, B) are Borel
measurable and

ZSOT(Z’)%?”(@,E) =1 for z€F, aclU
i=1

As mentioned in 2.3.2 this form includes in particular the case (3.50) studied
in 3.3.2.

For a Markov process (z!") with transition operator P (z dz) as in
(3.140), observations (y™), y™ € R4, satisfying

Plyyhy € Alzg', o7, ant ), Yo b = /T(xﬂl,y) dy (3.141)
A

forn =0,1,2,..., A € B(RY), Y" = o{y",...,y™}, Y2 = {0,Q}, taking
controls u = (a,), with a, adapted to Y,* for n = 0,1,2,..., we obtain
analogously to (3.14) the following representation formula for the associated
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filtering process (mw*):

7o " (A) = p(A), where u is the initial law of (z1")

T(Zaynﬂ)%‘ (an, dz)m"" (0]")

M

i
S— f\

Toi1(A)

I
NE

(2, Y1) (an, d2) T (97")
1

.
I

for Ae B(E),n=0,1,2,... .
Then the cost functional J7™ of (3.12), where (see section 2.3.2) we may

take ¢, = ¢, can be rewritten in terms of the filtering process (7"") as
follows

o0

Jgmu) =30 0 B [ el an)m(de)} =

n=0 E

- / c(x, ag)p(dz) + i ﬁ”E;j{fj / c(z,an)r(z, ')

—

=1

Y (an-1,dz)m i/r (2, yn )7 (an—1, d2) T, (@5 )) 1}

J:1E

= / clx, CLO d-’ll') + Z ﬂnEZ{Cm(ana ?J?Ta an—1, W?—’ﬁ(@?% te
E n=1

Tn1(#m) }

(3.143)
where we implicitly defined the function C,,.
Notice that in the above cost functional the filtering process (7"*) ap-

pears only through the values (7" (")) with ¢ = 1,2, ..., m; furthermore
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by (3.142) the statistics 77" (!") can be calculated in a recursive way, namely

Ms

n+1 907, /902 Z yn—&-l)’.)/] (aTHdZ) (SOT)
E

Il
—

J

(i/ (2, Yn) e (an, d2) " (@) ))_1 (3.144)

r= M (yn+17 w Py s Tt (em)) (@)

Notice moreover that the function M% is the same as in (3.14) except
that we take r,, identically equal to r.

As in the previous sections of this chapter 3, the purpose is to determine a
nearly optimal control function which, when applied to the true observations
and filter values, yields nearly optimal controls.

To this effect, in the present case of approximating operators separated
in the variables, we cannot apply directly the convergence results of sec-
tion 3.3.1.a.

Therefore in subsection 3.4.1 we introduce a generalized Bellman equation
for the original problem, which is used in subsection 3.4.2 to show that e-
optimal control functions for the approximating problem are nearly optimal
for the original problem.

3.4.1 Generalized Bellman equation

Notice first that for the original cost functional .J. 5 (u) we have

I (u) :/ c(x, ap)p(dx) —i—ZﬁnE“{/ c(x,ap)

E E

Mo (g, 7)) (do) } = / o(x, ao)pu(dz)+ (3.145)

+ Z ﬁnEﬁ{O(ana Yn, An—1, 772_1)}
n=1

with M*(y,7)(+) as in (1.8) and where the function C' is defined implicitly.

108



Theorem 3.46 Under (A1)-(A5) there exists a unique continuous bounded
function w®, w’: R* x P(E) x U — R, that satisfies the following equation

w(y, p,a) = inf [Clar,y,a,m) + 8 [ w (¢, M*(y, 1),a1)
1 A (3.146)
// (2,Q) P (21,dz)M*(y, u)(dz)d(]

Moreover, w® has the following interpretation

Wy pa) = inf B Ay tn Ty =y} P

(an),a0=a el
(3.147)
where we set ag = a and the infimum is taken over all sequences (ay,) that
are adapted to o{y1,...,Yn}.

Furthermore, there exists a Borel measurable function u’: R* x P(E) x
U~ U such that

wﬁ(y’ 1, CL) = C’(uﬁ(y, s a)7 Yy, a, M)

+6/wﬂ(C,M“(y,u),uﬂ(y,u,a)) (3.148)

[ [ re QP o ey )My, p) (2 )dC
E E
and in addition

wﬁ(ya 2 CL) - E,u{ Z ﬁn_lc’(&m Yn, &n—la ﬂ-n—l)‘yl - y} (3149>

n=1
with a, = uﬁ(yna/ﬂn—ly an—l); ap = a.

P r oo f. By Proposition 1.4 the mapping

T:C(R*x P(E)xU) 2w+ Tw(y, p,a) =

a1 €U

— inf [C(ar, y, a, 1) +5/ M a) [ [r(0 (3150
FE FE
P (21, dz) M(y, p1)(dz1)d(]
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is a contraction in C(R¢x P(E)xU), and therefore by the Banach contraction
principle there exists a unique function w” € C(R? x P(E) x U) for which
(3.146) is satisfied.

Since the right hand side of (3.146) under the infimum sign is a continuous
function with respect to a; € U, by using any of the existing measurable
selection theorems there exists a Borel measurable function v for which the
infimum is attained i.e. (3.148) holds.

It remains to show the representation formulae (3.147) and (3.149).

Let (y,) be the original observation process in (1.1) and u = (a,) a
control, a,, adapted to Y.

From (3.146) we have for all a,4q

wﬁ(yn—i-la 71—;:7 an) S C(an—i—b Yn+1, An, 7T;~t)+

—|—ﬁ/w (¢ M (Ynt1, T )5 G // (21, d2) (3.151)

M (Ynt1, 7y) (dz1)dC

Multiplying both sides of (3.151) by 4", summing the above inequalities for
n=0,1,...,k—1 and taking conditional expectation given y; = y we obtain

k—1
Eu{ Z ﬂnc<an+17 Yn+1, Qn;s Wx)h/l = y} >

> E“{Zﬁ"“ /w (¢, M (Ynt1,7), Gny1)

// r{z C Pa”'"1 21,ClZ) (ynJrla n)(dzl)dc (3152)

+wﬁ(yn+2»ﬁﬁ+17an+1)} ly1 = ?J}

—Ep{ BP0 (Y1, T, ar) [y = y} + w(y, p, ao)

= =B E{w’ (yrar, T, ar)lyn = y} + w(y, p, ao)
with equality for a,, = a,.
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Letting k — oo in (3.152) we have

k—1
wﬂ<y7 22 aO) < Z BnEZj{C(anJrl? Yn+1, An,s 7T;LL)|y1 = y}
n=0

with equality for a,, = a,, from which (3.147) and (3.149) follow.
|

Corollary 3.47 For v°(u) as defined in (3.1) we have, under the assump-
tions of Theorem 3.46,

o) = inf [ [ e(w,a)ulde) + 8 [y, ma) [r(zy)P*(n,d2)dy] (3.158)

E

Moreover, assuming that E is compact, for given € > 0 one can find a compact
set L C RY and functions ug € B(P(E),U), u € B(R! x P(E) x U,U)

satisfying the following inequalities

sup R(x, L) < (3.154)
z€E il
(with R defined in (A4) and, see (A5), ||c|| = supsup c(x,a)),
€l acU

[ el () )

B

+ﬁ/wﬁ(yaﬂ7uo(,u))/r(z,y)P"O(“)(%dz)dy (3.155)

Re B

<vP(u)+e for ue P(E)

Cluly, p, a), y, a, p) +ﬁ/w5(<, My, p), u(y, p, a))
Rd
[ [ re QP a2t (g, ) (de)dg < (3.156)
FE FE
<wP(y,p,a)+¢e foryeL, pe P(E), acU
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The control (a}), defined as
ag = uo(p)

(3.157)

* _ u
Apyy = u(yn+1, Ths an)

is 4(1 — 3)~" optimal for the cost functional Jf(u).
In addition, if for uf € B(P(E),U) the infinimum in (3.153) is attained
and for u? € B(RY x P(E) x U,U), (8.148) holds, then the control

il = ug (1)

(3.158)

d;—&—l = uﬁ(yn-i—h Tn, dn)

s optimal.

P r o o f. Notice first that the existence of L, uy and u satisfying (3.154)-
(3.156) is immediate. Using the representation formulae (3.145) and (3.147)
we have for any u = (a,)

o0

Ti) = [ etw aoutde) + BB 30 5"Clansns s, ma sl }} 2
> [ e, a0)p(dz) + BEL{w’ (1, 1, 00)} =

clw,a0)u(dz) + 3 [ w(y, m,a0) [ r(z,y) P, dz)dy
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with (see (3.149)) equality for u = (a,), where a, is given by (3.158), and
the existence of ug follows from the continuity in a of the right hand side of
(3.153). Therefore we have (3.153) and the optimality of the control (a,).
It remains to show the near optimality of the control (a}).
Notice first that by the inequality (3.154), we have for n = 1,2, ...,

Pu{yn 4 L} = Eu{Pu{yn Z L|5L'n> Ynil}}
= Eu{ /r(xn,y)dy} < ||€CH

LC

Therefore by the inequalities (3.155) and (3.156) we obtain

) < / x, up(p))p(dx) + E’“{Eu{ Z g"

C(al, yn, a;_l,m,l)xL(yn)ryl}} te

@

</ ez, uo(p da:)+E“{E“{Zﬁ" (Yns Tn—1, @y,_1)
_ﬁ/w (¢, M- (Y T 1) (yn77rn—17a:—1))

//T 2, Q) P Wm0t (2 dz) M1 (Y, T ) (dzy )dC

XL(%)|91}} —|—251 65 =
/c x, up(p))p(dx) —i—E"{E“{ Zﬁn (Yns Tn—1, @5y _1q)
B

—~

XL(yn> - XL(ynﬂ))’yl}} + 6E5{XL(y1)w (y1, ™o, ag) }
e E/ i lds) + el 3 7, o)
B

1-p

+2¢

XLc(yn—l)} + ﬁEu{w (y1, 1y ap)} + 26 ——

3 g
1_ﬁ+281—5

4e

<oP(p)+e+e
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from which the near optimality of (a) follows.

3.4.2 Convergence of approximations

In what follows we shall assume that the state space E is compact and
consider the setting as described in the beginning of this section 3.4. The
purpose is to determine a nearly optimal control function for J 5

We start with the following auxiliary result

Proposition 3.48 Assume E is compact, (A1)-(A4) hold, the sequence of
transition kernels P2 satisfies (D1) and a sequence w,, € bB(R*x P(E)x U)
is uniformly bounded and converges uniformly on compact subsets of R% x
P(E) x U tow € C(R*x P(E) x U).

Then for any compact set L C R?

/ WG My ), 1) [ [ 1z QPR G, d2) Moy, ) (d1)dC —
EE (3.159)
/ (€M (g ) ar) [ [ (. QP (e d2) MYy, ) (A1) d

as m — oo, uniformly in (y, u,a,a1) € L x P(E) x U x U.

P roof. Since w,, are uniformly bounded, under (A4) and using the com-
pactness of E it suffices to show (3.159) replacing integration over R? by
integration over any compact set L; C R% namely

@M (g0 a1) [ [ (200 P31, d2) M, ) (dn)dG —

(3.160)
J G M o m)a) [ [z QP (a1, d)M (g, ) (A1)
L BEE
as m — oo, uniformly in (y, u,a,a;) € L x P(E) x U x U.
To show (3.160) it is sufficient to prove that
wm(CvM;rzz(yJL)val) - w(C7Ma<y7:u>7a1> (3161>
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and

//T (21, d2) My (y, 1) (dz1) —
. (3.162)

//T Q)P (z1,dz)M*(y, 1) (dz)

as m — oo, uniformly in ((,y, p,a,a1) € Ly x L x P(E) x U x U.

We show (3.161) and (3.162) by contradiction. Suppose (3.161) does not
hold. Then for § > 0 there exist ¢, = (, Ym — Y, fbm = W, Ay — a, A" — a;
such that for m=1,2,...,

Wi (Gors My (Y phan )5 @1") — W (G, MO (Y fim ), @1)| > 0 (3.163)

By Proposition 1.4 and the continuity of w

W( Gy M (Y pim); @) — w(C, M (y, p1), a1) (3.164)

as m — oo.
Since by Proposition 3.5

ME™ (Yo, ) = M (y, 1) (3.165)

and w,, — w, as m — oo uniformly on compact sets, we also have

Win (G M (Yrmy pom), @) — w(C, M (y, 1), ax)

as m — oo, which together with (3.164) contradicts (3.163). Therefore
(3.161) holds.

Suppose now (3.162) does not hold.

In that case there is 6 > 0 and sequences (,, — C, Ym — Y, fbm = [,
a, — a, ai" — a; such that

‘//T (21, d2) My (Y, i) (d21)
(3.166)

_//T(ZaCm)PaT<Z1,dZ)Mam(ym”um)(dzl)‘ >4

form=1,2,...
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By (1.18)
M (Y fm) = M (y, 1)

as m — 0o, and therefore by (1.21)

// (2, G ) PV (21, d2) M™ (Y, o) (d21)
(3.167)

- // Q) P™ (21, dz) M (y, p)(dz)

as m — OoQ.

On the other hand by (D1) and (3.165)
/ / Pi (21, d2) M (g 1) (1)

o //'r 2, Q)P (21, dz) M“(y, 1) (d21)

as m — oo and we obtain a contradiction to (3.166).
The proof of Proposition 3.48 is complete.
n

Assume now, that the transition kernels Py are of the particular form
(2.28) and that

(C11) for p € C(E),i=1,2,...,m, the mappings U > a — /gp(z)%m(a,dz)
B
are continuous.

By analogy to Theorem 3.46 and Corollary 3.47 we have

Proposition 3.49 Under (A3), (A5), (C11) there exists a unique function
[0, [l <) [0, oI < U 2 (s -y s @) = W (Y1 T, @)
that is continuous bounded and satisfies the following equation

w2 (Y, m1s - My ) = infU[Cm(al,y,a,m,...,nm)—{—

ai€

+5/w6 (G M (g ) (1), M (g, i) (M), 01) (3 468)

> / a1, d2) Mt 1) )G

zlE
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where C, is the function defined in (3.143).

Moreover, with (y™) and (71") the observations and filtering processes

from (8.141) and (3.142) respectively,

Wl (y, (D), - .., ), a) =
B3 B o W) T = )
an) ap=a el
(3.169)
where y € R, a € U, we set ag = a and the infimum is taken over all

sequences (a,) that are adpted to o{yi",...,y"}.
Furthermore, for v#™ as defined in (3.13) we have

v?™ () = inf [/C(w,a)u(dm) +ﬁ/wfn(y,u(s03”%~--,u(s0%)7a)
m o R (3.170)
> [y duler)dy

i=1p

Finally, for a given € > 0 we can choose a compact set L C R and functions
ul € B(P(E),U) and u™ € B(RY x [0, ||@7|]] x ... x [0, [|¢™||] x U,U) such
that the following inequalities hold

sup R(z, L) < £ (3.171)
vek: el

—

(o, (u)(de) + 8 [ wh(y, (), ), ()
Rl (3.172)

= ®

i=1

.
Il

[ Gy (), d2)(edy < o7 () + ¢

for pe P(E)
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and
Cm<um<y7 My Mm, CL), Yy, a,n, - .- 77]m)+

+ﬁ/wrﬂn(C7Mgn(yanla s 777771)(1)7 . "M;){L(yanh s a”m)(m)v
Rd

- (3.173)
um(y’ My« Mm; CL)) Z/T(Za C)W;ﬂ(um(yu My« N, CL), dZ)
=17
M (yym, - ) (D)dC < wp (Y, -3 s @) + €
fory e L, m; € [0,]|¢"[]], i=1,2,....m, a €U.
The control (a™") of the form
ag” = ug (1)
(3.174)

a;n—;l = um(y;n—&-l? ,ﬂ.;n,u(gpgn), s 77721’“(%0%)7 aj;)

form = 0,1,2,..., is 4e(1 — B)~1 optimal for the cost functional Jf’m in
(3.143).

Remark 3.50 If for uj € B(P(E),U) and v’ € B(R* x P(E) x U,U) the

infima in (3.170) and (3.168) are attained respectively, then the control ag =

(1), -y les = (Y T PT), - T(P), ) s optimal for TP

P r oo f. Notice that under (A3), (A5), (C11) the operator

me(ya My« Nm, CL): = ailréfU[Cm(ala y,a,m,... 777m)+

+ﬁ / w(Ca Mg@(yv my--- 777m)(1)7 SR Mgz(ya M- 777M)(m)7 al) (3175)

m

Z/T(ZaC)an(aladZ)Ma(y,m,...,nm)(z')dg]

=1p
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in a contraction on C'(R? x [0, ||¢7]]] x ... x [0, ||¢™]]] x U) and follow the
considerations of subsection 3.4.1.
|

Our main approximation result is now

Theorem 3.51 Assume E is compact and (A1)-(A5) as well as (D1), (C11)
hold.

Then for any compact set L C R¢

wi, (n, p(@"), . ulem), a) — w’(n, p, a) (3.176)

as m — oo, uniformly in (y,u,a) € L x P(E) x U and
VW () — v () (3.177)

as m — oo uniformly on P(E).

Furthermore, given € > 0 there exist a compact set L C R* and functions
ult € B(P(E),U) andu™ € B(Rx0, [T ||]x. ..x][0, ||| xU, U) satisfying
(8.171), (3.172) and (3.173) respectively and the control a} defined as

a5 = ug' (1)
(3.178)
a:,-‘rl = um(yn+17 W%(@T)? s 77T:1L(90z)7 a;kz)
forn = 0,1,2,... is nearly optimal for the cost functional J;f with y, and

7 being now the original observations and true filter process from (1.1) and
(1.7) respectively.

Remark 3.52 If, given ¢ > 0, L C R? satisfies (5.171) and my is such that
for m > myg also the inequalities (3.181)-(3.185) below hold, then from the
proof of Theorem 3.51, to be given next, it follows that the control (ak) in
€ .

5 optimal for Jﬁ.

24
(1-75)

(3.178) is more precisely
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Proof. Let ¢ denote the function that is identically equal to zero. Notice
first that, by the Banach contraction principle, the functions w? and w?,
solutions of (3.146) and (3.168) respectively, can be uniformly approximated
by the iterations T*¢ and T¥ ¢ of the contraction (with constant 3) operators
T and T, defined in (3.150) and (3.175) respectively. To prove (3.176) it
therefore suffices to show that for each k£ =0,1,2,...

(T d) (g, 1(27"), - - 1), @) = (T°)(y, i, a) (3.179)
uniformly on compact subsets of R x P(E) x U.
The proof of (3.179) is by induction in k = 0,1,2,... . Since T2 ¢ =0 =

7%, (3.179) holds for k& = 0.
Assume (3.179) holds for k. Then by Proposition 3.48 we have

[ (TE0) (€ My 2T, - (D)D)

(@) s () (m), a1)
2, Q)i (ar, d2) My, (y, (01", - -, u(eoim)) (4)dC

5
=
=

[]s
-

(T*¢) (¢, M*(y, 1), a1 //T “(z1,dz) M (y, p)(dz1)dC
Rd

as m — oo, uniformly in (y, u,a,a;) € L x P(E) x U x U, where L C R is

any compact set.
Since by the defining relations (3.143) and (3.145) as well as by (3.18)

Cnlar, g0 ple?)e o) = Y [ elzianr(z )7 (0, d2)

=1p

—_

M(Sogn)(zm:/T(Z,y)v?(a,dz)u(gpyl)) t_

=g

= [ ez an My m)(d2) = [ e(z,a0)M(y, 1)(d2) = Clar,y,a, )

B
(3.180)
as m — oo uniformly in (y, 4, a,a1) € L x P(E) x U x U, we obtain that

(TE )y, (o), - ulom), a) — (T ) (y, 1, a)
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as m — oo uniformly in (y, u,a,a1) € L x P(E) x U x U.

Therefore (3.179) holds for k+1 and by induction, it holds for any positive
integer. The convergence (3.176) is thus proved. By (3.153) and (3.170) as
well as by (3.176) and (D1) we have for L C R? satisfying (3.171)

sup [0 () = ()] < sup sup | / Wiy, w(@), (el )
HEP(E) HEP(E) acU

/ (z,9) Py (1, dz)dy — /w (y, u,a )/T(z,y)Pa(u,dZ dy\
E R4 E

< sup sup [ sup|w (v, p(@]"), -, (o), @) — w(y, i, a)
neEP(E) acU ~yeL

@) [ 72 ) (Pl dz) = P*(1,d2))dy|

thus implying (3.177).
It remains to show the near optimality of the control (a}) in (3.178) for
the cost functional Jﬁ . For this purpose we shall more precisely show that

at) is

there exists mg such that for m > my the control (a

24¢ timal
1= 3 optima,
for Jﬁ. Given € > 0 let then L C R satisfy (3.171) and notice that, by
Proposition 3.49 we can choose functions uj' and u™ so that they satisfy
(3.172) and (3.173) respectively.

By (3.176), Proposition 3.48, (3.177), (3.180) there exists furthermore my

such that for m > my

sup sup sup wh (y, w(@T), - ple), @) [ r(zy) P, d2)

yeL peP(E) acU

—wP(y, 1, a) / Pz, y) P (n,d2)| < (3.181)
sup o7 () — v ()] < e (3.182)

HREP(E)

sup supsup sup |Cy,(a1,y, a, u(@Y"), ..., plem))
a1€U a€lU yeL peP(E)

_C(alvyaa'7 /J“)| <e (3183)
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sup  sup sup sup w5/, Mg (y, (@), plo))(1), -
yeL y'€L peP(E) a1€U acU

m

My (y, u(7")s - - s uleom))(m), ar Z/'r 2,y )" (a1, dz)
M (y, p(p), - - i) (1) — w’ (', M(y, ), an)
// 2,y )P (x,dz) M (y, )(dx)’ <e (3.184)

sup sup sup [wy, (y, u(¢7"), ., p(), @) — w’(y, g, a)| < e (3.185)
HEP(E) yeL acU

By the choice of L, by (3.181)—(3.182) and by the fact that u{ satisfies (3.172)
we now have for m > mgy and p € P(F)

[ el (u)ulde) + 8 [ @y, (w) [ rle,y) P (1, dz)dy

E Ra E
< [ el (u)u(d) + Ge(w| + )+
E
+ﬁ/wﬁ(y,u(wT),-~-,u(w$)7U?(u)) (3.186)
i/r (2, )% (ug' (1), dz) (" )dy + € < 25+vﬂm(u)+2&‘§
z:lE
< 12_ + 3¢ +0%(p) for p€ P(E)

Similarly, by the choice of L, by (3.183)—(3.185) and by the fact that u™
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satisfies (3.173) we have for m > mgand y € L, u € P(E),a € U
™ (y, pl@T); - (2, @),y 0 ) + 5 / w (¢, M (y, ),

W (y, (@™, .. // ")) (4 )

My, p)(dz1)dC < Cop(u™(y, (@), - ., uleim), a), y, a,
1w(o), 1(05Y), - (o)) + € + Be(||lw?|| + (lwi )+

B [ WG My (T, ) (D) M (g i) () ),

e ) 3 [ O ), ) )2

M, (y, 1(7"), - - plom)) (1) dC + & < 2 +

2¢e
+w?n(y7,u(90§n)a S 7“(@%)7 ) +e€ S 4e + 17 + wﬁ(ynuv Cl)

(3.187)
At this point notice that (3.186) and (3.187) correspond to (3.155) and

6e
(3.156) respectively if € is put equal to T . By Corollary 3.47 we therefore

have that the control (a}) in (3.178) is

i 2_4;)2 optimal for Jf.
|
By Theorem 3.51, the construction of a nearly optimal control function
for Jﬁ is thus reduced to the problem of determining a nearly optimal con-
trol funct10n for J™ that satisfies (3.172) and (3 173) and that involves the
filter only through the values of the statistic 7)""(¢r*). To practically con-
struct functions satisfying (3.172) and (3.173), we have to consider further
discretizations both of the observation and the control spaces. Recalling the
definition of the projection operators Wy, Zy in (2.48), (2.50), and that
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U ={Zya,a € U}, consider then the following relations

wTBn,H(yv M- M, CL) = ailrgl‘][cm(ZHala WHyv ZHaa My 777771)

+ﬁ/wfi,H(<, MZH Wy, m, - onm)(1), ..,
e . (3.188)
Zrra
MmH (WHyanlw"anm ZHa Z/T’(Z C
E

=1

VP (Zygar, d2) M Wy s ) () dC)

o :Hellff /chHa (dx) +ﬂ/meWHy,
B . R (3.189)
u(et), - -, ): Zga) Z/ r(z, ) (Zya, dz)p(e}) dy]
=g

that correspond to (3.168) and (3.170) respectively.
From the definition in (3.188) notice that the functions wf% g depend on y
and a only through the finite number of values of Wy and Za; furthermore,

the infimum over a; is actually a minimum over the finite set of values of
ZHCL1 E UH

Proposition 3.53 Under (A3)-(A5), and (C11), for E compact there exists
a unique function wy, i € BB(RY X [0, o7 ] x ... x [0, i ]l] x U) that is a
solution to (3.188). One also has

wf%H(y, My Ty @) = W2 (Y, 01, - - o T, @) (3.190)

as H — oo, uniformly in n; € [0,]|¢"|l], ¢ = 1,2,...,m, a € U, and y
belonging to a compact set L C R%. Moreover, for fizxed y € R%, a € U the
mapping

[0, 17011 % <o X [0, 101 D (s -y ) — Wo gt (Ys s -+ s Ty @)

is continuous. Furthermore, for v5™ defined in (3.189) one has vi™ €
C(P(FE)) and
v (1) — v () (3.191)
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as H — oo, uniformly in p € P(E).

Finally, given € > 0, if Hy is such that for H > Hy, ull € B(P(E),U")
and ut € B(WyRIx |0, |7 ] x...x [0, |¢m ||| x U™, UH) satisfy the following
inequalities

[ el )tda) + 8 [ w)aly w00, o), i ()
RA (3.192)

NER

=1

-
I

/r(z, ) (ud (1), dz)p(s)dy < vp™(p) + e for p € P(E)

Cm(U’H(WHy77717 s 777m7a’>7 WHyua’7 Myew- 777m)+

B [ (€ MWy ) (Do MWy, 1) (),
Rd

uH(WHyﬂnla s 777m7a’)) Z

(2, Ot (W Way, mis -« o s a), d2)
:lE

.

Mt (Wi, s ) (DG < wiy (Wi s @) + €
(3.193)
fory € R, n; € [0,]|¢™], i = 1,2,...,m, a € UH respectively, then the
control all” defined by analogy to (3.178) as

ag” = ug (n)
(3.194)
ay'y = w (Wyyy, T (o7, o mi (o), ay )
18, form =0,1,2,..., nearly optimal for the cost functional Jf’m.

Remark 3.54 If, given ¢ > 0, L C R? satisfies (3.171) and Hy is such that
for H > Hy also the inequalities (3.195)—(3.199) below hold, then from the
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proof given below it follows (see also Remark 3.52) that the control (all") in
c 5 optimal for Jﬁ’m.

(5.190) i oty 24
. s more precisely —————
(1-7)

supsup  sup Sup’w7ﬁrL7H(ya771>'-'a77mva)
yeL i ne0,)lpr|]] a€U

m

ZT(Z, y)V?%(a? dZ)nZ - wrﬂn(yu M- Mm; CL) Z/T(Z, y)

=1 z‘:lE

V' (a,dz)ni| < e (3.195)
sup [y (1) — 0P ()] < e (3.196)

REP(E)
sup supsupsup  sup
a1€U acl yel i melo,fom|]

|Con(ar, Wyy,a,mi, ..o 0m) — Co(ar, y,a,m1, . mm)| < e (3.197)

sup sup  sup  sup sup‘wfn u,
yeL y'eL it n;€0,|lo]|] a1€U a€lU

M2 Wyy,my o) (1), ooy M (Why,my o) (M), aq)

m

> [y, d2) M Wy, s - 1) ()

=13

_wrﬁn(y/’ M;:l(y77717 s 777M)<1)7 cee 7qu(3/77717 s 7nm)<m)7 a’l)
Z//T(z,y')%m(al, dz)M?2 (y,m, ... ,nm)(i)’ <e (3.198)
=g E

supsup  sup  sup [wh, 5 (Wyy, m1,- .-, s @)
veL i mielo,ller|] acl

—w) (Y, M, -y 0)| < € (3.199)
Proof. The existence and uniqueness of wf% y follows from the Banach con-
traction principle. To prove (3.190), by analogy to the proof of Theorem 3.51
it is sufficient to show the convergence of the iterations of the contraction
operators that are used to prove the existence of solutions to (3.188) and
(3.168) respectively.
The contiunuity of wf%H(y, M, Om,a) With respect to ny,...,n, fol-
lows from the continuity in 7, ...,n,, of the iterations of the contraction
operators that approximate uniformly w@ i, recalling that igllf is actually a
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minimum over the finite set of values of Zya,. Consequently, by (3.189) we
have vj/™ € C(P(E)) as well as the convergence (3.191). To obtain the near
optimality of the control (aZ") in (3.194), one may proceed analogously as in
the proof of Theorem 3.51 using Proposition 3.49, instead of Corollary 3.47.

|

Although the functions w;GmH(y, My, Mm,a) depend on y, a only through
the finite number of values of Wy, Zya, they still depend on an infinite num-
ber of values of n; € [0, ||¢"]|], ¢ = 1,2,...,m. To make the construction of
the nearly optimal control (al") feasible, one has therefore to perform also a
discretization of n; which does not create additional problems because of the
continuity of wfn’ g With respect to (m1,...,7my). Since this further discretiza-
tion would repeat arguments already discussed previously in subsection 2.3.2,
it is left to the reader.

3.4.3 The approximation procedure

Summarizing, the procedure to obtain a nearly optimal control function for
Jf in the context of this section 3.4 is as follows:

a) For sufficiently large m and H, use an iterative procedure of the value it-
eration type to determine a uniformly approximating solution to (3.188).
Due to the contraction property of the operator on the right hand side
of (3.188) any degree of approximation can thereby be reached and
the computations can actually be carried out since, after an additional
discretization of n; (i = 1,2,...,m), all quantities involved are finite-
valued.

The minimizing values of a; (actually of Zya; € U™), obtained at
the last iteration corresponding to the various possible values of Wy,
My s My Zya, lead to a function u? € B(W, (RY) x [0, ||¢Tl] x ... x
[0, llemll] x U, UH).

b) With the (uniform) approximation to w,’GmH from (3.188), determine

according to (3.189) an approximation to v (x) for the given initial
measure /1.

Provided the integrals in (3.189) with respect to =,y and z can be carried
out, this computation is again feasible due to the fact that the ”inf” is actually
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a "min” over the finite number of values of Z a. The minimizing a is the
value, at the given initial measure, of a function ul’ € B(P(FE),U").

Concerning the functions ufl and u’ thus constructed, the results of
subsection 3.4.2 allow to conclude the following:

i)

ii)

3.5

For a sufficiently large number of iterations to solve (3.188), if H is
chosen sufficiently large that conditions (3.192) and (3.193) as well as
(3.195)—(3.199) are satisfied for a given € > 0, by Proposition 3.53 as

well as by Remark 3.54, the control (") is 5 optimal for Jlff’m.

24e
(1-0)
Based on (3.192) and (3.193), and taking also (3.196), (3.197), (3.199)

into account, we have that the control functions uJ*(u): = ull (1) and

Um(yﬂ?l, s 7nmaa'): = UH(WHyynh ceey Nhmy ZHa)

satisfy (3.172) and (3,173) for suitable values of .

If therefore also m is chosen sufficiently large, by Theorem 3.51 we have
that the control (aZ") given accordingly to (3.178) by

ag” = uf'(w)

arlj—:l = um(ynJrlv Wﬁ(@ﬁ”), oo 772(30%)7 ap, *)

is nearly optimal for J. 5 .

Filter approximation and near optimal control val-
ues

The previous sections of this Chapter 3 were devoted to the construction
of nearly optimal control functions which, when applied to the true filter
process (m,) with values in P(F) and defined in (1.7), yield nearly optimal
controls.

In the context of section 3.3 the nearly optimal control functions belong
either to the space B(P(E),U) or to C(P(F),U) and can thus be applied
directly to (m,) to yield controls of the form a, = u(m,). In the context of
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section 3.4 the control functions belong to B(R? x R™ x U, U), they depend
on (m,) only through the values of the statistic (7,(p7"), ..., m(©)), but de-
pend also on the values of the current observation and previous control; they
thus yield controls of the form a, = w(Yn, Tn-1(€7"), .- -, Tn_1(LM), an_1).

Since the true filter process (m,) takes its values in the infinite dimen-
sional space of measures P(FE), it cannot be computed in practice. On the
other hand, to able to determine nearly optimal control functions, already
in sections 3.3 and 3.4 we considered approximating finite dimensional fil-
ter processes. More precisely, in subsection 3.3.2 we considered the process
(7*) with values in the simplex P(F,,) that can be computed recursively by
(3.57). Analogously, in section 3.4 we considered the process (7»"), whose
finite-dimensional statistics 7" (") (i = 1,2,...,m) can be computed re-
cursively by (3.144).

Although these finite-dimensional processes are computable, they are
based on the approximating fictitions observations (7)'') defined in (3.54)
and (3.141) respectively, and are thus fictitions processes themselves.

The purpose of this section is now to define a real approximating finite-
dimensional filtering process, that can be computed, and to show that the
nearly optimal control functions determined in sections 3.3 and 3.4, provided
they are continuous, still yield nearly optimal control values when applied to
the approximating filtering process.

We shall do this in two subsections, the first subsection 3.5.1 correspond-
ing to the context of section 3.3, the second 3.5.2 corresponding to section 3.4.
A common feature of the two subsections is that, since the approximating fil-
ter process itself is not Markov, we shall consider pairs of processes, each pair
consisting of an approximating filter to be used as argument of the control
function and a ”true” filtering process.

3.5.1 Filter approximation and near optimal control values in the
context of section 3.3

Given the initial measure p € P(FE) for the process (x,), let @ € P(E,,) be
the vector (u(BT"), ..., u(By ) as specified below (3.74). Starting from 7 as
initial measure we shall construct a computable real process 7% ¢ P(E,,)
(see (3.204) below) that will serve as approximating filtering process; it will
then be shown that any of the nearly optimal control functions derived in
section 3.3, provided they are continuous, yield nearly optimal controls when
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applied to (7). There are essentially two classes of nearly optimal control
functions in section 3.3. The first class, corresponding to subsections 3.3.2a
and 3.3.3a, belongs to the space B(P(E,,),U). Each control function from
this class can be applied directly to 77" to yield controls a,, = u(7™), but
the results below hold only if first we verify that u is also continuous. The
second class, corresponding to subsections 3.3.2b and 3.3.3b, belongs to the
space C(P(F),U). Although each control function u from this second class
is already continuous, the process (7)) with values in P(E,,) has first to

be lifted to the space P(FE) via the procedure connected with the operator
ENm introduced in subsection 3.3.2.b.

Both classes of controls can however be treated in one single approach
by assuming that the nearly optimal control function u belongs to A =
C(P(E),U) and considering controls obtained as a, = L u(7™™).

As already mentioned, we shall now consider pairs of processes, each
consisting of an approximating and a "true” filtering process. For reasons
that will become apparent below, we shall actually consider three such pairs,
each corresponding to one of the three processes (m,), (77, (7) defined in
(1.7), (3.14) and (3.57) respectively.

To define the three pairs, it will be convenient to consider the operators

r(z,y)v(dz)

By [

Qy,v)(A4) = (3.200)
r(z,y)v(dz)
fory € RY, v e P(E), A€ B(E), and
C(ma)(A) = [ P*(w, A)pu(de) (3.201)

forace U, ne P(E), A€ B(E).
Given a fixed control function u € A, for v,u € P(E), n € P(E,,) and
M(y,n) as in (1.8), M2 (y,7) as in (3.14), M, (y,7) as in (3.57), define

(3.202)
a0 () = ul) 7L ) = Qg ST (@) ()
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O =v() w) = Mo (e, 7)) () with g, = Lu(z0)

n

o () = u) M () = Qe (w0, () ()
(3.203)

T =a0) FEC) = M (W, 7)) with

tp = Lopu(Tm0) (3.204)

7 D) = () T () = Qg CEREM Lot ()

where W, is the projection of R? to D,, defined as in (2.48) and where y,
denote the "real” observations, namely the observations, according to (1.1),
of the given state process (x,) that starts with initial law p and is controlled
in the generic period n by a control taking the values a, = u(r")), a, =
Lnu(r™)) and a, = Lu(7"M) respectively. The "real” filtering processes
(recall that the state process (z,) has initial measure p) are therefore given
by 777(1“”’), W,ZT(“’”) and 7?7’?(“’”) respectively.

The processes ), 77®) and 7™ will thus play the role of arguments
of the control function.

Notice also that, for n =7 = (v(B}"),...,v(BJ")), we have 1) (.) =
77:?(#,9)(.).

Lemma 3.55 The pairs (7%, 7)) (gm@) gmle)) gpd (7o) zmen)
form Markov processes with transition operators T, Ty, and T,, defined in
the following way: for F € bB(P(F) x P(E)), f € bB(P(E,) x P(E)),
u,v € P(E), ne€ P(E,) we have

TF(v, )= By AF () o)} =
(3.205)
= [ [ FOI")y,), Q(y, G, uw)r(z, )y P (, dz)

E Rd
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T, F(v,p): = EMV{F(WI”(V), WT(”’V))} =

= [ [ PO y,0), Q. (Lo (2, ) dy PP (u, d2)

(3.206)

Tof(n,1): = B {f (@™, 70 07)} =

= [ [ £O1 Wy n), QU Gl Em(n))r (2, )y PE (1, 2)

(3.207)
respectively.
Moreover, under (A1)-(A4), T is Feller. Assuming additionally (B9), we
have the Feller property of Ty, as well.

Proof. The proof of the Markov property and of the form of the operators T',
Tyn, T, respectively, is analogous to that of Lemma 1.3. The Feller property
of T and T, can be shown by arguments similar to those of Proposition 1.4
and Corollary 1.5.

|

Proposition 3.56 Under (A1)-(A4) and (D1),(D2) if B(P(F) x P(E)) >
F,— F € C(P(E) x P(E)), as m — oo uniformly on compact subsets of
P(E) x P(E) and the family {F,,,m = 1,2,...} is uniformly bounded, we
have that for k=1,2, ...,

(T Ep(v, 1) — (T)FF (v, 1) as m — oo (3.208)

uniformly in (v, p) from compact subsets of P(E) x P(E), where (T,,)* and
(T)* denote the k-th iterates of Ty, and T respectively.

P roof. Weshow (3.208) by induction. Therefore we prove first (3.208) for
k=1.
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By Proposition 3.5, for ¢ € C(E)
My, v) () = ME )y, v) () = 0 (3.209)

as m — oo, uniformly in (y, ) from compact subsets of R¢ x P(FE).
Now,

Q. C(u, Lnu(v))) = Qy, ¢ (1, u(v))) (3.210)

as m — oo, uniformly in (y, u1, v) from compact subsets of R¢x P(E)x P(E).
In fact, if (3.210) does not hold, then there are sequences ¥, — Y, fhm =
i, Vm = v such that for ¢ € C(FE) and some 6 > 0 we have

|QYm; C(ban, L (v ))) (@) = QYrm C (i, ulvm))) (@) >0 (3.211)

Since

QY C(m, Lnw(Vim))) (@) = M* (Y, fim) ()
with a,, = Lu(vpy,)
and ~
QYm, C(tm, u(¥im))) (0) = M (Y, pn) ()

with @, = u(vy,) and by Lemma 3.21(i), a,, — u(v), according to Proposi-
tion 1.4 we obtain

| M (Yo 1) (0) = M) (i, 1) ()] — O

and ~
| M (Y, 1) () — M"P) (y, 1) (0)| — 0

a contradiction to (3.211).
Thus (3.210) holds.
Since

ME ) (y,v) = Qy, ¢ (v, Lyu(v))
by (3.209) and (3.210) it is immediate that

ME) (y, 1) = Q(y, ((v,u(v)) = M")(y,v)

as m — oo, uniformly in (y, ) from compact subsets of R¢ x P(E).
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Now, for B(P(E) x P(E)) 3 F,, — F € C(P(F) x P(E)) as m — o0,
uniformly on compact subsets of P(E) x P(FE), and ||F},|| uniformly bounded
we have

T i) = TE(u0)| < [ [ |Fn(ME g, ),

E Rd

QEyv C(M7 ZmU(V>>)) - F(MU(V) (y7 V)a Q(ya C(,U,, U(V)))|7’(Z, y)dy
PEO (u,dz) + | [ [ FOI(y,0), Q. Gl u))r(z, y)dy
(PE @) (u, dz) — PV (1, d2)))| = L + T,

Let H C P(F) be a compact set. By (A2) and (A4) for any € > 0 we can
find compact sets K C E and L C R such that for p € H

w(Ke) <e PE0)(u K9 <e form=1,2,...; ve P(E)

and

sup [ r(z,y)dy < ¢
ZEKLC

Then for an additional compact set H; C P(E) we have

Iy < 2(|[ | + | Fl))e + sup sup sup | B (M) (y, v),
neH veH, yeL

QY C(1, Lnu(v))) = F(M" ) (y,v), Q(y, ((nu(v))))]

and by (3.209), (3.210), Lemma 3.8 and the compactness of the set
{(M*) (y, ), Q(y, C (1, u(v)))),y € Ly € H,v € Hy} we obtain I,,, — 0,
as m — oo uniformly in (pu,v) € H x Hj.

Moreover, we have

pneH veH, yeL

I1,, <2||F|le + sup sup sup ‘ /F(Mu(u)(y, V),
B

Qy. G ul))r(z, ) (PP (1, d2) — P (1, d2))|

By Lemma 3.6 with M; = R? x P(E) x P(E) x P(E), M; = R, K =
L x H x Hy x H, function F' there defined as (compare with the proof of
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(3.21))
F:RYx P(E) x P(E) x P(E) 3 (y,v1, 5, v3)
— /gp(y, V1, Vg, 2)v3(dz)

where

H={P"“Yu,-), ve H, pc H}
90<y7V17 V27Z> = F(MU(V2)(y7 VQ)?Q(y)C(Vlau<V2))))T<Z7y)

we obtain 11, — 0 as m — oo, uniformly in (u,v) € H x H;.
Therefore
sup sup |1, o (v, 1) — TE(v, )| — 0

veH neH

as m — 00, and we proved (3.208) for k = 1.
Assume now, that (3.208) is satisfied for k. Then

P, 10):= (T)* P, 1) — (T)*F (v, 1): = F* (v, 1)

as m — oo, uniformly in (v, ) from compact subsets of P(E) x P(E). By
step k=1

(L) (v, 1) = T (v 1) = TF (v, 1) = (1) F (v, )
as m — oo, uniformly in (v, u) from compact subsets of P(E) x P(E), and

therefore (3.208) holds for k + 1.
Finally, by induction (3.208) is satisfied for any positive integer k.

The near optimality of the control a, = L,u(7™™) follows now from

Corollary 3.57 Under the assumptions of Proposition 3.56, assuming ad-
ditionaly also (A5), for any u € A

TH(Lou(m ) — I (u(m)) (3.212)

as m — oo, uniformly in p from compact subsets of P(E).
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P r oo f. We have to show that for each : =0,1,2,.. .,

Eyie{ [ el Lnu(m P70 P (da)}

B (3.213)

— Eu{/c(:p,u(m))m(dx)} as m — o0,
B
uniformly in g from compact subsets of P(F).
Notice first that

Euaf [ o, Ly ™))ar o (dz) } =

B (3.214)
= Eu,u{/C(x7Zm“(”?(u))ﬁmwm(dx)}

E

Thus, by Lemma 3.16, (3.213) is satisfied for i = 0.
For 2 > 0 we have

Bu{ [ e, ()4 (d)} = s

g Lo (") Y = (T3, Y1 Co (1, 1)

with

Conlv, 1) = [ ela, Zpulv) (o)

By Lemma 3.21(i), Cp(v,pu) — C(v,p):= [c(z,u(v))u(dr) as m — oo,

uniformly in (v, u) from compact subsets of P(FE) x P(E). Noting again
from (3.202) that 7¥) = 7(##) = 7, from Proposition 3.56 we obtain

(Tn) Con(ps ) — (T)'C(, 1) =
= Euu{ /c z,u(m ““)(dx)} (3.216)

= Eﬂ{gc(l’,u(m))m(dm)}

136



as m — oo, uniformly in g from compact subsets of P(E). Summarizing
(3.214)—(3.216), we obtain (3.213) and consequently (3.212).
|

Corollary 3.57 concludes our approach for the construction of nearly opti-
mal controls in infinite horizon problems with discounting when no measure
transformation is used and the context is that of Section 3.3:

First determine a nearly optimal control function v by using any of the
methods described in section 3.3 and make sure that this function is contin-
uous (automatically true for some of the methods). Applying the extension
procedure (described following (3.66) or below (3.71)) this function can be
considered as an element of the class A = C(P(FE),U). For an initial mea-
sure ; € P(E) and corresponding n = i = (u(B7"), ..., u(By")), compute
then the approximating filter process (7™")) according to (3.204) for a suf-
ficiently large value of m. Since 7™ € P(E,,), this process can actually be
determined.

A nearly optimal control is then obtained by choosing in the generic
period n a control value a,, given by a, = Lu(7"®).

3.5.2 Filter approximation and near optimal control values in the
context of section 3.4

This subsection parallels the previous one and considers the context of sec-
tion 3.4. We shall in fact construct an approximating real filtering pro-
cess W € P(E) (see (3.220) below), whose finite dimensional statistics
(7 (o), ..., 7 (™)) can be computed recursively according to (3.144)
and where we use the real observations (y,) instead of the fictitious ones
(y). We shall then show that the nearly optimal control functions derived
in section 3.4, provided they are continuous, yield nearly optimal controls
when applied to (77®).

At this stage let us point out the double usage of the index m: In sec-
tion 3.4 it was used to index the approximation induced by considering the
approximating transition operators P%(z,dz) in (3.140); it determines the
number of elements in the statistic (7%(7"), ..., 7% (¢")) to be used as ar-
guments of a nearly optimal control function u™ as in (3.178). In this sec-
tion it will index a certain approximating process (see (3.220) below) and
also determine the number of elements to be considered in the statistic
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(7w (o), ... 7™ (™)) when computing it according to the recursions
specified below (3.220) that correspond to those in (3.144). Theorem 3.51
in section 3.4 states that, for m sufficiently large, the control function u™ is
nearly optimal. Similarly, in Proposition 3.59 below we shall show that, for
m sufficiently large, the approximating process in (3.220) that will provide
the arguments to be used in the nearly optimal control functions comes close
in a certain sense to a limiting process related to the true filter (7).

Since it will be convenient to let the two indices vary independently from
one another, below we shall denote by 7 the index in the first usage, while
we shall leave it as m in the second usage. Of the statistic (7®) (o), ...,

7™ (™)) we shall then use only the first 77 components as arguments of
the nearly optimal control function thereby requiring m > m. To ensure

consistency, we shall then also have to require that, for m’ > m

{ef" oy Dol o) (3.217)
Furthermore, we shall require
(C12) o e C(F) fori=1,2,....,m

Fix now a positive integer m and recall from section 3.4 that the nearly
optimal control functions are pairs of Borel functions of the form

up: P(E) — U (3218)

u: RO [0, [lf[l] x .. x [0, el x U = U

that we shall now require to be continuous.

Again, since the approximating process (77")) itself will not be Markov,
we shall consider pairs of processes, each pair consisting of an approximating
and a "real” filter. Actually, since the control functions in the present context
depend also on the values of the current observation and the previous control,
we shall more precisely consider quadruples of processes. Notice however
that, since here the approximating filter (7)) takes values in P(E) (wee
need to compute only its statistic (77" (o7), ..., 7™ (o)), contrary to
the previous subsection here we shall consider only two such quadruples,
each corresponding to one of the two processes (m,) and (7)) in (1.7) and
(3.14) respectively.
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Given a fixed pair (ug, u) of continuous functions of the form (3.218), for
v, € P(E) let then

1= Ynrr, 70, 78 ay), (3.219)
where
7" () =v(), W() (), ao = uo(v)
an+1—u(yn+1, Ty ( ), 7(1 ( g) )
) = MO, TN, D) = M e, )
and
@y = Yorr, T @, ) ), (3.220)
where

') =v(), 7O =p),  ao = ue(v)
a'n-l-l = u(yn+17 n( )(907171) . m(l/)(gpm) )
T () = M2 (Y, :?<“>>< >, T () = MO (Y, ) ()

where, again, y,, denote the real observations of (x,) according to (1.1) when
the controls are given by (ao, a,) as specified below (3.219) and (3.220) re-
spectively.

Lemma 3.58 The processes qni1, qnyq are Markov with respect to the o-
field Y™ and have the transition operators T and T, defined below where
F e bB(R*x P(E) x P(E) x U)

TF y7V17V27 //Fya y,V1) Ma(yal/2)>
B fo (3.221)
u(yvyl(splm)w'-aVl(@g)va))r(zvy)dyMa(yaVZ)(dZ)

T, Fyaylay27 //Fy7 y7V1) Ma(yvl/Q))
B (3.222)

u(y, (¢, s viem), a))r(z, 7)dgMe(y, va)(dz)

Moreover, under (A1)-(A4), (C12), the operator T is Feller, and, assuming
additionally (C11), we have the Feller property also of T,,.
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P r o o f. The proof of Markov property follows the considerations of Lem-
ma 1.3 (see also Lemma 3.55). The Feller property is a simple implication of
Proposition 1.4 and the assumption (C12).

Proposition 3.59 Assume (A1)-(A4), (C12) and (D1),(D2). Then if B(Rx
P(E)x P(E)yxU)> F, — F € C(R*x P(E) x P(E) xU) as m — o
uniformly on compact subsets of R* x P(E) x P(E) x U and the functions
F,, are uniformly bounded, we have for k =1,2,...

(Ton))" Ey(y, v1, v2,a) — (T)*F(y, v1, 15, a) (3.223)

as m — oo uniformly in (y,v1,vs,a) from compact subsets of R? x P(E) x
P(E)x U.

P r o o f. By the proof of Proposition 3.56 it suffices to show (3.223) for
k =1. Let L and I, I'; be compact subsets of R¢, and P(E) respectively.
For a given € > 0 one can find compact sets K C E, L; C R? such that
sup sup sup M*(y,12)(K°) <€
vo€l yeL acU
and
sup [ r(z,y)dy < ¢
ZEKLC
1

Then

sup sup sup sup |15, Frn(y, v1, 12, a) — TF(y, vy, v, a)
yeL viel’ voel acU

< 2e(|F|| + || Fml]) + sup Sup sup sup sup
Ly yeL viel’ vpel’ acU

!Fm(y,M%(ywl),Ma(y,Vz), u(y, (1", - 1i(eh), @)
_F(?a Ma(?/? Vl)a Ma(yv V2)7u(y7 Vl(@?)? tt l/l((:p%)a a))‘

By Proposition 3.5, Lemma 3.8 and the compactness of the set {(7, M*(y, 11),
Ma(y’ ]/2)7u(y7 Vl(splm)v .- -aVl(SD%)aa) with @ € L17y € Lv v € F7V2 € P,CL S
U} we obtain (3.223) for k = 1.

|

The near optimality of the control af* = uo(u), a* = u(yn, 7, mlu) (&7, -

n

7 (o) gm ) follows now from
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Corollary 3.60 Under the assumptions of Proposition 3.59 for ug €

C(P(E),U), u € C(Rx [[|0,7][] x ... x [0, 5[] x U,U),

ag' = uo(p)
ap'y1 = U(Ynt1, 7y (“)<901 ) 77TTT(M)( NG
and
ag = uo(4)
Ant1 = WYnt1, Tal(@T), - Tnlom), an)
We have

Tia) — J)l(an)
as m — oo uniformly in u from compact subsets of P(E).

Proof. By (3.145)

Tetar) = [ el uo()u(de)+

E
+26“E“{0 (W, T (P, T (T, ), s
n 1 n‘ulll)} / c\r uO dSIZ’)

+Zﬁ"E“{F Yo Tt T a1} =

c(x, uo(p)) pu(dx) + Zﬂ”E" )" (Y1, s 1, w0 (1)) }

m\
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defining thus implicitly the function F' that is easily seen to be continuous.
Similarly, noticing that 7## =,

Ji(an) = [ elw,uo(p)u(dr)+

+ Z ﬁnEZ{C(u(ynv Wn—l(solﬁ)a ey ﬂn—l(@%)a a'n—l)a Yn, Qp-1, 71-n—l)}
=1

el ug(p)a(de) + 3 BB F (st ar, 1,1)) =

Be— B~

e, (1)) dr) + i BB (T F (g 1 1y wol1))}

(3.228)
Therefore by Proposition 3.59 we obtain (3.226).

Analogously to Corollary 3.57, the previous Corollary 3.60 concludes our
approach for the construction of nearly optimal controls in infinite horizon
problems with discounting and in the context of section 3.4:

First determine for a sufficiently large 7 a nearly optimal control function
pair (ug,u) according to the method of section 3.4 and make sure that ug
and v are continuous.

For the initial measure p € P(F) and for sufficiently large m, with m >
m, compute, according to (3.144) and with the use of the real observations
Yn, the statistics (7709 (), ..., 7™ (™). A nearly optimal control is

n r0n

then given by (3.224).
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