
1 Preliminary results

1.1 The control problems

Given an underlying probability space (Ω, F, P ), let E be a locally compact
separable metric space. On E consider a state/signal process (xn) assumed to
be Markov with initial distribution µ and transition kernel P a(x, dz), where
a is the control parameter with a ∈ U a compact metric space.

The process (xn) is observed through an observation process (yn), yn ∈
Rd, which is statistically dependent on xn via

P{yn+1 ∈ A|x0, x1, . . . , xn+1, Y
n} =

∫

A

r(xn+1, y) dy (1.1)

for n = 0, 1, 2, . . ., where A ∈ B(Rd) with B(Rd) denoting the family of Borel
subsets of Rd, Y n = σ{y1, . . . , yn}, Y 0 = {∅,Ω} and r:E × Rd → [0,∞) is a
fixed Borel measurable function.

Notice that (1.1) includes observation models with additive noise as e.g.

yn = h(xn) + σwn

with (wn) i.i.d. standard Gaussian for which

r(xn, y) = (2πσ2)−
1
2 exp

{
− 1

2σ2
(y − h(xn))2

}
(1.2)

Although we are mainly interested in the original model having a nonfinite
number of states and observations, all results can be easily transformed to
the case when the state is E = {1, 2, . . .m}, and the observations take values
in the finite set D = {d1, . . . ds}. In this case we assume that there exists a
function r:E × D → [0, 1] such that the D-valued observation process (yn)
of (xn) satisfies the following relation

P{yn+1 = di|x0, x1, . . . , xn+1 = j, Y n} = r(j, di) (1.3)

for j ∈ E, 1 ≤ i ≤ s.
We shall consider as admissible controls, sequences u = (a0, a1, a2, . . .) of

U -valued random variables an adapted to the observation σ-field (Y n). The
values taken by these random variables will generically be denoted by the
letter a.
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Our study concerns the following three types of stochastic control prob-
lems.

I) Finite horizon problem with cost functional

JT
µ (u) = Eu

µ

{ T−1∑

n=0

cn(xn, an) + b(x
T
)
}

(1.4)

where T > 0 is given, Eu
µ denotes expectation given the initial mea-

sure µ and the admissible control u

II) Infinite horizon problem with discounting with cost functional

Jβ
µ (u) =

∞∑

n=0

βnEu
µ{c(xn, an)} (1.5)

where β ∈ (0, 1) is the discount factor.

III) Infinite horizon ergodic cost problem with cost functional

Jµ(u) = lim sup
T→∞

T−1
T−1∑

n=0

Eu
µ{c(xn, an)} (1.6)

The purpose is that of determining a nearly-optimal (ε-optimal) control
for each of the three problems, namely a control for which the cost func-
tion comes within ε of its infimum. This will be achieved by means of an
approximation approach.

1.2 The filter process

To study the stochastic control problems with partial observation described
in the previous subsection, it will be convenient to associate with each of
them a corresponding complete observation problem where the new state is
given by the filtering process (πu

n) which, for a given admissible control u,
A ∈ B(E) and a given initial law µ for (xn), is defined as

{
πu

0 (A) = µ(A)
πu

n(A) = P u
µ {xn ∈ A|Y n} (1.7)

where, analogously to Eu
µ , P u

µ denotes the probability induced by (xn), given
the control u and the initial law µ.
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Lemma 1.1 Given (1.1), for each admissible control u we have the following
representation of the filtering process

πu
n+1(A) =

∫

A

r(z, yn+1)P
an(πu

n, dz)

∫

E

r(z, yn+1)P
an(πu

n, dz)
: = Man(yn+1, π

u
n)(A) (1.8)

Pµ a.e., with the mapping Ma(y, π) defined implicitly.

P r o o f . Let F ∈ bB((Rd)n) and A, C ∈ B(Rd). By (1.1), the properties of
conditional expectations, and Fubini’s Lemma, we have

∫

Ω

Man(yn+1, π
u
n)(A)χ

C
(yn+1)F (y1, . . . , yn) dP =

∫

Ω

E[Man(yn+1, π
u
n)(A)χ

C
(yn+1)|xn+1, Y

n]F (y1, . . . , yn) dP =

∫

Ω

∫

C

Man(y, πu
n)(A)r(xn+1, y) dyF (y1, . . . , yn) dP =

∫

Ω

∫

C

Man(y, πu
n)(A)E[E[r(xn+1, y)|Y n, xn]|Y n] dyF (y1, . . . , yn) dP =

∫

Ω

∫

C

Man(y, πu
n)(A)E[

∫

E

r(z, y)P an(xn, dz)|Y n] dyF (y1, . . . , yn) dP =

∫

Ω

∫

C

Man(y, πu
n)(A)

∫

E

r(z, y)P an(πu
n, dz) dyF (y1, . . . , yn) dP =

∫

Ω

∫

C

∫

A

r(z, y)P an(πu
n, dz) dyF (y1, . . . , yn) dP =

∫

Ω

E[
∫

A

∫

C

r(z, y) dyP an(xn, dz)|Y n]F (y1, . . . , yn) dP =

∫

Ω

E[E[
∫

C

r(xn+1, y) dyχA
(xn+1)|Y n, xn]|Y n]F (y1, . . . , yn) dP =

∫

Ω

∫

C

r(xn+1, y) dyχA
(xn+1)F (y1, . . . , yn) dP =

∫

Ω

E[χ
C
(yn+1)|Y n, xn+1]χA

(xn+1)F (y1, . . . , yn) dP =
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∫

Ω

χ
C
(yn+1)χA

(xn+1)F (y1, . . . , yn) dP =

∫

Ω

πn+1(A)χ
C
(yn+1)F (y1, . . . , yn) dP

Therefore by the definition of conditional expectation we obtain (1.8).

In the case when the state and observation processes take their values in
finite sets E and D respectively and (1.3) holds, by analogy to Lemma 1.1
we obtain

Corollary 1.2 For the case of finite state and observations spaces under
(1.3), for each admissible control u we have the following representation of
the filtering process

πu
n+1(j) =

r(j, yn+1)P
an(πu

n, j)
m∑

k=1

r(k, yn+1)P
an(πu

n, k)

: = Man(yn+1, π
u
n)(j) (1.9)

Pµ a.e., for 1 ≤ j ≤ m, where, similarly as in (1.8), we define implicitly the
mapping Ma(y, π).

We point out that all the results obtained in the sequel for general E and
D = Rd hold also for the case of E = {1, 2 . . .m}, D = {d1, . . . ds}, provided
the assumptions and the statements are appropriately reformulated replacing
e.g. integrals over E and Rd by suitable summations. Given the filter process
(πu

n) corresponding to an admissible control u, we can rewrite the three cost
functionals of the preceding subsection as

I)

JT
µ (u) = Eu

µ

{ T−1∑

n=0

∫

E

cn(x, an)πu
n(dx)

+
∫

E

b(x)πu

T
(dx)

}

(1.10)
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II)

Jβ
µ (u) =

∞∑

n=0

βnEu
µ

{ ∫

E

c(x, an)πu
n(dx)

}
(1.11)

III)

Jµ(u) = lim sup
T→∞

T−1
T−1∑

n=0

Eu
µ

{ ∫

E

c(x, an)πu
n(dx)

}
(1.12)

provided cn, c ∈ bB(E × U) and b ∈ bB(E),
The recursive relation (1.8) together with the cost functionals (1.10)–

(1.12) defines the complete observation problems corresponding to the par-
tially observed problems with the respective cost functionals (1.4)–(1.6).

By applying the Bellman equations (see section 3.2 below) to the problems
corresponding to case II), we find that among the optimal controls (as far as
they exist) there is a stationary feedback control given by a function of the
current filter process, i.e. such that

an = u(πn) (1.13)

with u ∈ B(P (E), U) and which will be referred to as ”control function”.
(For simplicity, in what follows, we shall drop the upper index u in πu

n, when
writing u(πn)).

Assuming controls of the type (1.13) we obtain the Markov property of
the filtering process.

Lemma 1.3 Given u satisfying (1.13), the filter process (πu
n) is Markov with

respect to the σ-field Y n and has transition operator

∏u(ν)
(ν, F ) =

∫

E

∫

Rd

F (Mu(ν)(y, ν))r(z, y) dyP u(ν)(ν, dz) (1.14)

where ν ∈ P (E) and F ∈ bB(P (E)).

P r o o f . By (1.1) we easily obtain

E[F (πu
n+1)|Y n] = E[F (Mu(πn)(yn+1, π

u
n))|Y n]

= E[E[F (Mu(πn)(yn+1, πn))|Y n, xn+1]|Y n]
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= E
[ ∫

Rd

F (Mu(πn)(y, πn))r(xn+1, y) dy|Y n
]

= E
[ ∫

Rd

E[F (Mu(πn)(y, πn))r(xn+1, y)|Y n, xn] dy|Y n
]

= E
[ ∫

Rd

F (Mu(πn)(y, πn))
∫

E

r(z, y)P u(πn)(xn, dz) dy|Y n
]

=
∫

E

∫

Rd

F (Mu(πn)(y, πn))r(z, y) dyP u(πn)(πn, dz)

Therefore πu
n is in fact Markov with the transition operator of the form (1.14).

We obtain further properties of the transition operator
∏

of the filtering
process making first the assumptions:

(A1) P a(x, ·) is Feller for fixed a ∈ U , that is for any ϕ ∈ C(E), xn → x we
have

P a(xn, ϕ) → P a(x, ϕ) as n→ ∞ (1.15)

(A2) if U ∋ an → a, then for ϕ ∈ C(E), and compact set K ⊂ E

sup
x∈K

|P an(x, ϕ) − P a(x, ϕ)| → 0 as n→ ∞ (1.16)

(A3) r ∈ C(E ×Rd)

(A4) for E ∋ xn → x, ϕ ∈ C(Rd) we have

R(xn, ϕ): =
∫

Rd

r(xn, y)ϕ(y) dy → R(x, ϕ), as n→ ∞ (1.17)

Proposition 1.4 Under (A1)–(A4), for ϕ ∈ C(E), F ∈ C(P (E)), the map-
pings

U ×Rd × P (E) ∋ (a, y, ν) 7→Ma(y, ν) (1.18)

and

U × P (E) ∋ (a, ν) 7→
∫

E

∫

Rd

F (Ma(y, ν))r(z, y) dyP a(ν, dz) (1.19)

are continuous.
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P r o o f . Let us first notice that the mapping

U × P (E) ∋ (a, ν) 7→ P a(ν, ϕ) (1.20)

for ϕ ∈ C(E) is continuous.
In fact, let U ∋ am → a and P (E) ∋ νm ⇒ ν, denoting by ⇒ the weak

convergence on P (E). Clearly the set Γ = {ν, ν1, ν2, . . .} is compact in P (E).
Therefore by Prokhorov’s theorem (see Theorem 1.6.2 of [6]) Γ is tight that
is for any ε > 0 one can find a compact set K ⊂ E such that µ(Kc) < ε for
each µ ∈ Γ.

For given ε > 0 choose the compact set K ⊂ E as above. We then have

|P am(νm, ϕ) − P a(ν, ϕ)| ≤ |P am(νm, ϕ) − P a(νm, ϕ)|
+|P a(νm, ϕ) − P a(ν, ϕ)| ≤ 2ε‖ϕ‖ + sup

x∈K

|P am(x, ϕ)

−P a(x, ϕ)| + |P a(νm, ϕ) − P a(ν, ϕ)|

By (A2) the second term on the right hand side converges to 0. By (A1) the
mapping x 7→ P a(x, ϕ) belongs to C(E) and therefore the third term also
converges to 0. Since ε can be chosen arbitrarily small we obtain (1.20).

We show now the continuity of the mapping (1.18). One can easily see
that it is sufficient to show the continuity of the numerator in (1.8) i.e. to
prove that for U ∋ am → a, Rd ∋ ym → y, P (E) ∋ νm ⇒ ν we have

∫

E

ϕ(z)r(z, ym)P am(νm, dz) →
∫

E

ϕ(z)r(z, y)P a(ν, dz) (1.21)

for ϕ ∈ C(E).
To show (1.21) notice that by (1.20) the set {P a(ν, ·), P an(νn, ·) n =

1, 2, . . . , } is compact in P (E) and consequently, by Prokhorov’s theorem,
is tight.

Therefore for given ε > 0 we can find a compact set K ⊂ E such that
P am(νm, K

c) < ε, P a(ν,Kc) < ε for m = 1, 2, . . . .
We have

∣∣∣
∫

E

ϕ(z)r(z, ym)P am(νm, dz) −
∫

E

ϕ(z)r(z, y)P a(ν, dz)
∣∣∣

≤
∫

E

|ϕ(z)| |r(z, ym) − r(z, y)|P am(νm, dz)
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+
∣∣∣
∫

E

ϕ(z)r(z, y)(P am(νm, dz) − P a(ν, dz))
∣∣∣

≤ 2‖ϕ‖ ‖r‖ε+ ‖ϕ‖ sup
z∈K

|r(z, ym) − r(z, y)|

+
∣∣∣
∫

E

ϕ(z)r(z, y)(P am(νm, dz) − P a(ν, dz))
∣∣∣

By (A3) and (1.20) the second and the third terms on the right hand side
converge to 0, as m→ ∞. Therefore (1.21) holds and the continuity of (1.18)
is established.

It remains to show the continuity of the mapping (1.19). Let U ∋ am → a

and P (E) ∋ νm ⇒ ν.
We have

∣∣∣
∫

E

∫

Rd

F (Mam(y, νm))r(z, y) dyP am(νm, dz)

−
∫

E

∫

Rd

F (Mam(y, ν))r(z, y) dyP a(ν, dz)
∣∣∣

≤
∫

E

∫

Rd

|F (Mam(y, νn)) − F (Ma(y, ν))|r(z, y) dyP am(νm, dz)

+
∣∣∣
∫

E

∫

Rd

F (Ma(y, ν))r(z, y) dy(P am(νm, dz) − P a(ν, dz)
∣∣∣

= Im + IIm

Since the mapping y 7→ F (Ma(y, ν)) belongs to C(Rd), by (A4) and (1.20)
we obtain IIm → 0 as m→ ∞.

Given ε > 0, by the tightness of {P am(νm, ·), m = 1, 2, . . .} there is a
compact set K ⊂ E such that P am(νm, K

c) < ε for m = 1, 2, . . . . By (A4)
the family of measures {R(x, ·) x ∈ K} is compact in P (Rd), and therefore
tight. So one can find a compact set L ⊂ Rd such that R(x, Lc) < ε for
x ∈ K.

We can now evaluate Im. We have

Im ≤ 2‖F‖ε+
∫

K

∫

Rd

|F (Mam(y, νm)) − F (Ma(y, v))|r(z, y) dyP am(νm, dz)

≤ 4‖F‖ε+ sup
y∈L

|F (Mam(y, νm)) − F (Ma(y, ν))|
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By the continuity of the mapping (1.18), the second term on the right hand
side converges to 0, as m → ∞. Since ε could be chosen arbitrarily small,
Im → 0, as m → ∞. This completes the proof of the continuity of the
mapping (1.19).

From Proposition 1.4 we immediately have

Corollary 1.5 Under (A1)–(A4), for u of type (1.13) and u ∈ C(P (E), U)
the transition operator ∏u(ν)

(ν, ·) is Feller

i.e. for F ∈ C(P (E)) the mapping P (E) ∋ ν 7→ ∏u(ν)(ν, F ) is continuous.

For a given a ∈ U consider finally the transition operator
∏a(ν, ·) that

corresponds to
∏u(ν)(ν, ·) as defined in (1.14) for u(ν) ≡ a. We shall now

formulate a property of
∏a(ν, ·) that is associated with concave continuous

functions v : P (E) → R

We say that v : P (E) → R is concave if for ν = λν1 + (1 − λ)ν2, ν1, ν2 ∈
P (E), λ ∈ [0, 1] we have

v(ν) ≥ λv(ν1) + (1 − λ)v(ν2)

We need the following

Lemma 1.6 Let π(ω) be a P (E) valued random variable on (Ω, F, P ) and F ′

a sub-σ-field of F . Then for any concave continuous function v : P (E) → R

we have
v(E(π|F ′)) ≥ E(v(π)|F ′)

P r o o f . It is well known (see Theorem 11.7(a) of [23]) that a concave
continuous function v is a lower envelope of affine functions vi(ν) = αi +
βiν(fi), fi ∈ C(P (E)), i ∈ I a certain family of indices, i.e.

v(ν) = inf
i∈I

vi(ν)

Therefore
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vi(E(π|F ′) = E{vi(π)|F ′} ≥ E{v(π)|F ′}
and

v(E(π|F ′)) = infi∈I vi(E(π|F ′)) ≥ E{v(π)|F ′}

Proposition 1.7 Under (A1), (A3), (A4) for v : P (E) 7→ R continuous
and concave and a ∈ U , the function

P (E) ∋ ν →
∏a

(ν, v) (1.22)

is also continuous and concave.

P r o o f . The continuity of the mapping (1.21) follows from the proof of
Proposition 1.4. It remains to show concavity.

Let ν = λν1 + (1 − λ)ν2, ν1, ν2 ∈ P (E), λ ∈ [0, 1]. Define π̄0 as a P (E)
valued random variable such that

P{π̄0 = ν1} = λ P{π̄0 = ν2} = 1 − λ

Let (xn) be a Markov process with transition operator P a(x, ·) and initial
law ν and let (yn) be the observation process satisfying (1.1).

Furthermore let, for A ∈ B(E),

π0(A) = ν(A)

πn(A) = P{xn ∈ A|Y n} (1.23)

π̄n(A) = P{xn ∈ A|Ȳ n}
with Y n = σ{y1, . . . , yn}, Ȳ n = σ{y1, . . . , yn, π̄0}. By the proof of Lemma
1.1 and Lemma 1.3 we see that

π̄n+1(A) = Ma(yn+1, π̄n)(A)

P a.e. and π̄n is a Markov process with respect to the σ-field Ȳ n, with
transition operator

∏a.
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Therefore

E{v(π̄1)} = E{v(π̄1)|π̄0} = λ
∏a

(ν1, v) + (1 − λ)
∏a

(ν2, v) (1.24)

By (1.23) we have E{π̄1|Y 1} = π1, and using Lemma 1.6 we obtain

v(π1) ≥ E{v(π̄1)|Y 1}

Therefore by (1.24)
∏a

(ν, v) = E{v(π1)} ≥ λ
∏a

(ν1, v) + (1 − λ)
∏a

(ν2, v)

which completes the proof of Proposition.

1.3 A general measure transformation

One of the most efficient methods to perform the approximations leading to
the construction of ε-optimal controls, at least for finite horizon problems, is
based on measure transformation techniques. The main advantage of these
techniques lies in the fact that they allow to have the same admissible con-
trols in the original and the approximating problems; this in turn allows to
compare the cost functionals of the original and the approximating problems,
evaluated for a same control u.

In this subsection we describe a general measure transformation approach
assuming that the observations (yn) are given by the formula

yn = h(xn, wn), for n = 1, 2, . . . (1.25)

where wn are Rd valued i.i.d. with common, strictly positive density g, and,
for each n, wn is independent of xj for j ≤ n. Furthermore, for each x ∈ E,
h(x, ·) is a C1 diffeomorphism of Rd with inverse function k(x, ·) and Jacobian
of k(x, y) denoted by ∆(x, y).

Given A ∈ B(Rd) we have for n = 0, 1, 2, . . .

P{yn+1 ∈ A|x0, x1, . . . , xn+1, Y
n} =

P{wn+1 ∈ k(xn+1, A)|x0, x1, . . . , xn+1, Y
n}∫

k(xn+1,A)

g(y) dy =
∫

A

g(k(xn+1, y))|∆(xn+1, y)| dy
(1.26)
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with |∆(xn+1, y)| standing for the determinant of Jacobian ∆(xn+1, y). Hence
(1.1) is satisfied with r(x, y) = g(k(x, y))|∆(x, y)|.

Let Fn = σ{(xi, yi), i ≤ n}, Λ0 = 1 and

Λn =
n∏

i=1

g(yi)

r(xi, yi)
(1.27)

We have

E[Λn+1|Fn] = ΛnE
[ g(yn+1)

r(xn+1, yn+1)
|Fn

]

= ΛnE[E
[ g(h(xn+1, wn+1))

g(wn+1)|∆(xn+1, h(xn+1, wn+1))|
|xn+1, Fn

]
|Fn]

= ΛnE
{ ∫

Rd

g(h(xn+1, w))|∆(xn+1, h(xn+1, w))|−1 dw|Fn

}
= Λn

using the fact that |∆(xn+1, h(xn+1, w))|−1 is the determinant of Jacobian of
h(xn+1, ·).

Thus Λn is an Fn martingale. Furthermore its mean is equal to 1 and so
we can define a new probability measure P 0 on Ω such that the restrictions
P|n, P 0

|n of P and P 0 respectively to the σ-field Fn for each n = 1, 2, . . . satisfy

P 0
|n(dω) = Λn(ω)P|n(dω) (1.28)

Clearly
P|n(dω) = Ln(ω)P 0

|n(dω) (1.29)

with
L0(ω) = 1

Ln(ω) = (Λn(ω))−1 =
n∏

i=1

r(xi, yi)

g(yi)
(1.30)

Moreover we have

Lemma 1.8 Under the measure P 0, the yn are i.i.d. with common density g,
independent of xj with j ≤ n and (xn) is a controlled Markov process with
the same transition probability P an(xn, dy) at the generic period n as under
P and where an are adapted to Y n.
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P r o o f . Let f1, f2 ∈ bB(Rd), f3 ∈ bB(E). For j < n we have by (1.26)

E0{f1(yn)f2(yj)} = E{Λnf1(yn)f2(yj)}

= E{Λn−1f2(yj)E{f1(yn)
g(yn)

r(xn, yn)
|xn, Fn−1}}

= E{Λn−1f2(yj)
∫

Rd

f1(y)g(y) dy}

= E{Λn−1f2(yj)}
∫

Rd

f1(y)g(y) dy

= E0{f2(yj)}
∫

Rd

f1(y)g(y) dy

Since, letting f2 ≡ 1, from the above we obtain E0{f1(yj)} =
∫

Rd

f1(y)g(y) dy

for any f1 ∈ bB, we finally have

E0{f1(yn)f2(yj)} =
∫

Rd

f1(y)g(y) dy
∫

Rd

f2(y)g(y) dy

which means that, under P 0, the yn are i.i.d. with common density g.
Now for n ≥ j > 0

E0{f1(yn)f3(xj)} = E{Λn−1f3(xj)E{f1(yn)
g(yn)

r(xn, yn)
|xn, Fn−1}}

=
∫

Rd

f1(y)g(y) dy E{Λj−1E{f3(xj)|Fj−1}}

=
∫

Rd

f1(y)g(y) dyE{Λj−1P
aj−1(xj−1, f3)}

which gives the second statement of the Lemma for j = 1.
Taking into account that aj−1 = dj−1(y1, . . . , yj−1) for some dj−1 ∈

B((Rd)j−1, U) we have for j > 1

E{Λj−1P
aj−1(xj−1, f3)}

= E{Λj−2E{P aj−1(xj−1, f3)
g(yj−1)

r(xj−1, yj−1)
|xj−1, Fj−2}}
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= E{Λj−2

∫

Rd

Gj−1(y1, . . . , yj−2, y, xj−1)g(y) dy}

= E{Λj−2

∫

E

∫

Rd

Gj−1(y1, . . . , yj−2, y, z)g(y)dyP
aj−2(xj−2, dz)}

with Gj−1(y1, . . . , yj−1, x) = P dj−1(y1,...,yj−1)(x, f3)
We can iterate the last equality which leads to the conclusion that, under

P 0 , yn are independent of xj with j ≤ n and (xn) is a controlled Markov
process with transition operator P an(xn, ·).

For later use it will be convenient to define an unnormalized filtering
process σu

n as follows, where A ∈ B(E)

σu
0 (A) = µ(A) the initial law of (xn)

σu
n+1(A) =

∫

A

r(z, yn+1)

g(yn+1)
P an(σu

n, dz)
(1.31)

Clearly

πu
n(A) =

σu
n(A)

σu
n(E)

P 0
µ a.e. (1.32)

Moreover

Lemma 1.9 For f ∈ bB(E), n = 0, 1, . . ., we have under (A3)

σu
n(f) = E0{Lnf(xn)|Y n} P 0

µ a.e. (1.33)

P r o o f . We use induction. Since Y 0 = {∅,Ω} and L0 = 1 we have
σu

0 (f) = µ(f) and (1.33) holds for n = 0.
Assume (1.33) is satisfied for n. Then for n+ 1 we have

E0{Ln+1f(xn+1)|Y n+1}

= E0{LnE
0
{r(xn+1, yn+1)

g(yn+1)
f(xn+1)|Fn, yn+1

}
|Y n+1}

= E0{Ln

∫

E

r(z, yn+1)

g(yn+1)
f(z)P an(xn, dz)|Y n+1}

=
∫

E

r(z, yn+1)

g(yn+1)
f(z)P an(σu

n, dz)
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by the independence of yn+1 and induction hypothesis on n. Taking into
account (1.31) this means that we have obtained

E0{Ln+1f(xn+1)|Y n+1} = σu
n+1(f)

Thus by induction (1.33) holds.

From the representation (1.33) we immediately have

Corollary 1.10 The process σu
n(E) is a (Y n, P 0) martingale with mean 1.

With the use of the measure transformation just introduced, Lemma 1.8
and the fact that an is Y n measurable we can rewrite the cost functions for the
problems I–III (see (1.4)–(1.6)) as follows, assuming that cn, c ∈ bB(E×U),
b ∈ bB(E)

I)

JT
µ (u) = E0u

µ {LT

( T−1∑

n=0

cn(xn, an) + b(x
T
)
)
}

=
T−1∑

n=0

E0u
µ {Lncn(xn, an)} + E0u

µ {LT b(xT
)}

=
T−1∑

n=0

E0u
µ {E0u

µ {Lncn(xn, an)|Y n}}
+E0u

µ {E0u
µ {LT b(xT

)|Y T}}

=
T−1∑

n=0

E0u
µ {

∫

E

cn(xn, an)σu
n(dx)}

+E0u
µ {

∫

E

b(x)σu

T
(dx)}

= E0u
µ {

T−1∑

n=0

∫

E

cn(x, an)σu
n(dx) +

∫

E

b(x)σu

T
(dx)}

(1.34)

II)

Jβ
µ (u) =

∞∑

n=0

βnE0u
µ {

∫

E

c(x, an)σu
n(dx)} (1.35)
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III)

Jµ(u) = lim sup
T→∞

T−1E0u
µ {

∫

E

c(x, an)σu
n(dx)} (1.36)

The original control problems with partial observation have thus been
reformulated as control problems with complete observation where analo-
gously to (1.10)–(1.12) the new state is the unnormalized filter process σn

that satisfies the linear relation (1.31) and the cost functionals are given by
(1.34)–(1.36).

Notice also that the cost functionals (1.34)–(1.36) are expressed as expec-
tations with respect to the reference probability measure P 0, with respect to
which yn are i.i.d. with common density g(y).

In the particular case when the state and observation spaces are finite
sets we can also construct a measure transformation. For this purpose we
assume that

yn = h(xn, wn)

with (wn) being i.i.d.D-valued random variables, P{wn = di} = g(di) > 0
for 1 ≤ i ≤ s and for each x ∈ E, h(x, ·) is a 1− 1 transformation of D with
inverse function k(x, ·).

Then (1.3) holds with r(x, y) = g(k(x, y)), Λn defined by (1.27) with
r(xi, yi) = g(k(xi, yi)) is a P martingale and Lemma 1.8 holds.

Moreover, by analogy to (1.31), one can define an unnormalized filtering
process as

σu
0 (j) = µ(j) the initial law of (xn)

σu
n+1(j) = r(j,yn+1)

g(yn+1)
P an(σu

n, j)
(1.37)

j = 1, 2, . . . ,m for which (1.32), (1.33) and Corollary 1.10 hold.
Furthermore, replacing the integrals over E by suitable summations in

(1.34)-(1.36) we obtain the corresponding representations of the cost func-
tionals.
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2 Finite horizon problem

2.1 The idea of the approximation approach

Although the basic idea underlying our approximation approach that leads
to the construction of nearly optimal controls is the same throughout, in this
section we shall present it in a context based on measure transformation for
which the original finite horizon partially observed problem can equivalently
be represented in the complete observation form (1.31), (1.34). As already
mentioned at the beginning of section 1.3, the reason for this is that the
measure transformation allows our approximation approach to be performed
in the most efficient way.

On the other hand, to perform the measure transformation, we need some
regularity of the observation function as described below (1.25); furthermore,
see section 2.2, under the measure transformation we need a strong approxi-
mation for transition operators. If the conditions for the applicability of the
measure transformation do not hold, we have to use the normalized filter
(πu

n) defined as in (1.7) and consider for the original problem the equivalent
complete observation form (1.8), (1.10). In the next chapter 3, in the con-
text of the infinite horizon problem with discounting, we shall discuss our
approximation approach for this latter situation. We remark here that, al-
though in chapter 3 the approach is worked out for the infinite horizon case
with discounting, it can be easily adapted also to the present finite horizon
case. Consider the original finite horizon control problem, which in its par-
tial observation form is characterized by the observation equation (1.25) and
cost (1.4) and which has the equivalent complete observation representation
(1.31), (1.34). We shall now associate with it a sequence of approximating
problems such that

a) each approximating problem admits an optimal, or nearly optimal, so-
lution that can be explicitly computed,

b) given ε > 0, there exists an approximating problem such that the opti-
mal, or nearly optimal, solution for the latter is an ε-optimal solution
for the original problem

The approximating problems will be obtained by suitably approximating
the original transition operator P a(x, dz) and observation function h(x,w)
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in (1.25) by a sequence of operators P a
m(x, dz) and functions hm(x,w), that

induce a sequence of approximating processes (xm
n ) with observations (ym

n ).
For fixed x, hm(x,w) will still be a C1 diffeomorphism of Rd. Assume for
a moment that this has been done; given probability spaces (Ω, F, Pm) on
which the approximating processes (xm

n ) and (ym
n ) are defined, following the

general measure transformation approach of Section 1.3, we construct on
(Ω, F ) the reference probability measure P 0 such that

P 0(dω) = Λm
T (ω)Pm(dω) (2.1)

or equivalently
Pm(dω) = Lm

T (ω)P 0(dω) (2.2)

where

Λm
T =

T∏

i=1

g(ym
i )

rm(xm
i , y

m
i )

and Lm
T = (Λm

T )−1 (2.3)

with
rm(x, y) = g(km(x, y))|∆m(x, y)| (2.4)

km(x, ·) being the inverse of hm(x, ·) and |∆m(x, y)| standing for the deter-
minant of the Jacobian of km(x, ·). It then follows from Section 1.3 that the
unobserved processes (xm

n ) have the same distribution under the measures
Pm and P 0. The observation processes ym

n , which under Pm are defined by
the relation

ym
n = hm(xm

n , wn) (2.5)

with wn i.i.d. independent of xi, (i ≤ n), and having common density g(·),
under the measure P 0 form sequences of i.i.d. random variables, independent
of xi (i ≤ n), with common density g(·).

Therefore, under P 0 we can identify (ym
n ) with (yn). Thus the measure

transformation approach allows us to obtain the same observations (yn), both
as perturbed functions of the original process (xn) as well as of the approxi-
mating processes (xm

n ).
Since the admissible controls are adapted to the σ-algebra generated by

the actual observations (yn), the same controls will therefore be admissible
in the original as well as in all approximating problems. For a given control
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law u and corresponding to (1.31), (1.34) we furthermore have the approxi-
mating unnormalized filter processes

σ
m,u
0 (A) = µ(A)

σ
m,u
n+1(A) =

∫

A

rm(z, yn+1)

g(yn+1)
P an

m (σm,u
n , dz) (2.6)

and the approximating cost functionals

JT,m
µ (u) = E0u

µ

{ T−1∑

n=0

∫

E

cmn (x, an)σm,u
n (dx) +

∫

E

bm(x)σm,u
T (dx)

}
(2.7)

with cmn , bm being approximations of cn, b respectively.
With the same admissible controls u in the original and approximating

problems, and with the cost functionals in (1.34) and (2.7) expressed as ex-
pectations with respect to the same reference probability measure P 0, under
which yn are i.i.d. with common density g(·), we can compare the cost func-
tionals of the original and approximating problems, evaluated for a same
control law u.

We shall choose the approximating transition operators P a
m(x, dz), obser-

vation functions hm(x,w) and cost functions cmn , bm in a way to obtain the
following properties

(P1) lim
m→∞

sup
u

|JT,m
µ (u) − JT

µ (u)| = 0

where the sup over u is for all admissible control laws

(P2) For each given m, the approximating control problem expressed in its
equivalent complete observation form by (2.6), (2.7), can be explicitly
solved to obtain an optimal or nearly optimal control law u

The meaning of (P1), (P2) is explained by the following

Lemma 2.1 Assume that for given µ ∈ P (E) and ε > 0 there exists m0

such that for m > m0

sup
u

|JT,m
µ (u) − JT

µ (u)| < ε (2.8)

Then an ε-optimal control u for the cost functional JT,m
µ with m > m0 is

3 ε-optimal for the cost functional JT
µ .

19



P r o o f . Notice first that, for m > m0,

| inf
u
JT,m

µ (u) − inf
u
JT

µ (u)| ≤ sup
u

|JT,m
µ (u) − JT

µ (u)| ≤ ε

We then have for m > m0

JT
µ (u) ≤ JT,m

µ (u) + ε ≤ inf
u
JT,m

µ (u) + 2ε ≤ inf
u
JT

µ (u) + 3ε

and the Lemma follows.

In other words, we can say that a nearly optimal control for m-th approx-
imating problem is, for m sufficiently large, nearly optimal in the original
problem.

The uniform in the control u convergence in (P1) will be the subject of
next Section 2.2, while the solutions of the approximating problems will be
discussed in Section 2.3.

2.2 Convergence

In this section we shall prove, under various assumptions, the uniform in
admissible control laws convergence of the cost functionals as expressed in
property (P1) above. We shall do this for two cases, namely when the cost
functions cn(x, a), b(x) in (1.4) are bounded and when they have polynomial
growth in x. In the latter case we shall require the transition operators of
the processes xn and xm

n as well as the initial measure µ to admit a density
(with respect to Lebesgue measure).

2.2.1 Bounded cost functions

In this section we shall assume that

(B1) cn ∈ bB(E × U) and b ∈ bB(E),

(B2) for ε > 0 and a compact set L ⊂ E there exists a compact set K ⊂ E

such that
sup
x∈L

sup
a∈U

P a(x,Kc) < ε
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In addition, we assume that the state process (xn) with initial law µ and
transition operator P a(x, dz) is approximated by (xm

n ) with initial law µm

and transition operators P a
m(x, dz), satisfying the following conditions

(C1) ‖µm − µ‖var → 0 as m→ ∞ with ‖ ‖var standing for variation norm

(C2) for each compact set K ⊂ E

sup
x∈K

sup
a∈U

‖P a
m(x, ·) − P a(x, ·)‖var → 0

as m→ ∞

Furthermore the observation function h(x,w) is approximated by func-
tions hm(x,w) satisfying

(C3) for each compact set K ⊂ E

sup
x∈K

∫

Rd

|r(x, y) − rm(x, y)| dy → 0

as m→ ∞.

We have

Proposition 2.2 Let (σm,u
n ) be the unnormalized filter process defined by

(2.6) with initial law µm and admissible control u, and let (B1)–(B2), (C1)–
(C3) be satisfied.
Then for n = 0, 1, 2, . . . we have

(i) for each ε > 0 there exists a compact set K ⊂ E such that

sup
u
E0{σu

n(Kc)} < ε (2.9)

(ii)
sup

u
E0{‖σm,u

n − σu
n‖var} → 0 (2.10)

as m→ ∞

where sup in both cases is taken over all admissible controls.
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P r o o f . We use induction. By the tightness of µ, (2.9) holds for n = 0.
Also, by (C1), (2.10) is satisfied for n = 0.

Assume then that (2.9)–(2.10) are satisfied for n. We have for n+ 1

E0{σu
n+1(K

c)} = E0
{ ∫

Kc

r(z, yn+1)

g(yn+1)
P an(σu

n, dz)
}

= E0
{ ∫

Rd

∫

Kc

r(z, y)P an(σu
n, dz) dy

}

= E0{P an(σu
n, K

c)}
= E0

{ ∫

Lc

P an(x,Kc)σu
n(dx) +

∫

L

P an(x,Kc)σu
n(dx)

}

≤ E0{σu
n(Lc)} + sup

x∈L

sup
a∈U

P a(x,Kc)E0{σu
n(E)}

By the induction hypothesis on n, for given ε > 0 one can find a compact
set L such that, uniformly in u, E0{σu

n(Lc)} < ε
2
. Furthermore by (B2) we

can find a compact set K for which

sup
x∈L

sup
a∈U

P a(x,Kc) <
ε

2

Using also Corollary 1.10, we finally have

sup
u
E0{σu

n+1(K
c)} < ε

which is (2.9) for n+ 1.
Now,

E0{sup
A

|σm,u
n+1(A) − σu

n+1(A)|}

≤ E0
{ ∫

E

|rm(z, yn+1) − r(z, yn+1)|
g(yn+1)

P an

m (σm,u
n , dz)

}

+E0
{

sup
A

∣∣∣
∫

A

r(z, yn+1)

g(yn+1)
(P an

m (σm,u
n , dz) − P an(σm,u

n , dz))
∣∣∣

+ sup
A

∣∣∣
∫

A

r(z, yn+1)

g(yn+1)

∫

E

P an(x, dz)(σm,u
n (dx) − σu

n(dx))
∣∣∣
}
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≤ E0
{ ∫

E

∫

Rd

|rm(z, y) − r(z, y)| dyP an

m (σm,u
n , dz)}

+E0
{ ∫

E

r(z, yn+1)

g(yn+1)
|P an

m (σm,u
n , dz) − P an(σm,u

n , dz)|
}

+E0
{ ∫

E

r(z, yn+1)

g(yn+1)

∫

E

P an(x, dz)|σm,u
n (dx) − σu

n(dx)|
}

≤ E0
{ ∫

E

∫

Rd

|rm(z, y) − r(z, y)| dyP an

m (σn,u
n , dz)

}

+E0{|P an

m (σm,u
n , E) − P an(σm,u

n , E)|}
+E0{|σm,u

n (E) − σu
n(E)|} = Im + IIm + IIIm

where we used the fact that, under P 0, yn+1 is independent of Y n.
Clearly, by the induction hypothesis, IIIm → 0, uniformly in the admis-

sible controls u.
Moreover we have

Im ≤ E0
{ ∫

L

∫

E

∫

Rd

|rm(z, y) − r(z, y)| dyP an

m (x, dz)σm,u
n (dx) + 2σm,u

n (Lc)
}

≤ E0
{ ∫

L

∫

K

∫

Rd

|rm(z, y) − r(z, y)| dyP an

m (x, dz)σm,u
n (dx)

+
∫

L

∫

Kc

∫

Rd

|rm(z, y) − r(z, y)| dyP an

m (x, dz)σm,u
n (dx) + 2σm,u

n (Lc)
}

≤ sup
x∈K

∫

Rd

|rm(z, y) − r(z, y)| dyE0{σm,u
n (L)}

+2 sup
x∈L

sup
a∈U

P a
m(x,Kc)E0{σm,u

n (L)} + 2E0{σm,u
n (Lc)}

≤ sup
x∈K

∫

Rd

|rm(z, y) − r(z, y)| dy + 2 sup
x∈L

sup
a∈U

P a(x,Kc)

+2 sup
x∈L

sup
a∈U

‖P a(x, ·) − P a
m(x, ·)‖var + 2E0{σu

n(Lc)}

+2E0{‖σm,u
n − σu

n‖var}

where we have used the fact that E0{σm,u
n (L)} ≤ 1 due to the martingale

property of σm,u
n (see Corollary 1.10).
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Given ε > 0, by the induction hypothesis, we can find a compact set L
such that sup

u
E0{σu

n(Lc)} < ε
4
. Furthermore by (B2) we can choose a com-

pact set K for which

sup
x∈L

sup
a∈U

P a(x,Kc) <
ε

4

Letting m→ ∞, by (C3), (C2) and the induction hypothesis we obtain

lim sup
m→∞

Im ≤ ε

Since ε can be chosen arbitrarily small we have Im → 0, uniformly in u.
It remains to show that IIm → 0, as m→ ∞.
We have

IIm ≤ sup
x∈K

sup
a∈U

|P a
m(x,E) − P a(x,E)|E0{σm,u

n (K)}

+2E0{σm,u
n (Kc)}

≤ sup
x∈K

sup
a∈U

|P a
m(x,E) − P a(x,E)|

+2E0{σu
n(Kc)} + 2E0{‖σm,u

n − σu
n‖var}

By the induction hypothesis for given ε > 0 one can find a compact set K
such that

sup
u

2E0{σu
n(Kc)} < ε

Letting m → ∞, by (C2) and the induction hypothesis we then obtain
lim sup

m→∞
IIm ≤ ε, which in view of arbitrariness of ε > 0 completes the proof

of (2.9)–(2.10) for n+ 1.
Thus by induction (2.9)–(2.10) holds for any n = 0, 1, 2, . . .

To obtain the desired property (P1) we make further assumptions on the
cost functions in (2.7).

(C4) cmn ∈ bB(E × U), bm ∈ bB(E), n = 1, 2, . . ., cmn and bm are uniformly
bounded in m and for any compact set K ⊂ E

sup
x∈K

sup
a∈U

|cmn (x, a) − cn(x, a)| → 0, sup
x∈K

|bm(x) − b(x)| → 0
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From Proposition 2.2 we obtain

Corollary 2.3 Under (B1)–(B2), (C1)–(C4)

lim
m→∞

sup
u

|JT,m
µm

(u) − JT
µ (u)| = 0 (2.11)

P r o o f . Given ε > 0 we can find a compact set K such that (2.9) holds for
n = 0, 1, 2, . . . , T . Then we have

|JT,m
µm

(u) − JT
µ (u)| ≤ E0u

{ T−1∑

n=0

∫

E

|cmn (x, an)| |σm,u
n (dx) − σu

n(dx)|

+
∫

E

|bm(x)| |σm,u
T (dx) − σu

T (dx)|
}

+E0u
{ T−1∑

n=0

∫

K

|cmn (x, an) − cn(x, an)|σu
n(dx)

+
T−1∑

n=0

∫

Kc

|cmn (x, an) − cn(x, an)|σu
n(dx)

+
∫

K

|bm(x) − b(x)|σu
T (dx) +

∫

Kc

|bm(x) − b(x)|σu
T (dx)}

≤
T−1∑

n=0

‖cmn ‖E0u{‖σm,u
n − σu

n‖var}

+‖bm‖E0u{‖σm,u
T − σu

T‖var}

+
T−1∑

n=0

sup
x∈K

sup
a∈U

|cmn (x, a) − cn(x, a)|E0u{σu
n(K)}

+
T−1∑

n=0

(‖cmn ‖ + ‖cn‖)E0u{σu
n(Kc)}

+ sup
x∈K

|bm(x) − b(x)|E0u{σu
T (K)} + (‖bm‖ + ‖b‖)E0u{σu

T (Kc)}

≤
T−1∑

n=0

‖cmn ‖E0u{‖σm,u
n − σu

n‖var + ‖bm‖E0u{‖σm,u
T − σu

T‖var}

+
T−1∑

n=0

sup
x∈K

sup
a∈U

|cmn (x, a) − cn(x, a)| + ε
T−1∑

n=0

(‖cmn ‖ + ‖cn‖)

+ sup
x∈K

|bm(x) − b(x)| + (‖bm‖ + ‖b‖)ε
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By (2.10) and (C4) letting m → ∞ we obtain that the right hand side does
not exceed

ε
(

lim sup
m→∞

[ T−1∑

n=0

(‖cmn ‖ + ‖cn‖) + ‖bm‖ + ‖b‖
])

Since we can choose ε arbitrarily small, and our calculation was uniform with
respect to admissible controls u we conclude that (2.11) holds.

2.2.2 Cost functions with polynomial growth

In this subsection we make the standing assumption that E = Rk and that
the transition operator of the process xn, as well as the initial law µ possess
a density with respect to the k-dimensional Lebesgue measure i.e.

(B3) there exist measurable functions

p:E × E × U → R and µ:E → R

such that
P a(x, dz) = p(x, z, a) dz

and
µ(dx) = µ(x) dx

In addition we shall assume the existence of moment generating functions
for p and µ, namely

(B4) for any positive constant K, there exist C, H > 0 such that

∫

E

µ(x)eK|x| dx ≤ C (2.12)

and for each x ∈ E

sup
a∈U

∫

E

p(x, z, a)eK|z| dz ≤ CeH|x| (2.13)

with |x| = |x1| + . . .+ |xk| for x = (x1, . . . , xk) ∈ Rk.
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Remark 2.4 If µ(x) is a Gaussian density, (2.12) clearly holds. Further-
more, letting

xn+1 = f(xn, an) + σwn (2.14)

with (wn) i.i.d. Gaussian and f such that

|f(x, a)| ≤ K1|x| (2.15)

also (2.13) holds with H = KK1.

Under (B3) we easily see that the unnormalized filter process (σu
n) defined

in (1.31) admits densities σu
n(x) which by (1.31) satisfy the following recursive

formula
σu

0 (x) = µ(x)

σu
n+1(x) =

∫

E

r(x, yn+1)

g(yn+1)
p(z, x, an)σu

n(z) dz (2.16)

Moreover under (B4) (σu
n) admit moment generating functions. More

precisely, we have

Lemma 2.5 Under (B3)–(B4) for any K > 0, and n ≤ T

sup
u
E0u

µ

{ ∫

E

eK|x|σu
n(x) dx

}
<∞ (2.17)

with supremum over all admissible controls.

P r o o f . For n = 0, (2.17) holds by (2.12). If n > 0, we have by (2.16) and
(2.13)

E0u
µ

{ ∫

E

eK|x|σu
n(x) dx

}
=

= E0u
µ

{ ∫

E

∫

E

eK|x| r(x, yn)

g(yn)
p(z, x, an−1)σ

u
n−1(z) dz dx

}

= E0u
µ

{ ∫

E

( ∫

E

eK|x|p(z, x, an−1)dx
)
σu

n−1(z) dz
}

≤ CE0u
µ

{ ∫

E

eH|z|σu
n−1(z) dz

}
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and by iteration we obtain (2.17).

As mentioned above, in this section we allow the cost functions cn, b to
be of polynomial growth. Therefore we assume

(B5) cn:E × U → R and b:E → R are measurable for n = 1, 2, . . . , T and
there exist constants C, K > 0 such that

|cn(x, a)| ≤ CeK|x|, |b(x)| ≤ CeK|x| (2.18)

for x ∈ E, a ∈ U , n = 1, 2, . . . , T .

Considering the cost functional JT
µ (see (1.4)), namely

JT
µ (u) = Eu

µ

{ T−1∑

n=0

cn(xn, an) + b(x
T
)
}

(2.19)

under (B5) it is not clear that (2.19) is well defined, namely that the expec-
tation exists and is finite. However, by Lemma 2.5 we obtain

Corollary 2.6 Under (B3)–(B5) we have

JT
µ (u) = Eu

µ

{ T−1∑

n=0

∫

E

cn(x, an)σu
n(x) dx+

∫

E

b(x)σu
T (x) dx

}
(2.20)

and
sup

u
JT

µ (u) <∞ (2.21)

P r o o f . Clearly
T−1∑
n=0

cn(xn, an) + b(x
T
) is P u

µ integrable if and only if

LT

( T−1∑
n=0

cn(xn, an) + b(x
T
)
)

is P 0u
µ integrable. The latter random variable

is P 0u
µ integrable if

T−1∑

n=0

E0u
µ {Ln|cn(xn, an)| |Y n} + E0u

µ {LT |b(xT
)| |Y T}
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is P 0u
µ integrable. By (B5), Lemma 1.8 and Lemma 2.5 we have

E0u
µ

{ T−1∑

n=0

E0u
µ {Ln|cn(xn, an)| |Y n} + E0u

µ {LT |b(xT
)| |Y T}

}

≤ E0u
µ

{ T−1∑

n=0

E0u
µ {LnCe

K|xn||Y n} + E0u
µ {LTCe

K|xT ||Y T}
}

= E0u
µ

{ T−1∑

n=0

C

∫

E

eK|x|σu
n(x) dx+ C

∫

E

eK|x|σu
T (x) dx

}
<∞

Therefore JT
µ (u) in (2.19) is well defined and consequently we have (2.20)

and (2.21).

Notice now that, contrary to the previous subsection, we neither have to
approximate the observation function nor the cost functions. We therefore
impose only conditions on initial laws µm and transition operators P a

m(x, dz)
of the approximating processes (xm

n ). More precisely, we assume that

(C5) there exist Borel measurable functions

pm:E × E × U → R and µm:E → R

such that

P a
m(x, dz) = pm(x, z, a) dz, µm(dz) = µm(z) dz

(C6) for any positive constant K, there exist H > 0 and ∆m → 0 such that

sup
a∈U

∫

E

|p(x, z, a) − pm(x, z, a)|eK|z| dz ≤ ∆me
H|x| (2.22)

for x ∈ E, and ∫

E

|µm(z) − µ(z)|eK|z| dz ≤ ∆m (2.23)
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By analogy to (2.16) define approximating unnormalized filter densities
as follows

σ
m,u
0 (x) = µm(x)

σ
m,u
n+1(x) =

∫

E

r(x, yn+1)

g(yn+1)
pm(z, x, an)σm,u

n (z) dz (2.24)

We now have the following

Proposition 2.7 Under (B3), (B4), (C5), (C6), for all K > 0, n = 0, . . . , T

lim
m→∞

sup
u
E0,u

{ ∫

E

|σm,u
n (x) − σu

n(x)|eK|x| dx
}

= 0 (2.25)

P r o o f . For n = 0, (2.25) clearly holds by (2.23). For n > 0 by (2.22),
(2.13) we have

E0,u
{ ∫

E

|σm,u
n (x) − σu

n(x)|eK|x| dx
}
≤

≤ E0,u
{ ∫

E

∫

E

r(x, yn)

g(yn)
|pm(z, x, an−1) − p(z, x, an−1)|σm,u

n−1(z)e
K|x| dz dx

+
∫

E

∫

E

r(x, yn)

g(yn)
p(z, x, an−1)|σm,u

n−1(z) − σu
n−1(z)|eK|x| dz dx

}

= E0,u
{ ∫

E

∫

E

|pm(z, x, an−1) − p(z, x, an−1)|σm,u
n−1(z)e

K|x| dz dx

+
∫

E

∫

E

p(z, x, an−1)|σm,u
n−1(z) − σu

n−1(z)|eK|x| dz dx
}

≤ ∆mE
0,u

{ ∫

E

eH|z|σ
m,u
n−1(z) dz

}
+ CE0,u

{ ∫

E

eH|z||σm,u
n−1(z) − σu

n−1(z)| dz
}

≤ ∆mE
0,u

{ ∫

E

eH|z|σu
n−1(z) dz

}

+(C + ∆m)E0,u
{ ∫

E

eH|z||σm,u
n−1(z) − σu

n−1(z)| dz
}

assuming, as we can, that H from (B4) and (C6) are the same.
Now, by Lemma 2.5 the first term on the right hand side converges to 0

uniformly with respect to admissible controls.
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Therefore, if n = 1 we have the desired conclusion. In the case when
n > 1, just iterate the last term in the above inequality. Since at most T
iterations are required, (2.25) follows.

Let

JT,m
µ (u) = E0,u

µ

{ T−1∑

n=0

∫

E

cn(x, an)σm,u
n (x) dx+

∫

E

b(x)σm,u
T (x) dx

}
(2.26)

Using Proposition 2.7 we can apply Corollary 2.6 to obtain that JT,m
µ is well

defined.
Moreover by Proposition 2.7 and (B5), we almost immediately have

Corollary 2.8 Under (B3)–(B5) and (C5), (C6) property (P1) holds i.e.

lim
m→∞

sup
u

|JT
µ (u) − JT,m

µm
(u)| = 0 (2.27)

P r o o f . By (B5) we have

|JT
µ (u) − JT,m

µm
(u)|

≤ C
T−1∑

n=0

E0,u
{ ∫

E

eK|x||σu
n(x) − σm,u

n (x)| dx
}

+CE0,u
{ ∫

E

eK|x||σu
T (x) − σ

m,u
T (x)| dx

}

from which the conclusion follows by virtue of Proposition 2.7.

2.3 Study of the approximating problems

In the previous section we have shown how in the cases of bounded cost func-
tions and of cost functions with polynomial growth we can, under appropriate
assumptions, construct a sequence of approximating control problems with
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cost functionals JT,m
µm

(u) such that, uniformly with respect to all admissible
controls,

lim
m→∞

|JT,m
µm

(u) − JT
µ (u)| = 0

It then follows from Lemma 2.1 that an optimal or even nearly optimal
control for them-th approximating problem is, for sufficiently largem, nearly
optimal in the original problem.

In this section we shall study, for two specific approximation procedures,
the resulting approximating problems. To this effect notice first that the
unnormalized filtering processes σm,n

n given in (2.6) take generically their
values in the infinite-dimensional space of finite measures on E so that the
determination of an optimal or nearly optimal control for the cost function
(2.7) is computationally infeasible. The specific approximation procedures
are designed to lead either to measures taking values in a finite-dimensional
space or to measures that admit a finite dimensional representation. These
procedures are more precisely obtained by

2.3.a Assuming that the approximating state transition operator P a
m corre-

sponds to a finite state Markov chain

2.3.b Assuming that the approximating state transition operator P a
m is sep-

arated in the variables i.e.

P a
m(x, dz) =

m∑

i=1

ϕi(x)γi(a, dz) (2.28)

where γi(a, dz) are finite measures on E, such that for B ∈ B(E) the
mappings U ∋ a→ γi(a,B) are Borel measurable and ϕi ∈ bB(E) with
ϕi(x) ≥ 0.

Clearly,
m∑

i=1

ϕi(x)γi(a,E) = 1 for x ∈ E, a ∈ U (2.29)

2.3.1 Approximating finite state Markov chain

In this subsection we construct approximating processes xm
n and xm

n where
the latter form finite state Markov chains.
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For this purpose let Bm
k , k = 1, 2, . . . , km be a finite partition of the

original state space E and let em
k , k = 1, 2, . . . , km, em

k ∈ Bm
k be representative

elements of the sets Bm
k , k = 1, 2, . . . , km.

Assume furthermore that

sup
k<km

diam (Bm
k ) → 0 as m→ ∞ (2.30)

Bm
km

⊃ Bm+1
km+1

and
∞⋂

m=1

Bm
km

= ∅ (2.31)

and that for k ≤ km there are indices r1, . . . , ri(k) ∈ {1, 2, . . . , km+1} such
that

Bm
k =

i(k)⋃

p=1

Bm+1
rp

(2.32)

where the last property means that the (m + 1)-st partition of E should be
a subpartition of the m-th partition.

Let now

P a
m(x, dz) =

km∑

k=1

χ
Bm

k

(x)P a(em
k , dz) (2.33)

define an approximating Markov process (xm
n ) with the same initial law as

the original process (xn).
Define furthermore (xm

n ) as the embedded Markov chain with space Em =
{1, . . . , km} and transition matrix

P
a

m(i, j) = P a(em
i , B

m
j ) for i, j = 1, 2, . . . , km (2.34)

Assume that

(B6) the mapping
E × U ∋ (x, a) 7→ P a(x,A) ∈ [0, 1] (2.35)

is uniformly continuous in A ∈ B(E), or equivalently the mapping

E × U ∋ (x, a) 7→ P a(x, ·) ∈ M(E)

is continuous, where M(E) stands for the set of probability measures
on E with the variation norm metric.
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Clearly, under (B6) for P a
m defined in (2.33) the condition (C2) holds.

Define now an approximating observation function hm by

hm(x,w) = h(em
k , w) for x ∈ Bm

k (2.36)

which for each x ∈ E is still a C1 diffeomorphism so that the measure tran-
sition approach of Section 1.3 applies also to the approximating problem.

By analogy to (2.4) let

rm(x, y) = g(km(x, y))|∆m(x, y)| (2.37)

where km(x, ·) is the inverse function of hm(x, ·) and ∆m its Jacobian. Notice
also that rm(x, y) = r(em

k , y) for x ∈ Bm
k .

Remark 2.9 Under (A1) and (A4), for rm defined by (2.36)–(2.37) the con-
dition (C3) is satisfied. In fact, by (A4), the family of measures {R(x, ·), x ∈
K} is tight in Rd. Therefore it remains to show that for each compact L ⊂ Rd

sup
x∈K

∫

L

|r(x, y) − rm(x, y)| dy → 0, as m→ ∞

which in turn is obvious in view of uniform continuity of r(x, y) for (x, y) ∈
K × L and (2.30).

Let, by analogy to (2.33) and (2.36),

cmn (x, a) =
km∑

k=1

χ
Bm

k

(x)cn(em
k , a) (2.38)

and

bm(x) =
km∑

k=1

χ
Bm

k

(x)b(em
k ) (2.39)

Imposing a stronger assumption than (B1), namely that

(B1’)
cn ∈ C(E × U) and b ∈ C(E) (2.40)
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we easily obtain that (C4) is satisfied for cmn and bm as in (2.38) and (2.39).
Given an admissible control u, let (σm,u

n ) be the approximating unnor-
malized filter process defined by (2.6) with rm, P a

m of the form (2.37), (2.33).
By Corollary 2.3 and the preceding discussion we immediately have

Corollary 2.10 Under (B1’), (B2) and (B6) the property (P1) holds i.e.

lim
m→∞

sup
u

|JT,m
µ (u) − JT

µ (u)| = 0 (2.41)

Define now theRkm-valued process ρu
n = (ρu

n(1), . . . , ρu
n(km)) where ρu

n(k) =
σm,u

n (Bm
k ). By the recursive formula (2.6) we then obtain

ρu
0 = (µ(Bm

1 ), . . . , µ(Bm
km

))

ρu
n+1(k) =

km∑

j=1

r(em
k , yn+1)

g(yn+1)
P

an

m (j, k)ρu
n(j)

(2.42)

Notice also, that (ρu
n) is the approximating unnormalized filtering pro-

cess that corresponds to the state process (xm
n ) with the observation density

r(ek, y). Moreover we can rewrite the cost functional JT,m
µ (u) in (2.7) in

terms of (ρu
n) and we have

JT,m
µ (u) = E0u

µ

{ T−1∑

n=0

km∑

k=1

cn(em
k , an)ρu

n(k) +
km∑

k=1

b(em
k )ρu

T (k)
}

(2.43)

Having obtained in Corollary 2.10 the property (P1), we have now to solve
problem (P2) that is, for a given m and cost functional JT,m

µ (u), find an opti-
mal or nearly optimal control law u. By (2.42) and (2.43) the latter problem
is reduced to the control of the finite dimensional process ρu

n given by (2.42)
with the cost functional (2.43). Under our assumptions the approximating
control problem (2.42)–(2.43) admits now an optimal control that can in
principle be computed by the following backwards dynamic programming
relations where ρ ∈ (R+)km with R+ = [0,∞).

V m
T (ρ) =

km∑

k=1

b(em
k )ρ(k)

V m
n (ρ) = min

a∈U

[ km∑

k=1

cn(em
k , a)ρ(k) +

∫

Rd

V m
n+1

(r(em, y)

g(y)
P

a

m(ρ, ·)
)
g(y) dy

]

(2.44)
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where, to simplify, we have written

r(em, y)

g(y)
P

a

m(ρ, ·)

for the vector

( km∑

j=1

r(em
1 , y)

g(y)
P

a

m(j, 1)ρ(j), . . . ,
km∑

j=1

r(em
km
, y)

g(y)
P

a

m(j, km)ρ(j)
)

(2.45)

We furthermore have

inf
u
JT,m

µ (u) = V m
0 (µ(Bm

1 ), . . . , µ(Bm
km

)) = JT,m
µ (u) (2.46)

with
u = (u0(ρ

u
0), . . . , uT−1(ρ

u
T−1)) (2.47)

where uk are selectors i.e. Borel measurable mappings from (R+)km into U
for which the minima in (2.44) are attained.

Although the dynamic programming equations (2.44) are based on the
finite dimensional process (ρu

n), this latter process still takes an infinite num-
ber of values since (see (2.42)) the observations (yn) as well as the controls
(an) do. To make these dynamic programming relations computationally
feasible, we therefore have to introduce an additional approximation leading
to a finite number of possible values of the observations and controls.

For this purpose, given a positive integer H, let Rd be partitioned into
{DH

s }s=1,...,s(H)+1, with s(H) = 2dH2d, where, for s ≤ s(H), DH
s are hyper-

cubes with sides of length 1
H

, while

DH
s(H)+1 = {y ∈ Rd: ‖y‖m > H}

with ‖y‖m = max{|y1|, . . . , |yd|}.
For each DH

s with s ≤ s(H) choose then a representative element dH
s ∈

DH
s and take dH

s(H)+1 such that ‖dH
s(H)+1‖m = H + 1.

Define finally the observation projection operator WH as

WH :Rd ∋ y 7→
s(H)+1∑

s=1

χ
DH

s
(y) dH

s (2.48)
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and the discretized observation process (zn)

zn = WH(yn) (2.49)

Analogously, let (UH
k )k=1,2,...,H be a partition of the compact control set

U , such that for H < H ′, the partition (UH′

k )k=1,2,...,H′ is a subpartition of
(UH

k )k=1,2,...,H and the diameters of sets UH
k converge to 0 as H → ∞. Denote

by (αH
k )k=1,2,...,H representative control values for the sets UH

k , and let

ZH :U ∋ a 7→
H∑

k=1

χ
UH

k

(a)αH
k (2.50)

be the control projection operator onto UH = {αH
k , k = 1, 2, . . . , H}.

Recalling the definition of P
a

m(i, j) let

P
a

m,H(i, j) = P
ZHa

m (i, j) (2.51)

From assumption (B6) it then follows that for all i, j ∈ Em

lim
H→∞

sup
a∈U

|P a

m,H(i, j) − P
a

m(i, j)| = 0 (2.52)

With the discretized observations and controls consider then (see (2.42))

ρu
0,H = (µ(Bm

1 ), . . . , µ(Bm
km

))

ρu
n+1,H(k) =

km∑

j=1

r(em
k , zn+1)

g(zn+1)
P

ZHan

m (j, k)ρu
n,H(j)

(2.53)

as well as the dynamic programming equations

V
m,H
T (ρ) =

km∑

k=1

b(em
k )ρ(k)

V m,H
n (ρ) = min

a∈UH

[ km∑

k=1

cn(em
k , a)ρ(k) +

s(H)+1∑

s=1

V
m,H
n+1

(r(em, dH
s )

g(dH
s )

P
a

m,H(ρ, ·)
)
βH

s

]

(2.54)
with βH

s =
∫

DH
s

g(y) dy where, to simplify, by analogy to (2.45) we have written

r(em, dH
s )

g(dH
s )

P
a

m,H(ρ, ·)
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for the vector

( km∑

j=1

r(em
1 , d

H
s )

g(dH
s )

P
a

m,H(j, 1)ρ(j), . . . ,
km∑

j=1

r(em
km
, dH

s )

g(dH
s )

P
a

m(j, km)ρ(j)
)

The dynamic programming equations (2.54) can now indeed be computed
to yield an optimal control u∗ = (a∗0, . . . , a

∗
T−1) for the last stage approximat-

ing problem, which, in the complete observation representation has the state
given by the sequence of finite dimensional and finite valued random variables
(ρu

n,H) satisfying (2.53) while the cost functional is given by

JT,m,H
µ (u) = E0u

µ

{ T−1∑

n=0

km∑

k=1

cmn (em
k , ZHan)ρu

n,H(k) +
km∑

k=1

bm(em
k )ρu

T,H(k)
}

(2.55)

The generic term a∗n of this optimal control is of the feedback type a∗n =
u∗(ρn,H) and therefore a function of the discretized observations i.e.

a∗n = α∗
n(z1, . . . , zn) (2.56)

It can be extended to a function of the original obsevations (yn) putting

a∗n = α∗
n(y1, . . . , yn) = α∗

n(WH(y1), . . . ,WH(yn)) (2.57)

where the projection operator WH is defined in (2.48). The optimal control
u∗ for the approximating problem with cost functional JT,m,H

µ is therefore
admissible also in the problem with cost functional JT,m

µ and it remains to
show that, for sufficiently large H, it is nearly optimal for the latter.

Notice also that any admissible control u for the problem with cost func-
tion JT,m

µ can obviously be used also with the cost function JT,m,H
µ in (2.55).

To complete this subsection we need an auxiliary result, which is formu-
lated in an independent way because of its use also in the next subsection.

Proposition 2.11 Assume (yn) are under P 0 i.i.d. Rd-valued with common
density g, u = (a0, a1, . . .) is a sequence of U-valued, Y n = σ{y1, . . . , yn}
adapted random variables, and





ηu
0 (k) = α(k)

ηu
n+1(k) =

p∑

j=1

Gj(yn+1, an)(k)ηu
n(j)

(2.58)
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



η
u,H
0 (k) = α(k)

η
u,H
n+1(k) =

p∑

j=1

Gj(WHyn+1, ZHan)(k)ηu,H
n (j)

(2.59)

for k = 1, 2, . . . , p, H being a positive integer, α a deterministic vector in Rd

and with Gj(y, a)(k) being for j, k = 1, 2, . . . , p, functions in (y, a) ∈ Rd × U

such that
sup

a
E0{|Gj(y1, a)(k)|} <∞ (2.60)

and
lim

H→∞
sup
a∈U

E0{|Gj(y1, a)(k) −Gj(WHy1, ZHa)(k)|} = 0 (2.61)

for j, k = 1, 2, . . . , p.
Then for n = 0, 1, 2, . . .

sup
u
E0{|ηu

n(k)|} <∞ (2.62)

and
lim

H→∞
sup

u
E0{|ηu

n(k) − ηu,H
n (k)|} = 0 (2.63)

with k = 1, 2, . . . , p.

P r o o f . We show (2.62) and (2.63) by induction on n. For n = 0, (2.62) and
(2.63) are clearly satisfied. Assume (2.62) and (2.63) are true for n. Then
for n+ 1 we have

sup
u
E0{|ηu

n+1(k)| ≤ sup
u

p∑

j=1

E0{E0{|Gj(yn+1, an)(k)|Y n}|ηu
n(j)|}

≤
p∑

j=1

sup
a
E0{|Gj(y1, a)(k)|} sup

u
E0{|ηu

n(j)|} <∞

and

E{|ηu
n+1(k) − η

u,H
n+1(k)|} ≤

≤ E0
{ p∑

j=1

|Gj(yn+1, an)(k)| |ηu
n(j) − ηu,H

n (j)|

+
p∑

j=1

|Gj(yn+1, an)(k) −Gj(WHyn+1, ZHan)(k)| |ηu,H
n (j)|

}

39



≤
p∑

j=1

E0{|ηu
n(j) − ηu,H

n (j)|E0{|Gj(yn+1, an)(k)|Y n}
}

+
p∑

j=1

E0{|ηu,H
n (j)|E0{|Gj(yn+1, an)(k) −Gj(WHyn+1, ZHan)(k)|Y n}}

≤
p∑

j=1

E0{|ηu
n(j) − ηu,H

n (j)|} sup
a
E0{|Gj(y1, a)(k)|}

+
p∑

j=1

E0{|ηu,H
n (j)|} sup

a
E0{|Gj(y1, a)(k) −Gj(WHy1, ZHa)(k)|}

→ 0 as H → ∞

by (2.60), (2.61) and the induction hypothesis.
Therefore we have obtained (2.62), (2.63) for n + 1, which by induction

completes the proof of Proposition.

We apply now Proposition 2.11 to the processes (ρu
n) and (ρu

n,H).

Corollary 2.12 Assume (B6) and

(B7) g is a continuous function

(B8) the random variables

r(em
k ,WHy1)

g(WHy1)
k = 1, 2, . . . , p, H = 1, 2, . . . ,

are uniformly integrable i.e.

lim
M→∞

sup
H

∫

Rd

χ
|y|≥M

r(em
k ,WHy)

g(WHy)
g(y) dy = 0 (2.64)

Then
lim

H→∞
sup

u
E0{|ρu

n(k) − ρu
n,H(k)|} = 0 (2.65)

for k = 1, 2, . . . , km and n = 1, 2, . . .
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P r o o f . We use Proposition 2.11 with p = km, α(k) = µ(Bm
k ), ηu

n = ρu
n,

ηu
n,H = ρu

n,H and

Gj(y, a)(k) =
r(em

k , y)

g(y)
P

a

m(j, k)

Clearly (2.60) is satisfied.
By (B6) and (B7) the mapping

Rd × U ∋ (y, a) 7→ Gj(y, a)(k)

is continuous.
Therefore to obtain (2.61) it is sufficient to show that given ε > 0, there

is M such that for any k = 1, 2, . . .

sup
a∈U

E0{χ
|y1|≥M

|Gj(y1, a)(k) −Gj(WHy1, ZHa)(k)|} < ε

for which in turn it suffices to prove that

E0{χ
|y1|≥M

(r(em
k , y1)

g(y1)
+
r(em

k ,WHy1)

g(WHy1)

)
} < ε

Since the last inequality can be achieved by the integrability of
r(em

k , y1)

g(y1)
and

(2.64), we obtain (2.61) which allows us to use Proposition 2.11.

We now come to our final conclusion

Corollary 2.13 Under (B1’), (B6)–(B8) we have

lim
H→∞

sup
u

|JT,m
µ (u) − JT,m,H

µ (u)| = 0 (2.66)

Moreover, if for H > H0

sup
u

|JT,m
µ (u) − JT,m,H

µ (u)| < ε (2.67)

then any control u that is ε-optimal for the cost functional JT,m,H
µ with H >

H0, is 3ε optimal for the cost functional JT,m
µ . If in particular u is optimal

for JT,m,H
µ with H > H0, then it is 2ε optimal for JT,m

µ .

41



P r o o f . We have

|JT,m
µ (u) − JT,m,H

µ (u)| ≤
T−1∑

n=0

km∑

k=1

E0u
µ {cmn (em

k , an)

−cmn (em
k , ZHan)|ρu

n(k) + cmn (em
k , ZHan)|ρu

n(k) − ρu
n,H(k)|}

+
km∑

k=1

E0u
µ {bm(em

k )|ρu
T (k) − ρu

T,H(k)|}

and (2.66) follows from (B1’) and Corollary 2.12.
The proof of the second part of Corollary 2.13 is analogous to that of

Lemma 2.1.

Concluding this subsection 2.3.1 we have that, if all assumptions are sat-
isfied, a nearly optimal control for JT,m

µ can be obtained as follows: For a
sufficiently large value of H compute the dynamic programming relations
(2.54) for each of the finite number of possible values of ρu

n,H . The control
functions thereby obtained, lead (see Corollary 2.13) to nearly optimal con-
trols for JT,m

µ . If furthermore also m is sufficiently large, by Lemma 2.1 these
controls are nearly optimal also for JT

µ .

2.3.2 Approximating operators separated in the variables

We consider now the case when P a
m(x, dz) has the form (2.28) with the con-

dition (2.29) which includes e.g. the case of (2.33) by putting m = km,
ϕi(x) = χ

Bm
i

(x) and γi(a, dz) = P a(em
i , dz); the condition (2.29) then be-

comes in fact
km∑

i=1

χ
Bm

i

(x)P a(em
i , E) = 1

which is true here by definition.
Notice however, that there are situations when the approximating tran-

sition kernels are of the form (2.28) without being of type (2.33). We now
show two examples for such situations.

Example 1. Assume the state process (xn) is 1-dimensional and is given by
the recursive formula

xn+1 = b(xn) + d(an) + vn
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with vn i.i.d. N(0, 1) random variables.
Then for A ∈ B(E)

P a(x,A) =
1√
2π

∫

A

e−
1
2
(z−d(a))2e(z−d(a))(b(x))e−

1
2
(b(x))2 dz

We approximate the term e−(z−d(a))(b(x)) by its (m+ 1)-st Taylor expansion

m∑

i=0

1

i!
(z − d(a))i(b(x))i

and construct approximating kernels as follows

P a
m(x,A) =

1√
2π

∫

A

e−
1
2
(z−d(a))2

m∑

i=0

1

i!
(z − d(a))i(b(x))i

e−
1
2
(b(x))2 dz

( 1√
2π

∫

E

e−
1
2
(z−d(a))2

m∑

i=0

1

i!
(z − d(a))i(b(x))ie−

1
2
(b(x))2 dz

)−1

By an easy calculation we obtain

P a
m(x,A) =

m∑

i=0

bi(x) 1
i!

n∑
j=0

bj(x) j!!
j!

1√
2π

∫

A

(z − d(a))ie−
(z−d(a))2

2 dz

with j!! = 1 · 3 · 5 · (j − 3) · (j − 1) for j-even and j!! = 0 for j-odd.
Clearly P a

m is of the form (2.28).

Example 2. Assume we are given a set Em = {em
1 , . . . , e

m
km
} ⊂ E such that

the points em
i , i < km form a δ-net of a ball B ⊂ E, em

km
∈ E \ B, and

ρ
E
(em

i , e
m
k ) ≥ δ for i, k ≤ km, with ρ

E
standing for a metric on E.

Let

ϕj(x) =

{
δ − ρ

E
(x, em

j ) if ρ
E
(x, em

j ) ≤ δ

0 elsewhere
for j < km

and
ϕkm

(x) = min{1, ρ
E
(x, {em

1 , . . . , e
m
km−1})}

where ρ
E
(x, {em

1 , . . . , e
m
km−1}) = min{ρ

E
(x, em

i ); 1 ≤ i ≤ km − 1}.
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Define now,

ϕj(x) =
ϕj(x)

km∑
i=1

ϕi(x)

Clearly ϕj(e
m
j ) = 1 for j = 1, 2, . . . , km, ϕj are continuous and form a parti-

tion of unity of E i.e.
km∑
i=1

ϕi(x) ≡ 1.

Given any transition kernel P a(x, dz) and letting γi(a, dz) = P a(em
i , dz),

we may define an approximating transition operator P a
m as P a

m(x, dz) =
km∑
i=1

ϕi(x)γi(a, dz) i.e. in the form (2.28). Notice that, comparing the just

defined transition operator with (2.33), we see that we replaced the charac-
teristic functions χ

Bm
i

(x) by a suitable partition (ϕi) of unity of E. The use

of an approximated kernel constructed in this way allows us to relax some of
the assumptions imposed on the original kernel P a, for example (B9) below
can be avoided.

Although this case includes that of (2.33), here the cost functions need
not necessarily be bounded nor do we have to approximate them. Moreover,
in this subsection we do not approximate the observation function h(x,w),
and consequently neither the function r(x, y). On the other hand, the di-
mensionality of the approximating problem will be larger than in the case
of (2.33) as can be seen by comparing the dynamic programming relations
(2.54) and (2.73) below. In what follows let either the assumptions (B1),
(B2), (C1), (C2) of Section 2.2.1 or (B3)–(B5), (C5), (C6) of Section 2.2.2
be satisfied. Consequently Corollaries 2.3 and 2.8 hold, so we confine our-
selves to the study of the approximating problem with the cost functional
JT,m

µm
given by (2.26) where the approximating unnormalized filter process

(σm,u
n ) satisfies

σ
m,u
0 (A) = µm(A)

σ
m,u
n+1(A) =

m∑

i=1

∫

A

r(z, yn+1)

g(yn+1)
γi(an, dz)σ

m,u
n (ϕi)

(2.68)

for n = 0, 1, 2, . . ., and admissible control u = (a0, a1, . . .). Therefore JT,m
µm
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can be rewritten as

JT,m
µm

(u) = E0u
µm

{ T−1∑

n=1

m∑

i=1

∫

E

cn(x, an)
r(x, yn)

g(yn)
γi(an−1, dx)σ

m,u
n−1(ϕi)+

+
m∑

i=1

∫

E

b(x)
r(x, yT )

g(yT )
γi(aT−1, dx)σ

m,u
T−1(ϕi) +

∫

E

c0(x, a0)µm(dx)
} (2.69)

and we see that to evaluate (2.69), instead of the unnormalized measures
(σm,µ

n ), we need only the values σm,µ
n (ϕi), i = 1, 2, . . . ,m. Moreover by (2.68)

we immediately have a recursive formula for σm,u
n (ϕi), namely

σ
m,u
n+1(ϕi) =

m∑

j=1

∫

E

ϕi(z)
r(z, yn+1)

g(yn+1)
γj(an, dz)σ

m,u
n (ϕj)

: =
m∑

j=1

Gm
j (yn+1, an)(i)σm,u

n (ϕj)

(2.70)

defining implicitly the operators Gm
j .

As will be clear later on, assuming a continuity with respect to a of
certain terms, from the backwards dynamic programming equations we can
obtain the existence of an optimal control u∗ = (a∗0, . . . , a

∗
T−1), where a∗0 is a

measurable function of σm,u
0 , and a∗n for n = 1, 2, . . . , T − 1 are measurable

functions of (yn, σ
m,u
n−1(ϕ1), . . . , σ

m,u
n−1(ϕm), a∗n−1).

However, similarly as in previous subsection, although (yn), a∗n−1 and
(σm,u

n−1(ϕ1), . . . , σ
m,u
n−1(ϕm)) are finite dimensional, they take an infinite num-

ber of values and therefore we cannot calculate the optimal control law in
practice. To overcome this difficulty we again discretize the observations
and controls. For this purpose we use the projection operators WH and ZH

defined in (2.48) and (2.50).
Let, for k = 1, 2, . . . ,m and a positive integer H,

ηu
0 (k) = µm(ϕk)
ηu

n+1(k) = σ
m,u
n+1(ϕk)

and

η
u,H
0 (k) = µm(ϕk)

η
u,H
n+1(k) =

m∑

i=1

∫

E

ϕk(z)
r(z,WHyn+1)

g(WHyn+1)
γi(ZHan, dz)η

u,H
n (i) (2.71)
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By analogy to (2.69) define the cost functional

JT,m,H
µm

(u) = E0u
µm

{ T−1∑

n=1

m∑

i=1

∫

E

cn(x, ZHan)
r(x,WHyn)

g(WHyn)
γi(ZHan−1, dx)η

u,H
n−1(i)+

m∑

i=1

∫

E

b(x)
r(x,WHyT )

g(WHyT )
γi(ZHaT−1, dx)η

u,H
T−1(i) +

∫

E

c0(x, ZHa0)µm(dx)
}

(2.72)
Assume

(C7) sup
a∈U

sup
H

E0
[
sup
a′∈U

∫
E

cn(x, a′)
r(x,WHy1)

g(WHy1)
γi(a, dx)

]
<∞

sup
a∈U

sup
H

E0
[ ∫

E

b(x)
r(x,WHy1)

g(WHy1)
γi(a, dx)

]
<∞

for i = 1, 2, . . . ,m, n = 1, 2, . . . , T − 1, and

(C8) the random variables sup
x

r(x,WHy1)

g(WHy1)
, H = 1, 2, . . ., are uniformly inte-

grable.

Then, by (C8), ηu,H
n (k) are integrable and consequently by (C7) the right

hand side of (2.72) is well defined. Moreover we can find an optimal con-
trol for (2.72) by the following system of backwards dynamic programming
equations

V
m,H
T (y, η, a) =

m∑

i=1

∫

E

b(x)
r(x,WHy)

g(WHy)
γi(ZHa, dx)η(i)

V m,H
n (y, η, a) = inf

a′∈U

{ m∑

i=1

∫

E

cn(x, ZHa
′)
r(x,WHy)

g(WHy)
γi(ZHa, dx)η(i)

+E0
[
V

m,H
n+1 (WHy1,

m∑

j=1

Gm
j (WHy, ZHa)η(j), ZHa

′)
]}

for n = 1, 2, . . . , T − 1

V
m,H
0 (µm) = inf

a∈U

{ ∫

E

c0(x, ZHa)µm(dx)

+E0[V m,H
1 (WHy1, µm(ϕ1), . . . , µm(ϕm), ZHa)]

}

(2.73)
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Since the equations (2.73) depend only on the discretized values of the con-
trols, all infima can be replaced by minima, and there exist measurable selec-
tors un(y, η, a) for which the infimum in V m,H

n is attained. Notice also that
V m,H

n (y, η, a) depends on y and a only through the values of WHy and ZHa.

Lemma 2.14 Under (C7), (C8) we have

inf
u
JT,m,H

µm
(u) = V

m,H
0 (µm) (2.74)

and the control u∗H = (a∗0,H , . . . , a
∗
T−1,H) is optimal, where

a∗0,H = u0(µm)

a∗n,H = un(WHyn, η
u,H
n−1, ZHa

∗
n−1,H)

(2.75)

for n = 1, 2, . . . , T − 1, with u0 and un being selectors for which the infima
in V

m,H
0 and V m,H

n are attained respectively.

P r o o f . Conditioning succesively the right hand side of (2.72) with respect
to Y n, n = 0, 1, . . . , T − 1, we obtain

JT,m,H
µm

(u) = E0u
µm

{ T−2∑

n=1

m∑

i=1

∫

E

cn(x, ZHan)
r(x,WHyn)

g(WHyn)
γi(ZHan−1, dx)η

u,H
n−1(i)+

m∑

i=1

∫

E

cT−1(x, ZHaT−1)
r(x,WHyT−1)

g(WHyT−1)
γi(ZHaT−2, dx)η

u,H
T−2(i)+

E0u
µm

{V m,H
T (WHyT , η

u,H
T−1, ZHaT−1)|Y T−1}

}
+

∫

E

c0(x, ZHa0)µm(dx) ≥

≥ E0u
µm

{ T−2∑

n=1

m∑

i=1

∫

E

cn(x, ZHan)
r(x,WHyn)

g(WHyn)
γi(ZHan−1, dx)η

u,H
n−1(i)+

V
m,H
T−1 (WHyT−1, η

u,H
T−2, ZHaT−2)

}
+

∫

E

c0(x, ZHa0)µm(dx)

≥ . . . ≥ E0u
µm

{ m∑

i=1

c1(x, ZHa1)
r(x,WHy1)

g(WHy1)
γi(ZHa0, dx)η

u,H
0 (i)+

E0u
µm

{V m,H
2 (WHy2, η

u,H
1 , ZHa1)|Y 1}

}
+

∫

E

c0(x, ZHa0)µm(dx)

≥
∫

E

c0(x, ZHa0)µm(dx) + E0u
µm

{V m,H
1 (WHy1, η

u,H
0 , ZHa0)} ≥

≥ V
m,H
0 (ηu,H

0 )
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with equalities corresponding to the u∗H defined by (2.75).

The vectors (WHyn, η
u,H
n−1, ZHan−1) are now finite valued so that for H > 0

the optimal control u∗H can actually be computed. The generic term of this
optimal control is of the feedback type and thus as in (2.56) a function of
the discretized observations. Analogously to (2.57) it can be extended to a
function of the original observations (yn) so that u∗H is admissible also in the
original problem. It remains to show that, for large H, u∗H is nearly optimal
for JT,m

µm
. For this purpose we first prove that ηu,H

n converges to ηu
n in L1

norm.
Assume

(C9) lim
H→∞

sup
a∈U

E0{|Gm
j (WHy1, ZHa)(k) −Gm

j (y1, a)(k)|} = 0

for j, k = 1, 2, . . . ,m.

By Proposition 2.11 we immediately have

Corollary 2.15 Under (C9) we have

lim
H→∞

sup
u
E0{|ηu,H

n (k) − ηu
n(k)|} = 0 (2.76)

for k = 1, 2, . . . ,m and n = 0, 1, 2, . . .

Let

(C10)

sup
a∈U

E0[sup
a′∈U

|
∫

E

cn(x, ZHa
′)
r(x,WHy1)

g(WHy1)
γi(ZHa, dx)

−
∫

E

cn(x, a′)
r(x, y1)

g(y1)
γi(a, dx)|] → 0

for n = 1, 2, . . . ,m− 1, as H → ∞
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sup
a∈U

E0[|
∫

E

b(x)
r(x,WHy1)

g(WHy1)
γi(ZHa, dx)

−
∫

E

b(x)
r(x, y1)

g(y1)
γi(a, dx)|] → 0 as H → ∞

sup
a∈U

∫

E

|c0(x, a) − c0(x, ZHa)|µm(dx) → 0 as H → ∞

We conclude this section with the following

Corollary 2.16 Under (C7)–(C10)

lim
H→∞

sup
u

|JT,m,H
µm

(u) − JT,m
µm

(u)| = 0 (2.77)

Moreover, if for H > H0

sup
u

|JT,m,H
µm

(u) − JT,m
µm

(u)| < ε

then any ε-optimal control u∗H for JT,m,H
µm

is for H > H0, 3ε-optimal for the
cost functional JT,m

µm
. If in particular u∗H is optimal for JT,m,H

µm
for H > H0,

then it is 2ε-optimal for JT,m
µm

.

P r o o f . We show (2.77) only, since the second assertion can be proved
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analogously to Lemma 2.1. We have

|JT,m,H
µm

(u) − JT,m
µm

(u)| ≤

E0u
µm

{ T−1∑

n=1

m∑

i=1

(E0{|
∫

E

cn(x, ZHan)
r(x,WHyn)

g(WHyn)
γi(ZHan−1, dx)−

∫

E

cn(x, an)
r(x, yn)

g(yn)
γi(an−1, dx)|Y n−1}ηu,H

n−1(i)+

E0{
∫

E

cn(x, an)
r(x, yn)

g(yn)
γi(an−1, dx)|Y n−1}|ηu,H

n−1(i) − ηu
n−1(i)|)+

m∑

i=1

E0{|
∫

E

b(x)
r(x,WHyT )

g(WHyT )
γi(ZHaT−1, dx)−

∫

E

b(x)
r(x, yT )

g(yT )
γi(aT−1, dx)| |Y T−1}ηu,H

T−1(i)+

E0
{ ∫

E

b(x)
r(x, yT )

g(yT )
γi(aT−1, dx)|Y T−1

}
|ηu,H

T−1(i) − ηu
T−1(i)|}+

∫

E

|cm0 (x, ZHa0) − cm0 (x, a0)|µm(dx)} = IH + IIH + IIIH + IVH + VH

By (C8) and (C10), IH+IIIH → 0 asH → ∞. From (C7) and Corollary 2.15,
IIH + IVH → 0 as H → ∞. Since by (C10) also VH → 0 as H → ∞ and all
limits are uniform in u, we obtain (2.77).

Concluding this subsection 2.3.2 we have that, if all assumptions are
satisfied, a nearly optimal control for JT,m

µm
can be obtained as follows:

For a sufficiently large value of H compute the dynamic programming
relations (2.73) for each of the finite number of values of (WHy, η, ZHa). The
control functions thereby obtained, lead (see Lemma 2.14 and Corollary 2.16)
to nearly optimal controls for JT,m

µm
. If furthermore also m is sufficiently large,

by Lemma 2.1 these controls are nearly optimal also for JT
µ .
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3 Infinite horizon with discounting

3.1 Introduction

This chapter considers the problem of determining nearly optimal controls for
the infinite horizon problem with discounting, where the cost functional Jβ

µ (u)
is given by (1.5), or equivalently by (1.11). The previous chapter, dealing
with the finite horizon problem, was entirely based on the representation
(1.34) of the cost function in terms of the unnormalized filter process. The
reason for this has already been given at the beginning of Sections 1.3 and
2.1. In this chapter we shall work only with normalized filters, and therefore
with the cost functional given in the form (1.11), and this will be useful
also in the next chapter concerning the average cost per unit time case. An
alternative approach, based as in chapter 2 on measure transformation and
using unnormalized filters, can be found in [29].

Similarly to the previous chapter, here too our approach to the construc-
tion of nearly optimal controls is based on an approximation approach. The
main tool in the previous chapter was the uniform in the control approx-
imation of the cost functional. Here, without the benefits of the measure
transformation that made it possible to consider the same observations in
the original and the approximating problems, we shall instead have to make
use of some compactness arguments which will be achieved by either assum-
ing that the state space is compact, or approximating the class of admissible
controls by a compact family of controls. Furthermore, the approach in this
(and the following) chapter will be structured into two parts. A first part
consists of the construction of nearly optimal control functions which, when
applied to the true filter values, lead to nearly optimal controls. Since the
true filter process takes its values in an infinite dimensional space of mea-
sures, a direct construction of nearly optimal controls is computationally
infeasible. The approximation approach for this first part now allows the
original problem to be approximated by problems for which the associated
filtering process takes its values in a finite dimensional space of measures so
that for these problems the construction of nearly optimal control functions
becomes computationally feasible. Notice that these approximating problems
are auxiliary problems and that the associated filtering processes, based on
observations that are not available in practice, are fictitions processes serv-
ing only the purpose of allowing a computationally feasible construction of a
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control function. These functions can however be extended to become func-
tions defined on the infinite-dimensional space of measures, where the true
filtering process of the original problem takes its values, and it will be shown
that these extended functions are the desired nearly optimal control functions
for the original problem. At this point there remains to compute the true
filtering process. Again there is the problem of its infinite dimensionality, so
that the purpose of the second part of our approach in this chapter is the
construction of a computable approximating filter process and the proof that
the nearly optimal control functions, provided they are continuous, still lead
to nearly optimal controls when applied to the approximating filter.

We finally remark that, under some boundedness assumptions, the ap-
proach of the previous chapter can also be used for the construction of nearly
optimal controls in infinite horizon problems with discounting. Defining in
fact a finite horizon truncation of (1.5) as the finite horizon problem with
cost functional

J
β
µ,P (u) = Eu

µ

{ P−1∑

n=0

βuc(xn, an)
}

where the terminal cost b(x
P
) is zero, it is easily seen that for a bounded

cost function c, i.e. |c(x, a)| ≤ C for x ∈ E, a ∈ U , we have

sup
µ∈P (E)

sup
u

|Jβ
µ,T (u) − Jβ

µ (u)| ≤ βTC

1 − β

It follows that, for sufficiently large T , a nearly optimal control for the finite
horizon problem, when extended to an infinite horizon control by taking
arbitrary values after T , is nearly optimal also in the infinite horizon case
with discounting. Vice versa, the methods of this chapter can be easily
adapted to the finite horizon case.

In the next subsection 3.2 we recall the Bellman equation (value iteration)
for the infinite horizon case with discounting. This equation will be the basis
of our approach for the case when the state space E is compact.

The following section 3.3 concerns the construction of nearly optimal con-
trol functions. It will be devided into further subsections: In 3.3.1 we give
general convergence results related to approximations of the state transition
kernel, observation structure and cost function that satisfy suitable assump-
tions. This will then be particularized both to the case of a compact state
space E using the Bellman equation (subsection 3.3.1.a) as well as when the
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controls are suitably approximated to become a compact class (subsection
3.3.1.b).

In 3.3.2, paralleling section 2.3.1 we present a specific method to obtain
approximating transition operators, observation structure and costs that sat-
isfies the required assumptions.

Although the approximation leads to finite dimensional filters, still a
nearly optimal control function cannot be computed in practice, since these
filters take an infinite number of values. In 3.3.3 we therefore perform addi-
tional approximations and show various possibilities to actually compute a
nearly optimal control function.

In subsection 3.4, for the case of compact state space E and in connec-
tion with a generalized Bellman equation, we consider an additional specific
approximation method which parallels that of section 2.3.2.

Finally, in subsection 3.5 we consider the problem of filter approximation.

3.2 The Bellman equation

First consider the additional assumption

(A5) c:E × U → [0,∞) is continuous and bounded

We have

Theorem 3.1 Assume (A1)–(A5). Let

vβ(µ): = inf
u
Jβ

µ (u) (3.1)

Then vβ ∈ C(P (E)) is the unique solution to the following Bellman equation

vβ(µ) = inf
a∈U

{ ∫

E

c(x, a)µ(dx) + β
∏a

(µ, vβ)
}

(3.2)

for µ ∈ P (E).
Moreover there is a Borel measurable function uβ:P (E) 7→ U for which

vβ(µ) =
∫

E

c(x, uβ(µ))µ(dx) + β
∏uβ(µ)

(µ, vβ) (3.3)
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for µ ∈ P (E) and this uβ(·) is an optimal control function of the type con-
sidered in (1.13) which, when applied to the normalized filter process (πn),
leads to optimal controls so that we have

vβ(µ) = Jβ
µ ((uβ(πn))) (3.4)

In addition, vβ can be uniformly approximated by the increasing sequence
vβ

n ∈ C(P (E)) obtained from the so called value iteration algorithm

v
β
0 (µ) ≡ 0

v
β
n+1(µ) = inf

a∈U

{ ∫
E

c(x, a)µ(dx) + β
∏a(µ, vβ

n)
}

(3.5)

and we have
‖vβ − v

β
n+1‖ ≤ (1 − β)−1βn‖c‖ (3.6)

with ‖v‖ standing for the supremum of |v(ν)| over ν ∈ P (E).
Furthermore, for each n there exists a Borel measurable function uβ,n:

P (E) 7→ U such that

v
β
n+1(µ) =

∫

E

c(x, uβ,n(µ))µ(dx) + β
∏uβ,n(µ)

(µ, vβ
n) (3.7)

for µ ∈ P (E).
Finally, each vβ

n is concave i.e. for µ, ν ∈ P (E) and α ∈ [0, 1]

vβ
n(αµ+ (1 − α)ν) ≥ αvβ

n(µ) + (1 − α)vβ
n(ν) (3.8)

P r o o f . Define, for v ∈ C(P (E))

Tv(µ) = inf
a∈U

{ ∫

E

c(x, a)µ(dx) + β
∏a

(µ, v)
}

By Proposition 1.4, T is a contraction on C(P (E)). Thus, by the Banach
contraction principle there is a unique fixed point vβ ∈ C(P (E)) of T , which
is the unique solution to the Bellman equation (3.2). Since by (A5) and
Proposition 1.4 the mapping

U ∋ a 7→
∫

E

c(x, a)µ(dx) + β
∏a

(µ, vβ)
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is continuous, there exists a Borel measurable selector uβ for which (3.3)
holds. The identity (3.4) is then almost immediate. By similar arguments
there exist Borel measurable functions uβ,n:P (E) 7→ U satisfying (3.7). Since
the operator T is monotonic and contractive, the sequence vβ

n, n = 0, 1, . . .,
is increasing and converges to vβ with the rate (3.6). It remains to show the
concavity of vβ

n. We prove this by induction.
Clearly v

β
0 ≡ 0 is concave. Provided vβ

n is concave, by Proposition 1.7,
for fixed a ∈ U ,

∏a(µ, vβ
n) is concave i.e. for µ, ν ∈ P (E), α ∈ [0, 1]

∏a
(αµ+ (1 − α)ν, vβ

n) ≥ α
∏a

(µ, vβ
n) + (1 − α)

∏a
(ν, vβ

n)

and therefore from the definition of vβ
n+1 we obtain

v
β
n+1(αµ+ (1 − α)ν) ≥ αv

β
n+1(µ) + (1 − α)vβ

n+1(ν)

i.e. vβ
n+1 is concave, and by induction vβ

n is concave for each n. The proof of
Theorem 3.1 is complete.

Corollary 3.2 Under the assumptions of Theorem 3.1

vβ
n(µ) = inf

u
Jβ

µ,n(u) = Jβ
µ,n((uβ,n−1−i(πi))) (3.9)

with

Jβ
µ,n(u) = Eu

µ

{ n−1∑

i=0

βic(xi, ai)
}

where u = (a0, a1, . . .). Moreover, given ε > 0, there is n0 such that for
n ≥ n0 the control function uβ,n obtained at stage n from the value iteration
(3.5) is ε-optimal, i.e.

Jβ
µ ((uβ,n(πi)) ≤ vβ(µ) + ε (3.10)

P r o o f . The equality (3.9) is almost immediate from (3.5) and (3.7).
Combining (3.7) with (3.6) we obtain

vβ(µ) + (1 − β)−1βn‖c‖ ≥ v
β
n+1(µ) ≥

≥
∫

E

c(x, uβ,n(µ))µ(dx) + β
∏uβ,n(µ)

(µ, vβ) − (1 − β)−1βn‖c‖
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and therefore

Jβ
µ ((uβ,n(πi)) =

∞∑

i=0

βiEµ

{ ∫

E

c(x, uβ,n(πi))πi(dx)
}

≤ vβ(µ) + 2(1 − β)−2βn‖c‖

Choosing n0 such that for n ≥ n0

2(1 − β)−2βn‖c‖ ≤ ε

we obtain (3.10).

Remark 3.3 When the cost function c is bounded Borel measurable only,
the value function vβ defined by (3.1) may not be Borel measurable. How-
ever, since the transition operator P a(x, dz) is Borel in the sense that, for
B ∈ B(E), the mapping U × E ∋ (a, x) 7→ P a(x,B) is Borel measurable,
it can be shown, using the results of Chapters 7-9 of [5], that vβ is a lower
semi-analytic solution to the Bellman equation (3.2). Moreover, vβ can be
uniformly approximated by the sequence of lower semi-analytic functions vβ

n

given by (3.5). In addition for a given ε > 0 we can find (see Prop. 7.50 of
[5]) an analytic function uβ

ε ∈ A(P (E), U) such that

vβ(µ) + ε ≥
∫

E

c(x, uβ
ε (µ))µ(dx) + β

∏u
β
ε (µ)

(µ, vβ) (3.11)

for µ ∈ P (E)
Clearly, uβ

ε will be an ε(1− β)−1-optimal control function for Jβ
µ , namely

Jβ
µ ((uβ

ε (πn))) ≤ vβ(µ) +
ε

1 − β
.

The value iteration (3.5) as well as (3.11) give a (theoretical) possibility to
determine an ε-optimal control function. In practice however these relations
cannot be computed since the functions entering (3.5) and (3.11) are defined
on the space of measures P (E) that is infinite-dimensional. As a result, an
approximation leading to a space of finite dimensional measures is required
even if we use the Bellman equation to determine a nearly optimal control
function.
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3.3 Construction of nearly optimal control functions

3.3.1 Convergence

Assume that the state process (xn) is approximated by a process (xm
n ) corre-

sponding to a transition kernel P a
m; assume furthermore that the observation

density r(x, y) is approximated by rm(x, y) and c(x, a) by cm(x, a) and we
have

(D1) if U ∋ am → a, then for ϕ ∈ C(E)

P am

m (x, ϕ) → P a(x, ϕ), as m→ ∞,

uniformly in x from compact subsets of E,

(D2) rm ∈ bB(E × Rd) are uniformly in m bounded, rm(x, y) → r(x, y)
uniformly on compact subsets of E×Rd and for any compact setK ⊂ E

sup
x∈K

∫

Rd

|rm(x, y) − r(x, y)|dy → 0, as m→ ∞

(D3) cm ∈ bB(E × U), are uniformly in m bounded, and

cm(x, a) → c(x, a), as m→ ∞,

uniformly on compact subsets of E × U .

Given an admissible control u = (a0, a1, . . .) let

Jβ,m
µ (u) =

∞∑

n=0

βnEu
µ{cm(xm

n , an)} (3.12)

and define
vβ,m(µ) = inf

u
Jβ,m

µ (u) (3.13)

Furthermore given an initial measure µ of xm
n , by analogy to (1.8) define the

approximating filter process (πm,u
n ) taking values in P (E), as

π
m,u
0 (A) = µ(A)

π
m,u
n+1(A) =

∫

A

rm(z, yn+1)P
an

m (πm,u
n , dz)

∫

E

rm(z, yn+1)P
an

m (πm,u
n , dz)

: = Man

m (yn+1, π
m,u
n )(A)

(3.14)
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Notice that, corresponding to controls of the form an = u(πm
n ), the filter

process (πm,u
n ) is clearly Markov with transition operator

∏u(ν)

m
(ν, F ) =

∫

E

∫

Rd

F (Mu(ν)
m (y, ν))rm(z, y)dyP u(ν)

m (ν, dz) (3.15)

for F ∈ bB(P (E)).
In the case when the control is given by the sequence an = u(πn), for

a Borel measurable function u:P (E) → U , below we shall identify the cost
functional Jβ

µ ((u(πn))) with Jβ
µ (u); similarly for Jβ,m

µ ((u(πm
n ))).

Lemma 3.4 Under (A1), (A2) and (D1), for each compact set H ⊂ P (E)
and ε > 0, there is a compact set K ⊂ E and a positive integer m0 such that

inf
a∈U

P a
m(ν,K) ≥ 1 − ε inf

a∈U
P a(ν,K) ≥ 1 − ε (3.16)

for ν ∈ H and m ≥ m0.

P r o o f . By (A2) and (A3) the set of measures {P a(ν, ·), ν ∈ H, a ∈ U} is
compact in P (E). Therefore by Prokhorov’s theorem (see Theorem 1.6.2 of
[6]) for a given ε > 0, there is a compact set K1 such that for ν ∈ H, a ∈ U ,
P a(ν,K1) ≥ 1 − ε

2
.

Let

ϕ(x) =





1 − inf
z∈K1

ρ
E
(z, x) if inf

z∈K1

ρ
E
(z, x) ≤ 1

0 elsewhere

with ρ
E

standing for a metric on E compatible with the topology.
Clearly ϕ ∈ C(E). Therefore for a sufficiently large m, say m ≥ m0

sup
a∈U

sup
ν∈H

|P a
m(ν, ϕ) − P a(ν, ϕ)| < ε

2
(3.17)

since otherwise we would have for some am → a, νm ⇒ ν, νm ∈ H

|P am

m (νm, ϕ) − P am(νm, ϕ)| > ε

4

a contradiction to (D1).
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Let K = {x ∈ E: inf
z∈K1

ρ
E
(z, x) ≤ 1}. For ν ∈ H, a ∈ U , m ≥ m0 we then

have
P a

m(ν,K) ≥ P a
m(ν, ϕ) ≥ P a(ν, ϕ) − ε

2
≥

≥ P a(ν,K1) − ε
2
≥ 1 − ε

Since E is locally compact, the set K is also compact and (3.16) holds.

The next two propositions are devoted to the study of the limit properties
of the operators Ma

m and
∏a

m for m→ ∞.

Proposition 3.5 Under (A1)–(A3), (D1)–(D2) for ϕ ∈ C(E)

sup
a∈U

|Ma
m(y, ν)(ϕ) −Ma(y, ν)(ϕ)| → 0 (3.18)

as m→ ∞, uniformly in (y, ν) from compact subsets of Rd × P (E).

P r o o f . It suffices to show that for any ϕ ∈ C(E)

sup
a∈U

∣∣∣
∫

E

ϕ(z)rm(z, y)P a
m(ν, dz) −

∫

E

ϕ(z)r(z, y)P a(ν, dz)
∣∣∣ → 0 as m→ ∞

(3.19)
uniformly in (y, ν) from compact subsets of Rd × P (E).

By Lemma 3.4 and (D2)

sup
a∈U

∣∣∣
∫

E

ϕ(z)(rm(z, y) − r(z, y))P a
m(ν, dz)

∣∣∣ → 0 as m→ ∞ (3.20)

uniformly in (y, ν) from compact subsets of Rd × P (E).
In fact, for any ε > 0 and a compact set H ⊂ P (E), by Lemma 3.4 we

can find a compact set K ⊂ E such that for m ≥ m0, ν ∈ H

sup
a∈U

P a
m(ν,Kc) ≤ ε

Therefore, for m ≥ m0

sup
a∈U

∣∣∣
∫

E

ϕ(z)(rm(z, y) − r(z, y))P a
m(ν, dz)

∣∣∣ ≤

≤ [‖ϕ‖(‖rm‖ + ‖r‖) · ε+ ‖ϕ‖ sup
z∈K

|rm(z, y) − r(z, y)|]
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Since by (D2) |rm(z, y) − r(z, y)| → 0 as m → ∞, uniformly on compact
subsets of E×Rd, ‖rm‖ are bounded and ε could be chosen arbitrarily small,
we obtain (3.20).

It remains to show that

sup
a∈U

∣∣∣
∫

E

ϕ(z)rm(z, y)(P a
m(ν, dz) − P a(ν, dz))

∣∣∣ → 0 as m→ ∞ (3.21)

uniformly in (y, ν) from compact subsets of Rd × P (E).
By (D1) and (3.17), for any ψ ∈ C(E)

sup
a∈U

|P a
m(ν, ψ) − P a(ν, ψ)| → 0 as m→ ∞ (3.22)

uniformly in ν from a compact subset H of P (E).
To show (3.21) we need the following simple lemma, the proof of which

is left to the reader.

Lemma 3.6 Let (M1, ρ1), (M2, ρ2) be metric spaces. F : (M1, ρ1) → (M2, ρ2)
be a continuous mapping and K ⊂ M1 be a fixed compact set. Then, for a
given ε > 0 there is δ > 0 such that for x ∈ K, x′ ∈M1, ρ1(x, x

′) < δ implies
ρ2(F (x), F (x′)) < ε.

Let L ⊂ Rd and H ⊂ P (E) be compact sets. By (A1) and (A2), the set

H̃ = {P a(ν, ·), for a ∈ U, ν ∈ H}

is compact in P (E).
Let

F :Rd × P (E) ∋ (y, ν) 7→
∫

E

ϕ(z)r(z, y)ν(dz)

and M1 = Rd × P (E), M2 = R1, K = L× H̃.
Then by Lemma 3.6, for a given ε > 0, there is δ > 0 such that

if for some ν ∈ H̃, ν ′ ∈ P (E), ρw(ν, ν ′) < δ then for all y ∈ L,
| ∫
E

ϕ(z)r(z, y)(ν(dz) − ν ′(dz))| < ε,
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with ρw standing for a metric compatible with the weak convergence topology
of P (E).

By (3.22), for a sufficiently large m

sup
ν∈H

sup
a∈U

ρw(P a
m(ν, ·), P a(ν, ·)) < δ

and consequently

sup
ν∈H

sup
a∈U

sup
y∈L

∣∣∣
∫

E

ϕ(z)r(z, y)(P a
m(ν, dz) − P a(ν, dz))

∣∣∣ < ε

from which (3.21) follows.
The proof of Proposition 3.5 is complete.

We use now Proposition 3.5 to obtain the convergence of the approxi-
mating transition operators

∏a
m, i.e. of

∏u(ν)
m (ν, ·) corresponding to a control

function u(ν) ≡ a ∈ U .

Proposition 3.7 Assume (A1)–(A4) and (D1), (D2). If bB(P (E)) ∋ Fm →
F ∈ C(P (E)) uniformly on compact subsets of P (E) and Fm are uniformly
bounded, then

sup
a∈U

|
∏a

m
(ν, Fm) −

∏a
(ν, F )| → 0 (3.23)

as m→ ∞, uniformly in ν from compact subsets of P (E).

P r o o f . We have

sup
a∈U

|∏a
m(ν, Fm) − ∏a(ν, F )| ≤

≤ sup
a∈U

∣∣∣
∫

E

∫

Rd

Fm(Ma
m(y, ν))(rm(z, y) − r(z, y))dyP a

m(ν, dz)
∣∣∣

+ sup
a∈U

∣∣∣
∫

E

∫

Rd

(Fm(Ma
m(y, ν)) − F (Ma(y, ν)))r(z, y)dyP a

m(ν, dz)
∣∣∣

+ sup
a∈U

∣∣∣
∫

E

∫

Rd

F (Ma(y, ν))r(z, y)dy(P a
m(ν, dz) − P a(ν, dz))

∣∣∣

= Im + IIm + IIIm

(3.24)
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Let H ⊂ P (E) be a compact set. By Lemma 3.4 for a given ε > 0 we can
find a compact set K ⊂ E and a positive integer m0 such that

sup
ν∈H

sup
a∈U

P a
m(ν,Kc) ≤ ε, for m ≥ m0 (3.25)

Therefore, for ν ∈ H and m ≥ m0

Im ≤ 2‖Fm‖ε+ sup
z∈K

‖Fm‖
∫

Rd

|rm(z, y) − r(z, y)|dy

By (D2), and the fact that ε can be chosen arbitrarily small, we obtain that
Im → 0.

By (A4) the family of measures {R(z, ·), z ∈ K} is compact. Therefore
there is a compact set L ⊂ Rd such that

sup
z∈K

R(z, Lc) ≤ ε (3.26)

Hence, using (3.25), for ν ∈ H, m ≥ m0 we have

IIm ≤ 2‖Fm‖ε+ 2‖F‖ε+ sup
a∈U

sup
y∈L

|Fm(Ma
m(y, ν)) − F (Ma(y, ν))| (3.27)

Notice now, that by Proposition 3.5,

Ma
m(y, ν)(·) ⇒Ma(y, ν)(·) as m→ ∞,

uniformly in a ∈ U , y ∈ L, ν ∈ H, and by Proposition 1.4 the set

H̃ = {Ma(y, ν), a ∈ U, y ∈ L, ν ∈ H}

is compact in P (E).
At this stage we need the following, easy to prove, slightly strengthened

version of Lemma 3.6.

Lemma 3.8 Assume (M1, ρ1), (M2, ρ2) are metric spaces, Fm: (M1, ρ1) →
(M2, ρ2) is a sequence of Borel measurable mappings, Fm → F uniformly on
compact subsets of M1, as m → ∞, F : (M1, ρ1) → (M2, ρ2) is continuous
and K ⊂M1 is compact.

Then

∀
ε>0

∃
m1

∃
δ>0

∀
m>m1

∀
x∈K,x′∈M1

ρ1(x, x
′) < δ ⇒ ρ2(Fm(x′), F (x)) < ε
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Taking now M1 = P (E), M2 = R and K = H, by Lemma 3.8 we obtain
that

sup
a∈U

sup
y∈L

sup
ν∈H

|Fm(Ma
m(y, ν)) − F (Ma(y, ν))| → 0 as m→ ∞

which comletes the proof of IIm → 0.
The proof that IIIm → 0 is based on Lemma 3.6. Let

G:CM
c (E) × P (E) ∋ (ϕ, ν) 7→

∫

E

ϕ(z)ν(dz) (3.28)

where CM
c stands for the space of continuous functions on E that are bounded

by a constantM , with a metric generated by the supremum norm on compact
sets.

Define

H1 = {mappings E ∋ z 7→
∫

Rd

F (Ma(y, ν))r(z, y)dy, a ∈ U, ν ∈ H}

H2 = {P a(ν, ·), a ∈ U, ν ∈ H}

By (A1) and (A2), H2 is compact in P (E).
We shall now show that H1 is compact in C‖F‖

c (E). By (A4) and Propo-
sition 1.4 we clearly have H1 ⊂ C‖F‖

c (E).
Consider a sequence of functions

hn(z): =
∫

Rd

F (Man(y, νn))r(z, y)dy an ∈ U, νn ∈ H.

Since U and H are compact, we can choose subsequences (nk), for simplicity
denoted again by n such that an → a ∈ U , νn → ν ∈ H.

If we showed that, as n→ ∞,

hn(z) → h(z) =
∫

Rd

F (Man(y, ν))r(z, y)dy

in C‖F‖
c (E) i.e. uniformly on compact subsets of E, we would obtain the

compactness of H1.
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Fix a compact set K ⊂ E. Given ε > 0, by (A4) there is a compact set
L ⊂ Rd such that (3.26) holds; consequently we have

sup
z∈K

|hn(z) − h(z)| ≤ 2‖F‖ε+ sup
y∈L

|F (Man(y, νn)) − F (Ma(y, ν))|

Since by Proposition 1.4

sup
ν∈H

sup
y∈L

|F (Man(y, ν)) − F (Ma(y, ν))| → 0

we obtain the convergence hn(z) → h(z) uniformly on compact subsets of E,
and therefore the compactness of H1.

We claim now that the mapping G, defined in (3.28) is continuous i.e.

for ϕn → ϕ in C‖F‖
c , and νn ⇒ ν in P (E), we have G(ϕn, νn) → G(ϕ, ν)

as n→ ∞.

In fact, the family {ν, νn, n = 1, 2, . . .} is tight. Therefore for a given
ε > 0 there is a compact set K ⊂ E such that νn(Kc) ≤ ε, ν(Kc) ≤ ε,
n = 1, 2, . . ., and consequently

|G(ϕ, ν) −G(ϕn, νn)| ≤
∣∣∣
∫

E

ϕ(z)(ν(dz) − νn(dz))
∣∣∣

+2‖F‖ε+ sup
z∈K

|ϕn(z) − ϕ(z)| → 2‖F‖ε

as n → ∞, and since ε can be chosen arbitrarily small, the mapping G is
continuous.

Applying now Lemma 3.6 with M1 = C‖F‖
c (E)× P (E), M2 = R, F = G,

and K = H1 × H2, by (3.22) we finally obtain that IIIm → 0 as m → ∞,
uniformly for ν ∈ H.

This way we complete the proof of Proposition 3.7.

Given u ∈ B(P (E), U) define the following iterations of the transition
operator

∏u(ν)(ν, ·),

(
∏u(ν))1(ν, ·) =

∏u(ν)(ν, ·)
(
∏u(ν))n+1(ν, ·) =

∫

P (E)

(
∏u(ν)(ν ′, ·)n ∏u(ν)(ν, dν ′) (3.29)

From Proposition 3.7 we obtain the following
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Corollary 3.9 Assume (A1)–(A4), (D1), (D2). Let B(P (E), U) ∋ um →
u ∈ C(P (E), U), and bB(P (E)) ∋ Fm → F ∈ C(P (E)), uniformly on
compact subsets of P (E) as m→ ∞, and let Fm be uniformly in m bounded.

Then, for any compact subset H ⊂ P (E), and n = 1, 2, . . ., we have

sup
ν∈H

|(
∏um(ν)

m
)n(ν, Fm) − (

∏u(ν)
)n(ν, F )| → 0 as m→ ∞ (3.30)

P r o o f . We use induction in n. For n = 1

sup
ν∈H

|∏um(ν)
m (ν, Fm) − ∏u(ν)(ν, F )|

≤ sup
ν∈H

|∏um(ν)
m (ν, Fm) − ∏um(ν)(ν, F )|

+ sup
ν∈H

|∏um(ν)(ν, F ) − ∏u(ν)(ν, F )| = Im + IIm

Clearly, Im → 0 as m → ∞ by Proposition 3.7, and IIm → 0 as m → ∞ by
Proposition 1.4. Therefore (3.30) holds for n = 1.

Assume that (3.30) holds for n. Then for n+ 1 we have

sup
ν∈H

|(∏um(ν)
m )n+1(ν, Fm) − (

∏u(ν))n+1(ν, F )| =

sup
ν∈H

|∏um(ν)
m (ν, Fm) − ∏um(ν)(ν, F )

(3.31)

with
Fm(ν) = (

∏um(ν)

m
)n(ν, Fm)

and
F (ν) = (

∏u(ν)
)n(ν, Fm)

By the induction hypothesis Fm(ν) → F (ν) asm→ ∞ uniformly on compact
subsets of P (E).

Therefore by step n = 1

sup
ν∈H

|
∏um(ν)

m
(ν, Fm) −

∏u(ν)
(ν, F )| → 0 as m→ ∞

and by (3.31), the convergence (3.30) holds for n + 1. Thus by induction
(3.30) holds for n = 1, 2, 3, . . .
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For a general approximation scheme satisfying (D1)–(D3) we have so far
obtained convergence results for operators related to the approximating filter
process. In the following two subsections we shall apply these results for the
construction of nearly optimal controls in two specific cases, namely when
the state space E is compact and when the admissible control functions are
continuous.

3.3.1.a Compact state space E

We first prove the following general result where E need not to be compact

Theorem 3.10 Assume (A1)–(A5) and (D1)–(D3). Then

vβ,m(µ) → vβ(µ) as m→ ∞ (3.32)

uniformly on compact subsets of P (E).

P r o o f . By Theorem 3.1 we have

‖vβ − v
β
n+1‖ ≤ (1 − β)−1βn‖c‖

and, using also Remark 3.3

‖vβ,m − v
β,m
n+1‖ ≤ (1 − β)−1βn‖c‖

where vβ,m
n are defined, by analogy to vβ

n, by the value iteration algorithm

v
β,m
0 (µ) ≡ 0

v
β,m
n+1(µ) = inf

a∈U

{∫

E

cm(x, a)µ(dx) + β
∏a

m(µ, vβ,m
n )

}
. (3.33)

Therefore it suffices to show that for each n = 1, 2, . . .,

vβ,m
n (µ) → vβ

n(µ) as m→ ∞ (3.34)

uniformly on compact subsets of P (E).
We prove the convergence (3.34) by induction in n. For n = 0, clearly

v
β,m
0 ≡ v

β
0 . Given (3.34) true for n, we have for n+ 1

|vβ,m
n+1(µ) − v

β
n+1(µ)| ≤ sup

a∈U

∫

E

|cm(x, a) − c(x, a)|µ(dx)

+β sup
a∈U

|∏a
m(µ, vβ,m

n ) − ∏a(µ, vβ
n) → 0
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as m → ∞, uniformly on compact subsets of P (E), by (D3) and Proposi-
tion 3.7. Thus, (3.34) holds for n+ 1 and consequently by induction for any
positive integer n. The proof of Theorem 3.10 is completed.

Considering now a compact state space E, we obtain

Corollary 3.11 Under the assumptions of Theorem 3.10, if E is compact
and uβ

m ∈ B(P (E), U) satisfies

vβ,m(µ) + ε ≥
∫

E

cm(x, uβ
m(µ))µ(dx) + β

∏uβ
. (µ)

m
(µ, vβ,m) for µ ∈ P (E),

(3.35)

then for sufficiently large m, uβ
m is a

4ε

1 − β
optimal control function for the

cost functional Jβ
µ i.e.

Jβ
µ ((uβ

m(πn)) ≤ vβ(µ) +
4ε

1 − β

P r o o f . If E is compact, then P (E) is also compact and the convergence in
(3.32) is uniform. Also, cm(x, a) converges then uniformly to c(x, a). There-
fore we can choose m0 such that for m ≥ m0

sup
x∈E

sup
a∈U

|cm(x, a) − c(x, a)| < ε

and
sup

µ∈P (E)

|vβ,m(µ) − vβ(µ)| < ε

By Proposition 3.7, for m ≥ m1

sup
µ∈P (E)

sup
a∈U

|
∏a

m
(µ, vβ,m) −

∏a
(µ, vβ)| < ε

An easy transformation of (3.35) gives

‖vβ,m − vβ‖ + vβ(µ) + ε ≥
∫

E

c(x, uβ
m(µ))µ(dx) − ‖c− cm‖

+β
∏u

β
m(µ)(µ, vβ) − β sup

a
|∏a(µ, vβ) − ∏a

m(µ, vβ,m)|
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Therefore, for m ≥ max{m0,m1}, we obtain

ε+ vβ(µ) + ε ≥
∫

E

c(x, uβ
m(µ))µ(dx) − ε

+β
∏u

β
m(µ)(µ, vβ) − ε

and thus

vβ(µ) + 4ε ≥
∫

E

c(x, uβ
m(µ))µ(dx) + β

∏u
β
m(µ)

(µ, vβ)

from which the 4ε(1 − β)−1 optimality of the control function uβ
m follows.

For actual construction of a nearly optimal control function with the use
of Bellman’s equation, relation (3.35) seems to present the same difficulties
as (3.11), since it involves functions that are at least formally defined on
the infinite dimensional space of measures P (E). The difference however is
that (3.35) corresponds to the approximated state and observation processes,
and approximated cost function satisfying (D1)–(D3). By suitable particular
choices of these approximations, the functions in (3.35) may actually turn
out to depend on finite dimensional projections of measures only. In the next
subsection 3.3.2.a a particular such approximation is presented.

3.3.1.b Continuous control functions

In this subsection we restrict ourselves to continuous control functions, i.e.
elements of the set A = C(P (E), U). We shall also assume that the compact
set of control parameters U is a convex subset of Rl, l ≥ 1.

Given a fixed element x of E, let for n = 1, 2, . . ., Bn = {x: ρ
E
(x, x) ≤ n},

and define ψn ∈ C(P (E)) as follows

ψn(x) =

{
1 − ρ

E
(x,Bn) for x ∈ Bn+1

0 for x 6∈ Bn+1
(3.36)

Let (ϕi) be a dense sequence in C0(E) the space of continuous functions
vanishing at infinity. Moreover assume that (ϕi) contains a subsequence
given by ψn, n = 1, 2, . . .
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We shall now approximate A by a family of compact classes of controls
A(L, n) with L > 0 and n a positive integer, defined in the following way

A(L, n) = {u ∈ A, u(ν) = u(ν(ϕ1), . . . , ν(ϕn))
where u: [−‖ϕ1‖, ‖ϕ1‖] × . . .× [−‖ϕn‖, ‖ϕn‖] → U

is Lipschitz with Lipschitz constant L}
(3.37)

where on [−‖ϕ1‖, ‖ϕ1‖]× . . .× [−‖ϕn‖, ‖ϕn‖] we consider the metric ρn(z, z′)
generated by the norm ‖z‖ = max

i
|zi|.

We have

Proposition 3.12 Any function u ∈ A can be approximated uniformly on
compact subsets of P (E) by a sequence uL,n ∈ A(L, n) with L→ ∞, n→ ∞.

P r o o f . Notice first that it is sufficient to prove Proposition 3.12 for U ⊂
R1. For approximation purposes we can also assume that {0} ∈ intU . Let
r: [0, 1] → [0, 1] be given by

r(x) =





0 if x ≤ 1
4

2(x− 1
4
) if 1

4
≤ x ≤ 3

4

1 if x ≥ 3
4

(3.38)

Let u ∈ A be a fixed function. Since the family A(L, n) is increasing in L and

n, it is sufficient to construct an approximating sequence un ∈ ⋃
L>0

∞⋃
k=1

A(L, k).

The construction is partitioned into several steps.

Step 1. For any compact set H ⊂ P (E) there is n0 such that for ν ∈ H and
n ≥ n0, r(ν(ψn)) = 1

Step 2. Let pn:P (E) 7→ P (Bn+1) be defined as follows

pnν(A) =

{
ν(χ

A
ψn) · (ν(ψn))−1 if ν(ψn) > 0

χ
A
(x) if ν(ψn) = 0

(3.39)

Notice that for the case ν(ψn) = 0 we could have chosen any measure
from P (Bn+1). Then we have that pnν ⇒ ν as n → ∞ uniformly on
compact subsets of P (E).

69



In fact, let H ⊂ P (E) be a compact set. Then for a given ε > 0 there
is n0 such that for n ≥ n0 and ν ∈ H, ν(Bn) ≥ 1 − ε.

For any ϕ ∈ C(E) we have

|pnν(ϕ) − ν(ϕ)| = {|ν(ϕ(ψn − 1))| + |ν(ϕ)|(1 − ν(ψn))}(ν(ψn))−1

≤ 2‖ϕ‖ε
1 − ε

for ν ∈ H

Step 3. By the Stone–Weierstrass theorem (Therorem 9.28 of [28]) each u ∈
A can be uniformly approximated on P (Bn) by functions un ∈
⋃

L>0

∞⋃
k=1

A(L, k) such that

sup
ν∈P (Bn)

|u(ν) − un(ν)| ≤ 1

n

Step 4. Let
un(ν) = un+1(pnν)r(ν(ψn)) (3.40)

We claim that un is the desired approximation of u. In fact, un is

a continuous function and un ∈ ⋃
L>0

∞⋃
k=1

A(L, k). Moreover, for any

compact set H, by step 1, we have r(ν(ψn)) = 1 for ν ∈ H and n ≥ n0.
Therefore

sup
ν∈H

|un(ν) − u(ν)| ≤ sup
ν∈H

|un+1(pnν) − u(pnν)|r(ν(ψn))+

+ sup
ν∈H

|u(pnν)r(ν(ψn)) − u(ν)| = In + IIn

By step 3, In ≤ 1
n+1

. By step 2, pnν ⇒ ν uniformly in ν ∈ H; therefore
by Lemma 3.6, IIn → 0, and un in fact approximate u uniformly on
compact subsets of P (E).

As a consequence of Corollary 3.9 we obtain now the following

Theorem 3.13 Assume (A1)–(A5) and (D1)–(D3). Let B(P (E), U) ∋ um →
u ∈ C(P (E), U) uniformly on compact subsets of P (E), as m→ ∞. Then

Jβ,m
µ (um) → Jβ

µ (u), as m→ ∞ (3.41)

uniformly in µ from compact subsets of P (E).
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P r o o f . Let, for u ∈ B(P (E), U),

Cu
m(µ) =

∫

E

cm(x, u(µ))µ(dx)

and
Cu(µ) =

∫

E

c(x, u(µ))µ(dx)

Then, using the notation of (3.29), we have

Jβ,m
µ (um) = Cum

m (µ) +
∞∑

n=1

βn(
∏um

m
)n(µ,Cum

m ) (3.42)

and

Jβ
µ (u) = Cu(µ) +

∞∑

n=1

βn(
∏u

)n(µ,Cu) (3.43)

We show first that for any compact set H ⊂ P (E)

sup
µ∈H

|Cum

m (µ) − Cu(µ)| → 0 as m→ ∞ (3.44)

In fact, for a given ε > 0 we can find a compact K ⊂ E such that for each
µ ∈ H, µ(K) > 1 − ε, and

sup
µ∈H

|Cum
m (µ) − Cu(µ)| ≤ sup

µ∈H

sup
x∈K

|cm(x, um(µ)) − c(x, u(µ))|+
(‖cm‖ + ‖c‖)ε ≤ sup

a∈U

sup
x∈K

|cm(x, a) − c(x, a)|+
sup
µ∈H

sup
x∈K

|c(x, um(µ)) − c(x, u(µ))| + (‖cm‖ + ‖c‖)ε

Therefore by (D3) and (A5) we obtain (3.44), and we can apply now Corol-
lary 3.9 with Fm = Cum

m , F = Cu, which gives us the convergence

(
∏um(µ)

m
)n(µ,Cum

m ) → (
∏u(µ)

)n(µ,Cu) (3.45)

as m→ ∞, for each n = 1, 2, . . ., uniformly on compact subsets of P (E).
Finally, by (3.44), (3.45) and the representations (3.42), (3.43) we obtain

(3.41).

By Proposition 3.12 and Theorem 3.13 we immediately have
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Corollary 3.14 Under (A1)–(A5), for µ ∈ P (E) we have

lim
L→∞ n→∞

inf
u∈A(L,n)

Jβ
µ (u) = inf

u∈A
Jβ

µ (u) (3.46)

Since the controls from A(L, n) belong also to A, in order to obtain a
nearly optimal control function in A, by Corollary 3.14 it is enough to find
one in A(L, n) for sufficiently large L and n. Notice that, as for the class
A, also the controls in A(L, n) are defined on the infinite dimensional space
of measures P (E). The compactness of the class A(L, n) however will allow
us, with the approximation introduced in the next section 3.3.2, to restrict
ourselves to measures that are finite dimensional (see subsection 3.3.2b).

3.3.2 A specific approximation

This section corresponds to section 2.3.1 for the finite horizon case and leads
to a specific approximation satisfying assumptions (D1)–(D3). Correspond-
ing to this approximation, the normalized filtering process will turn out to be
a process taking values in a finite dimensional space of measures. As a conse-
quence, the measures µ in the Bellman equation corresponding to a compact
state space E will be finite dimensional and this case will be discussed in
3.3.2.a below.

On the other hand, in the case of continuous control functions, we may
further approximate the class of admissible controls by considering controls
from the compact classes A(L, n) that are functions of finite dimensional
measures. This will be discussed in 3.3.2.b below.

A further specific approximation, corresponding to section 2.3.2 for the
finite horizon case, will be described in section 3.4 and used only in connection
with a generalized version of the Bellman equation.

The specific approximation of this section is now obtained as follows.
We partition the state space E and observation space Rd by choosing for
each positive integer m sequences of disjoint Borel sets Bm

k ⊂ E, Dm
s ⊂ Rd,

k = 1, 2, . . . , km, s = 1, 2, . . . , sm such that

(i)
km⋃
k=1

Bm
k = E,

sm⋃
s=1

Dm
s = Rd
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(ii) Bm
k , Dm

s have nonempty interiors and the closures Bm
k , Dm

s , for k < km,
s < sm are compact

(iii) sup
k<km

diam (Bm
k ) → 0

sup
s<sm

diam (Dm
s ) → 0

where diam (B) stands for the diameter of the set B.

(iv) Bm
km

⊃ Bm+1
km+1

and
∞⋂

m=1
Bm

km
= ∅

Dm
sm

⊃ Dm+1
sm+1

and
∞⋂

m=1
Dm

sm
= ∅

(v) for k = 1, 2, . . . , km, s = 1, 2, . . . , sm, there are indices r1, . . . , ri(k),
t1, . . . , tj(s) such that

Bm
k =

i(k)⋃

p=1

Bm+1
rp

, Dm
s =

j(s)⋃

q=1

Dm+1
tq

We choose next sets of selectors {bmk , k = 1, 2, . . . , km}, {dm
s , s = 1, 2, . . . ,

sm} of (Bm
k ) and (Dm

s ) respectively with the following properties

bmk ∈ intBm
k , {bmk , k = 1, 2, . . . , km} ⊂ {bm+1

k , k = 1, 2, . . . , km+1}
bmkm

→ ∞ as m→ ∞
dm

s ∈ intDm
s , {dm

s , s = 1, 2, . . . , sm} ⊂ {dm+1
s , s = 1, 2, . . . , sm+1}

dm
sm

→ ∞ as m→ ∞
(3.47)

In what follows we shall assume that the partition (Bm
k ) and selectors

(bmk ) are chosen in such way that

(B9) P a(bmk , ∂B
m
p ) = 0 for k, p = 1, 2, . . . , km, a ∈ U

Then we approximate the functions r(x, y) and c(x, a) in the following
way

rm(x, y) =
( ∫

Dm
s

dz
)−1( ∫

Dm
s

r(bmj , z)dz +
1

sm − 1

∫

Dm
sm

r(bmj , z)dz
)

for x ∈ Bm
j and y ∈ Dm

s , s < sm

rm(x, y) = 0 for y ∈ Dm
sm

(3.48)
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and
cm(x, a) = c(bmj , a) for x ∈ Bm

j (3.49)

Clearly, for a fixed x, rm(x, y) is a density function. Moreover we have

Lemma 3.15 Under (A3) and (A4), rm defined in (3.48) satisfy (D2). Fur-
thermore, under (A5) cm given by (3.49) satisfy (D3).

The proof of the first statement follows noticing that by (A4) we have
(3.26). The second part is immediate.

Let

P a
m(x, ·) =

km∑

k=1

χ
Bm

k

(x)P a(bmk , ·) (3.50)

By (A1) and (A2), for U ∋ am → a, P am
m (x, ·) ⇒ P a(x, ·) uniformly in x from

compact subsets of E, as m→ ∞.
Thus P a

m satisfies (D1), and summarizing we see that P a
m, rm, cm satisfy

(D1), (D2), (D3) respectively.
Now let

Em = {1, 2, . . . , km}, Dm = {dm
1 , . . . , d

m
sm
} (3.51)

and
P a

m(k, p) = P a(bmk , B
m
p ) for k, p ∈ Em a ∈ U (3.52)

Notice that by (B9) and (A2) and Theorem 1.2.1(v) of [6] the mapping

U ∋ a 7→ P a
m(k, p) for k, p ∈ Em (3.53)

is continuous.
Analogously to section 2.3.1, the specific approximation method defined

here leads now to a controlled Markov chain (xm
n ) on Em having transition

matrix P an
m (k, p) in the generic period n. The observations are given by the

Dm-valued random variables ym
n that satisfy the following analog of (1.1)

(compare also to (1.3))

P{ym
n+1 = dm

s |xn+1 = k, Y m
n } =

∫

Dm
s

rm(bmk , y)dy: = rm(k, dm
s ) (3.54)

where Y m
n : = σ{ym

1 , . . . , y
m
n }, Y m

0 = {∅,Ω}. As admissible controls we have
sequences u = (a0, a1, a2, . . .), where an is U -valued and adapted to Y m

n .
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Given such an admissible control u and an initial law η = (η1, . . . , ηkm
) ∈

P (Em) for (xm
n ) consider the cost functional

Jβ,m
η (u) =

∞∑

n=0

βnEu
η {c(xm

n , an)} (3.55)

where for simplicity we identify c(j, a) with c(bmj , a) and define

wβ,m(η) = inf
u
Jβ,m

η (u) (3.56)

For the given specific approximation, corresponding to (3.14), we obtain (see
(1.9)) an approximating filter process (πm,u

n ) ∈ P (Em) satisfying

π
m,u
n+1(j) =

rm(j, ym
n+1)

km∑
k=1

P am
m (k, j)πm,u

n (k)

km∑
p=1

rm(p, ym
n+1)

km∑
k=1

P am
m (k, p)πm,u

n (k)

: = Man
m (ym

n+1, π
m,u
n )(j)

(3.57)

with j ∈ Em and π
m,u
0 = η. For feedback controls of the form an = u(πm

n ),
the filter process (πm,u

n ) is again Markov with transition operator (see (3.15))

∏u(η)

m
(η, F ) =

km∑

j=1

sm∑

s=1

F (Mu(η)
m (dm

s , η))rm(j, dm
s )

km∑

k=1

P u(η)
m (k, j)ηk (3.58)

where F ∈ bB(P (Em)) and η ∈ P (Em).
With the use of the filter process πm,u

n , the cost functional Jβ,m
η (u) in

(3.55) can be rewritten as

Jβ,m
η (u) =

∞∑

n=0

βnEu
η

{ km∑

k=1

c(k, u(πm,u
n ))πm,u

n (k)
}

(3.59)

In what follows it will be useful to introduce the mapping

Lm:P (E) ∋ ν 7→
km∑

k=1

ν(Bm
k )δbm

k
∈ P (E) (3.60)

where δbm
k

stands for Dirac measure concentrated at bmk .
We have
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Lemma 3.16 Lmν ⇒ ν, as m→ ∞, uniformly on compact subsets of P (E).

P r o o f . If H ⊂ P (E) is compact then by tightness, for any ε > 0, there is a
compact set K ⊂ E such that ν(Kc) < ε for ν ∈ H. Therefore for ϕ ∈ C(E)
we have

sup
ν∈H

|ν(ϕ) − Lmν(ϕ)| ≤ 2ε‖ϕ‖+

+ sup
ν∈H

km∑

k=1

∫

K∩Bm
k

|ϕ(x) − ϕ(bmk )|ν(dx) → 2ε‖ϕ‖

since, as m→ ∞ diam (Bm
k ) → 0 for k < km and K ∩Bm

km
→ ∅.

Almost immediately, by Lemma 3.16 we obtain

Corollary 3.17 If νm ⇒ ν, then Lmνm ⇒ ν as m→ ∞.

We now apply the specific approximation outlined above to the cases of
compact state space E (subsection 3.3.2.a) and of continuous control func-
tions (subsection 3.3.2.b).

3.3.2.a Compact state space E

Similarly as in subsection 3.3.1.a we formulate first a general result in which
E need not to be compact.

Theorem 3.18 Under (A1)–(A5) and (B9) we have

wβ,m(µ(Bm
1 ), . . . , µ(Bm

km
)) → vβ(µ) as m→ ∞ (3.61)

uniformly in µ from compact subsets of P (E).

P r o o f . Let (xm
n ) be an approximation of (xn) with transition operator

P an
m (xm

n , ·) in the generic period n and density of the observation rm, defined
in (3.50), (3.48) respectively. Consider the cost functional Jβ,m

µ (u) of the form
(3.12) with cm defined in (3.49). Since by Lemma 3.15 and the comment
following (3.50) assumptions (D1)–(D3) hold, by Theorem 3.10 we obtain
that

vβ,m(µ) → vβ(µ) as m→ ∞ (3.62)
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uniformly on compact subsets of P (E).
We shall now show that

vβ,m(µ) = wβ,m(µ(Bm
1 ), . . . , µ(Bm

km
)) (3.63)

By Remark 3.3, the functions vβ,m and wβ,m can be uniformly approximated
by the following sequences

v
β,m
0 (µ) ≡ 0

v
β,m
n+1(µ) = inf

a∈U

[ ∫

E

cm(x, a)µ(dx) + β
∏a

m
(µ, vβ,m

n )
]

(3.64)

where
∏a

m is as defined in (3.15) with u(µ) ≡ a, and rm, P a
m given by (3.48),

(3.50) respectively, and

w
β,m
0 (η) ≡ 0

w
β,m
n+1(η) = inf

a∈U

[ km∑

k=1

c(k, a)ηk + β
∏a

m
(η, wβ,m

n )
] (3.65)

with
∏a

m defined in (3.58) for u(η) ≡ a.
Therefore, to prove (3.62) it suffices to show that

vβ,m
n (µ) = wβ,m

n (µ(Bm
1 ), . . . , µ(Bm

km
)) (3.66)

We prove this by induction. For n = 0, (3.66) clearly holds. Assume (3.66)
is satisfied for n. Then we have

∏a
m(µ, vβ,m

n ) =
∫

E

∫

Rd

vβ,m
n (Ma

m(y, µ))rm(x, y)dyP a
m(µ, dz)

=
km∑

k=1

sm∑

s=1

wβ,m
n (Ma

m(dm
s , µ)(Bm

1 ), . . . ,Ma
m(dm

s , µ)(Bm
km

))rm(k, dm
s )

km∑

j=1

P a
m(j, k)µ(Bm

j )

Since for s ≤ sm, k ≤ km

Ma
m(dm

s , µ)(Bm
k ) = Ma

m(dm
s , µ(Bm

1 ), . . . , µ(Bm
km

))(k)

77



we obtain that

∏a

m
(µ, vβ,m

n ) =
∏a

m
(µ(Bm

1 ), . . . , µ(Bm
km

), wβ,m
n )

and consequently

v
β,m
n+1(µ) = w

β,m
n+1(µ(Bm

1 ), . . . , µ(Bm
km

))

Thus by induction (3.66) holds for n = 1, 2, . . ., and therefore we obtain
(3.63), which together with (3.62) completes the proof.

We may now consider control functions in the classes B(P (Em), U) or
C(P (Em), U) noticing that a given function um ∈ B(P (Em), U) can be ex-
tended to a function u ∈ B(P (E), U) by putting

u(µ) = um(µ(Bm
1 ), . . . , µ(Bm

km
))

As corollary to Theorem 3.18 now we have

Corollary 3.19 Assume (A1)–(A5), (B9) and E compact. If for a given
ε > 0

sup
µ∈P (E)

|wβ,m(µ(Bm
1 ), . . . , µ(Bm

km
)) − vβ(µ)| < ε (3.67)

for m ≥ m0, and uβ
m ∈ B(P (Em), U) satisfies

wβ,m(η) + ε ≥
km∑

k=1

c(k, uβ
m(η))ηk + β

∏u
β
m(η)

m
(η, wβ,m) (3.68)

for η ∈ P (Em), then the control with generic term an = uβ
m(πn(Bm

1 ), . . . ,
πn(Bm

km
)) is 3ε

1−β
-optimal for the cost functional Jβ

µ .

P r o o f . Follows directly from Corollary 3.11 and the proof of Theorem 3.18.

Remark 3.20 The construction of a nearly optimal control function in the
case of a compact state space E can now be reduced to finding for any ε > 0
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a Borel measurable function u:P (Em) → U such that for η ∈ P (Em) the
following inequality holds

wβ,m(η) + ε ≥
km∑

k=1

c(k, u(η))ηk + β
∏u(η)

m
(η, wβ,m) (3.69)

To obtain u ∈ B(P (Em), U), satisfying (3.69) we may use the value iteration
algorithm (3.65) truncating it at a sufficiently large value of n as we did in
Corollary 3.2. This however does not result in a computationally convenient
approach. Therefore in subsection 3.3.3.a, after a further approximation lead-
ing to control functions taking a finite number of values, we shall mention
some computationally feasible approaches recalling also from the literature
an algorithm for the solution of the Bellman equation associated to (3.69),
namely

wβ,m(η) = inf
a∈U

{ km∑

k=1

c(k, a)ηk + β
∏a

m
(η, wβ,m)

}
(3.70)

3.3.2.b Continuous control functions

The first step consists of defining compact classes of controls Am(L, n) that
correspond to the classes A(L, n) and consist of functions in C(P (Em), U).
More precisely let

Am(L, n) = {u ∈ C(P (Em), U):u(η) = u
( km∑

k=1

ϕ1(b
m
k )ηk, . . . ,

km∑

k=1

ϕn(bmk )ηk

)
,

where u: [−‖ϕ1‖, ‖ϕ1‖] × . . .× [−‖ϕn‖, ‖ϕn‖] → U

is Lipschitz with Lipschitz constant L}

Recalling the mapping Lm:P (E) → P (E) introduced in (3.60), define also
the following mappings

Lm:C(P (E), U) ∋ u→ Lmu with Lmu(ν) = u(Lmν)

and

L̃m:A ∋ u→ L̃mu ∈ C(P (Em), U) with L̃mu(η) = u
( km∑

k=1

ηkδbm
k

)
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It follows immediately that

Lmu(ν) = u
( km∑

k=1

ν(Bm
k )δbm

k

)
= L̃mu(ν(B

m
1 ), . . . , ν(Bm

km
)) (3.71)

Consequently
L̃mA(L, n) = Am(L, n) (3.72)

In fact, if u ∈ Am(L, n), then

(L̃mu)(η) = u
( km∑

k=1

ηkδbm
k

)
= u

( km∑

k=1

ϕ1(b
m
k )ηk, . . . ,

km∑

k=1

ϕn(bmk )ηk

)
∈ Am(L, n)

On the other hand, let ũ ∈ Am(L, n). Then there is a Lipschitz function u

with Lipschitz constant L such that

ũ(η) = u
( km∑

k=1

ϕ1(b
m
k )ηk, . . . ,

km∑

k=1

ϕn(bmk )ηk

)

Define, for ν ∈ P (E),

û(ν) = u(ν(ϕ1), . . . , ν(ϕn)) (3.73)

Obviously û ∈ A(L, n) and furthermore

(L̃mû)(η) = u
( km∑

k=1

ϕ1(b
m
k )ηk, . . . ,

km∑

k=1

ϕn(bmk )ηk

)
= ũ(η)

We shall need the following properties of the operator Lm.

Lemma 3.21 We have

(i) for u ∈ A, Lmu(ν) → u(ν) as m → ∞, uniformly on compact subsets
of P (E)

(ii) if B(P (E), U) ∋ um → u ∈ C(P (E), U) uniformly on P (E), as m →
∞, then Lmum(ν) → u(ν) as m→ ∞ uniformly on compact subsets of
P (E).
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P r o o f . Part (i) is an almost immediate implication of Lemma 3.16 and
Lemma 3.6. For the proof of (ii) notice that, letting ρ

U
be a metric compatible

with the topology of U , we have

ρ
U
(Lmum(µ), u(µ)) ≤ ρ

U
(Lmum(µ),Lmu(µ)) + ρ

U
(Lmum(µ), u(µ))

The first term on the right hand side converges to 0 by the assumption. The
convergence of the second term follows from (i).

Consider now again the controlled Markov chain (xm
n ) on Em, with tran-

sition matrix P a
m(k, p) in the generic period n, where this time an = u(πm

n ),
with u ∈ Am(L, n) and πm

n is the filtering process corresponding to the
observation structure (3.54) and given by (3.57). Let the cost functional cor-
responding to an initial law η of (xm

n ) and control function u ∈ Am(L, n) be
given by (compare to (3.55))

Jβ,m
η (u) =

∞∑

n=0

βnEu
η {cm(xm

n , u(π
m
n ))} (3.74)

For given µ ∈ P (E) denote by µ the vector (µ(Bm
1 ), . . . , µ(Bm

km
)). We have

Theorem 3.22 Assume (A1)–(A5) and (B9). Then, for given L > 0, n =
1, 2, . . .,

sup
u∈A(L,n)

|Jβ,m
µ (L̃mu) − Jβ

µ (u)| → ∞ (3.75)

as m→ ∞, uniformly in µ from compact subsets of P (E).

P r o o f . Assume (3.75) does not hold uniformly on a compact setH ⊂ P (E).
Then, by the compactness of the class A(L, n) and of the set H, there are
sequences A(L, n) ∋ um → u uniformly as m → ∞, and H ∋ µm ⇒ µ, such
that for some δ > 0 and m = 1, 2, . . ., we have

|Jβ,m
µm

(L̃mum) − Jβ
µm

(um)| > δ (3.76)

By Theorem 3.13

|Jβ
µm

(um) − Jβ
µm

(u)| → 0 as m→ ∞ (3.77)
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and by Lemma 3.21 (ii) and Theorem 3.13 again

|Jβ,m
µm

(Lmum) − Jβ
µm

(u)| → 0 as m→ ∞ (3.78)

Notice that the cost functional Jβ,m
µm

(Lmum) used above corresponds to an
approximating process (xm

n ), defined on E as in Section 3.3.1, with initial
law µm, transition operator P an

m (xm
n , ·) in the generic period n, where now

an = Lmum(πm,u
n ), and (πm,u

n ) is given by (3.14).
Now, since the cost functions cm(x, a) and transition operators P a

m(x, ·)
defined in (3.49), (3.50) respectively, do not change their values for x ∈ Bm

k ,
1 ≤ k ≤ km, we have

Jβ,m
µm

(Lmum) = J
β,m
Lmµm

(Lmum) (3.79)

Notice also that the filtering processes (πm
n ) and (πm

n ), corresponding to initial
laws (Lmµm) and µm, and controls an = Lmum(πm

n ) and an = L̃mum(πm
n )

respectively, satisfy the following relation

πm
n (Bm

k ) = πm
n (k) for 1 ≤ k ≤ km

Therefore
J

β,m
Lmµm

(Lmum) = Jµm
(L̃mum) (3.80)

and by (3.77), (3.78), (3.79) we obtain a contradiction to (3.75). This com-
pletes the proof of the theorem.

Corollary 3.23 Under the assumptions of Theorem 3.22 we have

(i) inf
u∈Am(L,n)

J
β,m
µ (u) → inf

u∈A(L,n)
Jβ

µ (u) (3.80)

uniformly in µ from compact subsets of P (E), as m→ ∞,

(ii) if ũ ∈ Am(L, n) is ε-optimal for Jβ,m
µ with m sufficiently large so that

sup
u∈A(L,n)

|Jβ,m
µ (L̃mu) − Jβ

µ (u)| < ε (3.81)

then any û ∈ A(L, n) such that L̃mû = ũ is 3ε-optimal for Jβ
µ .
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P r o o f . For the proof of part (i) it is sufficient to notice that

| inf
u∈Am(L,n)

J
β,m
µ (u) − inf

u∈A(L,n)
Jβ

µ (u)| ≤
≤ sup

u∈A(L,n)
|Jβ,m

µ (L̃mu) − Jβ
µ (u)|

and apply Theorem 3.22.
In part (ii), if ũ ∈ Am(L, n) is ε-optimal for Jβ,m

µ , then for û ∈ A(L, n)

such that L̃mû = ũ we have

Jβ
µ (û) ≤ J

β,m
µ (L̃mû) + sup

u∈A(L,n)

|Jβ
µ (u) − J

β,m
µ (L̃mu)|

≤ inf
u∈Am(L,n)

J
β,m
µ (u) + ε+ ε ≤ inf

u∈A(L,n)
Jβ

µ (u) + 3ε

provided m is so large that (3.81) holds.

Remark 3.24 Once ũ is given, an û ∈ A(L, n) such that L̃mû = ũ can
be constructed according to (3.73). Also in the case of continuous control
functions the problem of determining a nearly optimal control function is
thus reduced to the problem of determining a nearly optimal control function
for Jβ,m

η (see 3.73) in the class Am(L, n) that contains functions of finite
dimensional measures of P (Em). A further approximation, allowing such
controls to be determined explicitly, will be described in subsection 3.3.3.b.

3.3.3 Further discretizations

By the results of the previous subsections 3.3.1, 3.3.2, the problem of the
construction of a nearly optimal control function for the original problem is
now reduced to the same problem for the partially observed Markov chain
xm

n on Em, having transition matrix P an
n (k, p) in the generic period n and

Dm-valued observations (ym
n ) satisfying (3.54). The corresponding cost func-

tional Jβ,m
η is given by (3.55). The controls (an) are Y m

n = σ{ym
1 , . . . , y

m
n }

adapted, U -valued random variables. In the particular case, when we con-
sider control functions that are continuous, we restrict ourselves to controls
of the form an = u(πm

n ), where u ∈ Am(L, n) and πm
n is the filtering process

corresponding to (xm
n ) and given by (3.57).

83



The purpose is to find, for the above finite state control problem, a nearly
optimal control function that by the previous results can then be extended
to become a nearly optimal control function for the original problem with
cost function Jβ

µ . We shall again distinguish between the two cases when the
state space E is compact and when the control functions are restricted to be
continuous.

We first summarize several simple consequences of assumptions (A1),
(A2) and (B9).

Lemma 3.25 Under (A2), and (B9)

(i) the mapping U ∋ a 7→ P a
m(i, j) is continuous for i, j ∈ Em

(ii) the mapping U × P (Em) ∋ (a, η) 7→ Ma
m(y, η) ∈ P (Em) is continuous

for y ∈ Dm

(iii) the mapping U ∋ P (Em) ∋ (a, η) 7→ ∏a
m(η, F ) is continuous provided

F ∈ C(P (Em))

(iv) for u ∈ C(P (Em), U), the transition operator
∏u(η)

m (η, ·) is Feller i.e.
for F ∈ C(P (Em)) the mapping P (Em) ∋ η 7→ ∏u(η)

m (η, F ) is continu-
ous.

P r o o f . The statement (i) follows from (3.53). The remaining conclusions
follow from the previous ones.

3.3.3.a Compact state space E

The processes (xm
n ) and (ym

n ) take a finite number of admissible values.
However, the set of control parameters is still infinite. Below we shall
therefore also consider the possibility of discretizing the control set by us-
ing partitions (UH

k )k=1,2,...,H , H → ∞, of U , and representative elements
(αH

k )k=1,2,...,H , αH
k ∈ UH

k , such that for H ′ > H, (UH′

k )k=1,2,...,H′ is a re-
finement of (UH

k )k=1,2,...,H and (αH
k )k=1,2,...,H are contained in (αH′

k )k=1,2,...,H′ ;
furthermore the diameters of UH

k converge to 0 as H → ∞.
Define the projection operator ZH as in (2.50). From Lemma 3.25(iii) we

easily obtain
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Corollary 3.26 Under (A2) and (B9) for F ∈ C(P (Em))

∏ZHa

m
(η, F ) →

∏a

m
(η, F ) as H → ∞

uniformly in (a, η) ∈ U × P (Em)

Analogously to (3.56) denote by w
β,m
H (η) the optimal value of the cost

functional Jβ,m
η of (3.59) over the controls (an) that in this subsection will

always take the values in UH = {αH
1 , . . . , α

H
H}.

We have

Theorem 3.27 Under (A2), (A5) and (B9)

w
β,m
H (η) → wβ,m(η) as H → ∞ (3.82)

uniformly in η ∈ P (Em).
Moreover, if for a given ε > 0 and H > H0

sup
η∈P (Em)

|wβ,m
H (η) − wβ,m(η)| < ε (3.83)

and uH ∈ B(P (Em), UH) satisfies

w
β,m
H (η) + ε ≥

km∑

k=1

c(k, uH(η))ηk + β
∏uH(η)

m
(η, wβ,m

H ) (3.84)

for η ∈ P (Em), then the control an = uH(πm
n ) is, for H > H0,

3ε
1−β

optimal

for the cost functional Jβ,m
η over controls an adapted to Y m

n with values in U .

P r o o f . By Theorem 3.1, wβ,m and w
β,m
H can be uniformly approximated

by sequences wβ,m
n and wβ,m

H,n respectively given by the value iterations

w
β,m
0 (η) ≡ 0

w
β,m
n+1(η) = inf

a∈U

[ km∑

k=1

c(k, a)ηk + β
∏a

m
(η, wβ,m

n )
] (3.85)

and
w

β,m
H,0 (η) ≡ 0

w
β,m
H,n+1(η) = inf

a∈UH

[ km∑

k=1

c(k, a)ηk + β
∏a

m
(η, wβ,m

H,n)
] (3.86)
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For the first statement therefore it remains to show that for each n =
0, 1, 2, . . .

w
β,m
H,n(η) → wβ,m

n (η) as H → ∞ (3.87)

uniformly in η ∈ P (Em).
Since by (A5) and (3.49) the mapping

U ∋ a 7→ c(k, a)

is continuous, in view of Corollary 3.26 we easily obtain (3.87) by induction
in n. Thus (3.82) holds.

The second part of Theorem 3.27 follows from (3.83) Theorem 3.18 and
(3.11) of Remark 3.3.

Remark 3.28 Combining Theorem 3.27 with Corollary 3.19 we have that
for H and m such that (3.83) and (3.67) are satisfied, the control an =
uH(πn(Bm

1 ), . . . , πn(Bm
km

)) is 5ε
1−β

optimal for the cost functional Jβ
µ .

Although the partially observed controlled process (xm
n ), its observations

(ym
n ) and controls (an) take now a finite number of admissible values, the

corresponding filtering process πm
n takes its values in the infinite space P (Em).

At this stage we have two possibilities: Either we look for nearly optimal
controls of a completely observable problem with states given by the filtering
process πm

n ; this approach will lead to a discretization of P (Em), making it
possible to use Howard’s policy iteration procedure (see [18]) for completely
observed discounted problems with finite state space and finite set of control
parameters. We may however also adapt the so called Sondik algorithm that
concerns the construction of nearly optimal controls for partially observed
Markov chains with finite state space, finite observation space, and finite set
of control parameters. The two approaches are described in the following
two subsections.

3.3.3.a1 Discretization of P (Em)

Let (Gq
k)k=1,2,...,kq

, q = 1, 2, . . . be a sequence partitions of P (Em), such that

for q′ > q the partition (Gq′

k )k=1,2,...,kq′
, is a subpartition of (Gq

k)k=1,2,...,kq
and
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the diameters of Gq
k go to 0 as q → ∞. Furthermore, assume that we are

given a sequence of selectors (eq
1, . . . , e

q
kq

), eq
k ∈ G

q
k for k = 1, 2, . . . , kq such

that {eq
1, . . . , e

q
kq
} ⊂ {eq′

1 , . . . , e
q′

kq′
} when q′ > q.

Let, for k, p = 1, 2, . . . , kq

∏a

m,q
(k, p) =

∏a

m
(eq

k, G
q
p) (3.88)

Consider now a completely observed controlled Markov process (π̃n) with
values in the finite set {1, 2, . . . , kq} indexing the selectors for a given q and
with transition matrix

∏an

m,q(k, p) is the generic period n. Assume the controls
u = (an) are UH-valued and adapted to σ{π̃1, . . . , π̃n}. Given π̃0 = p ∈
{1, 2, . . . , kq}, let the corresponding cost functional J̃β,q

p (u) be given by

J̃β,q
p (u) =

∞∑

n=0

βnEu
p

{ km∑

k=1

c(k, an)eq

π̃n
(k)

}
(3.89)

where eq

π̃n
(k) is the k-th coordinate of the selector eq

π̃n
in P (Em) (Clearly

e
q

π̃n
= (eq

π̃n
(1), . . . , eq

π̃n
(km)) ∈ P (Em).

Denote by w̃β,m,q
H (p) the optimal value of the cost functional J̃β,q

p (u) over
controls u = (an) that are UH-valued and adapted to σ{π̃1, . . . , π̃n}.

Furthermore, denote by Qq the projection operator on {1, 2, . . . , kq}, i.e.

Qq:P (Em) ∋ η 7→ k if η ∈ G
q
k k = 1, 2, . . . , kq (3.90)

Proposition 3.29 For given m and H we have

sup
η∈P (Em)

|w̃β,m,q
H (Qqη) − w

β,m
H (η)| → 0 (3.91)

as q → ∞.
Moreover, if for a given ε > 0

sup
η∈P (Em)

|w̃β,m,q
H (Qqη) − w

β,m
H (η)| < ε (3.92)

and uq: {1, 2, . . . , kq} → UH is such that

w̃
β,m,q
H (p) + ε ≥

km∑

k=1

c(k, uq(p))e
q
p(k)

+β
kq∑

l=1

w̃
β,m,q
H (l)

∏uq(p)

m,q
(p, l)

(3.93)
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then the control function uH ∈ B(P (Em), UH) defined as uH(η) = uq(Qqη) is
3ε

1−β
optimal for the cost functional Jβ,m

η over controls with values in UH .

P r o o f . We use again the value iteration procedure from which we know
that wβ,m

H is approximated uniformly by a sequence of functions wβ,m
H,n(η) as

in (3.86) and, analogously, w̃β,m,q
H is approximated uniformly by

w̃
β,m,q
H,0 (p) ≡ 0

w̃
p,m,q
H,n+1(p) = inf

a∈UH

[ km∑

k=1

c(k, a)eq
p(k) + β

kq∑

l=1

w̃
β,m,q
H (l)

∏a

m,q
(p, l)

] (3.94)

Therefore it suffices to show the convergence of

w̃
β,m,q
H,n (Qqη) → w

β,m
H,n(η) as q → ∞ (3.95)

for each n = 0, 1, 2, . . ., uniformly in η ∈ P (Em).
We use induction in n. For n = 0, (3.95) clearly holds. Given (3.95) for

n, for (n+ 1) we have

|w̃β,m,q
H,n+1(Qqη) − w

β,m
H,n+1(η)| ≤ km‖c‖max

k
diam(Gq

k)

+β
∫

P (Em)

|w̃β,m,q
H (Qqζ) − w

β,m
H,n(ζ)|

∏a

m
(eq

Qqη, dζ)

+β
∫

P (Em)

w
β,m
H,n(ζ)

∣∣∣
∏a

m
(eq

Qqη, dζ) −
∏a

m
(η, dζ)

∣∣∣

= Iq + IIq + IIIq

(3.96)

As q → ∞ we have by the construction of the partition G
q
k, Iq → 0 and, by

induction hypothesis, that IIq → 0.

To estimate IIIq notice first that, by Lemma 3.25 (iii), wβ,m
H,n ∈ C(P (Em)).

Therefore, by the same Lemma 3.25 (iii), IIIq → 0 as q → ∞. Since the
limits are uniform in η ∈ P (Em), we obtain (3.96) for n+1 and, by induction,
for each n = 0, 1, 2, . . ..

The second part of Proposition follows from Remark 3.3.

Remark 3.30 Since the Markov process (π̃n) with transition matrix
∏̃a

m,q(k, p)
has a finite number of possible states and we are left with only a finite num-
ber of possible controls uq(p) (uq(p) ∈ UH , p ∈ {1, 2, . . . , kq}), we can obtain
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(3.93) by using e.g. the value iteration procedure truncated after a sufficiently
large number of iterations; we may also obtain (3.93) using Howard’s policy
improvement procedure (see [18], or Lemma 3.37, below).

Combining the second statement of Proposition 3.29 with Remark 3.28
we have that for q such that (3.92) is satisfied the control

an = uq(Qq(πn(Bm
1 )), . . . , πn(Bm

km
)))

is 7ε
1−β

optimal for the cost functional Jβ
µ .

3.3.3.a2 Sondik’s algorithm

This section is again concerned with the partially observed control problem of
the Markov chain (xm

n ) on the finite state space Em, having transition matrix
P an

n (k, p) and the finite Dm-valued observations (ym
n ). We shall assume that

the controls (an) are UH-valued i.e. finite, (Y m
n ) adapted random variables

and the cost functional to be minimized is Jβ,m
η given by (3.55). For such

partially observed problems where the state space Em, the observation space
Dm, and set of control parameters UH are finite, we now describe a further
method to obtain nearly optimal control functions, namely the so called
Sondik algorithm.

Let us first notice that, since the optimal value wβ,m
H (η) of the cost func-

tional Jβ,m
η over the UH-valued controls is a solution to the Bellman equation

w
β,m
H (η) = min

a∈UH

[ km∑

k=1

c(k, a)ηk + β
∏a

m
(η, wβ,m

H )
]

(3.97)

we can restrict ourselves to stationary controls i.e. controls of the form
an = u(πm

n ), for u ∈ B(P (Em), UH), where (πm
n ) is the filtering process

corresponding to the Markov chain (xm
n ) and the observations (ym

n ).
Next we recall the notion and some basic properties of finitely transient

controls. Since UH is finite, any u ∈ B(P (Em), UH) is piecewise constant.
Given u ∈ B(P (Em), UH), denote by ∆u the set of discontinuity points of u.
Moreover, let for A ∈ B(P (Em))

Mu(A) = closure {Mu(η)
m (y, η): y ∈ Dm, η ∈ A}
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and (3.98)

Su
0 = P (Em), Su

n+1 = Mu(Su
n)

We say that a control function u ∈ B(P (Em), UH) is finitely transient if for
some positive integer n we have ∆u ∩ Su

n = ∅. The smallest such number n
is called index and will be denoted by nu.

Clearly, if u is finitely transient with index nu then, since Mu(Su
n) ⊂ Su

n,
we have ∆u ∩ Su

n = ∅ for n ≥ nu.
Define the sequence of sets

∆0
u = ∆u, ∆n+1

u = {η:Mu(η)
m ∈ ∆n

u for some y ∈ Dm}

We can say equivalently that a control function u ∈ B(P (Em), UH) is finitely
transient if and only if ∆n

u = ∅ for n ≥ nu.
A finite partition V u = {V1, V2, . . . , Vα} of P (Em) is called Markov with

respect to a control function u ∈ B(P (Em), UH) if

a) u is constant on Vi, 1 ≤ i ≤ α

b) there exists a mapping γ

{1, 2, . . . , α} ×Dm ∋ (i, y) 7→ γ(i, y) ∈ {1, 2, . . . , α}

such that for any y ∈ Dm, the mapping

P (Em) ∋ η 7→Mu(η)
m (y, η)

transforms sets Vi into Vγ(i,y).

With a given control function u ∈ B(P (Em), UH) we can associate a
sequence (V u

n ) n = 0, 1, 2, . . ., of partitions of P (Em), V u
n = {V n

1 , . . . , V
n
αn
}

such that: V u
0 is the minimal partition (i.e. the partition that consists of

minimal number of sets) into sets V 0
1 , . . . , V

0
α0

on which the control function
u is constant; given the partition V u

n we construct the partition V u
n+1 as the

subpartition of V u
n such that for each fixed y ∈ Dm, the mapping

P (Em) ∋ η 7→Mu(η)
n (y, η) (3.99)

transforms sets of V u
n+1 into sets of V u

n .
We have
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Lemma 3.31 If u ∈ B(P (Em), UH) is finitely transient, then the partition
V u

nu−1 is Markov.

P r o o f . It suffices to notice that the set of boundaries of the partition V u
n

is ∆0
u ∪ ∆1

u ∪ · · · ∪ ∆n
u, and if u is finitely transient then ∆n

u = ∅ for n ≥ nu.

Denote by vβ,m(η|u) the value of Jβ,m
η ((an)) for an = u(πm

n ). By the
Markov property of (πm

n ) we clearly have that vβ,m(η|u) is the unique solution
to the following equation

vβ,m(η|u) =
km∑

k=1

[c(k, u(η)) + β
sm∑

s=1

vβ,m(Mu(η)
m (dm

s , η)|u)
km∑

j=1

rm(j, dm
s )P u(η)

m (k, j)]ηk

: =
km∑

k=1

d(k, η|u)ηk

(3.100)
where we implicitly defined d(k, η|u).

Proposition 3.32 For u ∈ B(P (Em), UH) the vector function d(k, η|u), k =
1, 2, . . . , km, η ∈ P (Em) is the unique solution to the equation

d(k, η|u) = c(k, u(η)) + β
sm∑

s=1

km∑

j=1

d(j,Mu(η)
m (dm

s , η)|u)

rm(j, dm
s )P u(η)

m (k, j)

(3.101)

Moreover, if u is finitely transient, then d(k, η|u) are constant on subsets
of the partition V u

nu−1 = {V nu−1
1 , V nu−1

2 , . . . , V nu−1
αnu−1

} and, letting d(k, i) =

d(k, η|u) for η ∈ V nu−1
i , k = 1, 2, . . . , km, i = 1, 2, . . . , αnu−1, we have that

d(k, i) form the unique solution to the following system of equations

d(k, i) = c(k, ui) + β
sm∑

s=1

km∑

j=1

d(j, γ(i, dm
s ))rm(j, dm

s )P ui
m(k, j) (3.102)

where by ui we denote the value of u on V nu−1
i , and γ is the mapping defined

by the Markov partition V u
nu−1.
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P r o o f . By the Banach contraction principle there is a unique solution
d(k, η|u) to (3.101). Furthermore, by taking into account the definition of

the operator Mm (see (3.57)), it can be easily checked that
km∑
k=1

d(k, η|u)ηk is a

solution to (3.100). Since the solution vβ,m to (3.100) is unique, we therefore
have

vβ,m(η|u) =
km∑

k=1

d(k, η|u)ηk

If u is finitely transient, by Lemma 3.31 the partition V u
nu−1 is Markov. As a

consequence, the control function u is constant on the subsets of V u
nu−1 and

the function γ is well defined. Again by the Banach contraction principle the
solution d(k, i) to the equation (3.102) is unique. Since the vector function
that is equal to d(k, i) for η ∈ V nu−1

i is a solution to (3.101) and as we noticed
earlier d(k, η|u) is the unique solution to (3.101), we obtain that d(k, η|u) is
constant equal to d(k, i) on V nu−1

i .

From Proposition 3.32 and equation (3.100) we see that for a finitely
transient control function u ∈ B(P (Em), UH), the cost functional Jβ,m

η (u) =
vβ,m(η|u) as a function of the initial law η is piecewise linear and can be
calculated from the finite system of linear equations (3.102). The practical
solvability of the equations (3.102) is based on the existence of the function
γ, induced by the Markov partition V u. The piecewise linearity of the cost
functional for finitely transient controls gives the starting point for Sondik’s
algorithm. Since a generic control function u ∈ B(P (Em), UH) will not be
finitely transient and, even if it is, it will be difficult to verify such a property,
we shall approximate the cost functional Jβ,m

η (u) by piecewise linear func-
tions. These functions are constructed from the solutions of (3.102) where
the function γ is obtained from a truncation of the sequence of partitions
(V u

n ) corresponding to the control u as follows: given the sequence of parti-
tions (V u

n )n=1,2,..., we fix a certain n and select points η1, . . . , ηαn
such that

ηi ∈ V n
i , i ≤ αn, letting

γn(i, y) = k if Mu(ηi)(y, ηi) ∈ V n
k (3.103)

Clearly, when u is finitely transient and n ≥ nu − 1, then γn ≡ γ. In general
however, it may happen that η ∈ V n

i , γn(i, y) = k and Mu(η)
m (y, η) 6∈ V n

k .
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Given γn we thus solve the following analog of the system (3.102)

dn(k, i) = c(k, ui) + β
sm∑

s=1

km∑

j=1

dn(j, γn(i, dm
s ))rm(j, dm

s )P ui
m(k, j) (3.104)

for k = 1, 2, . . . , km, i = 1, 2, . . . , αn, where by ui we denote the constant
value of the control function u on V n

i .
By the Banach contraction principle, there is a unique solution to (3.104),

and therefore dn(k, i) is defined in a unique way.
Letting

vβ,m,n(η|u) =
km∑

k=1

dn(k, i)ηk for η ∈ V n
i (3.105)

we obtain

Proposition 3.33 For a given u ∈ C(P (Em), UH) we have

sup
η∈P (Em)

|vβ,m(η|u) − vβ,m,n(η|u)| ≤ βn

1 − βn
· K

1 − β
(3.106)

with K = sup
k=1,2,...,km

sup
a,a′∈UH

|c(k, a′) − c(k, a)|.

P r o o f . It will be convenient to introduce the following operators T u, T u
n

defined on bB(P (Em)) and the set of functions that map {1, 2, . . . , km} ×
{1, 2, . . . , αn} into R respectively,

T uv(η) =
km∑

k=1

sm∑

s=1

v(Mu(η)
m (dm

s , η))
km∑

j=1

rm(j, dm
s )P u(η)

m (k, j)ηk (3.107)

for v ∈ bB(P (Em)), η ∈ P (Em), and

T u
n d(k, i) =

sm∑

s=1

km∑

j=1

d(j, γn(i, dm
s ))rm(j, dm

s )P ui
m(k, j) (3.108)

for a function d: {1, 2, . . . , km} × {1, 2, . . . , αn} → R, and 1 ≤ k ≤ km,
1 ≤ i ≤ αn.
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By (3.100)

vβ,m(η|u) = Cu(η) +
n−1∑

p=1

βp(T u)pCu(η) + βn(T u)nvβ,m(η|u) (3.109)

with Cu(η): =
km∑
k=1

c(k, u(η))ηk.

Furthermore by (3.104), (3.105), given η ∈ V n
i , we have

vβ,m,n(η|u) =
km∑
k=1

c(k, i)ηk +
n−1∑
p=1

km∑
k=1

βp(T u
n )pc(k, i)ηk

+βn
km∑
k=1

(T u
n )ndn(k, i)ηk

(3.110)

with c(k, i): = c(k, ui), where by (T u)p, (T u
n )p we denote the p-th iterations

of the operators T u, T u
n respectively.

Notice now that, by the definition of the operator Mu
m and the construc-

tion of the function γn (see (3.103)), it can be checked that

n−1∑

p=1

βp(T u)pCu(η) =
n−1∑

p=1

βp
km∑

k=1

(T u
n )pc(k, i)ηk

for η ∈ V n
i .

Therefore

vβ,m(η|u) − vβ,m,n(η|u) = βn[(T u)nvβ,m(η|u) −
km∑

k=1

(T u
n )ndn(k, i)ηk]

for η ∈ V n
i .

Consequently,

sup
η∈P (Em)

|vβ,m(η|u) − vβ,m,n(η|u)| ≤
≤ sup

η∈P (Em)
βn|(T u)nvβ,m(η|u) − (T u)nvβ,m,n(η|u)|

+ sup
i=1,2,...,αn

sup
η∈V n

i

βn|(T u)nvβ,m,n(η|u) −
km∑
k=1

(T u
n )ndn(k, i)ηk|

(3.111)

Since for η ∈ V n
i

|(T u)nvβ,m,n(η|u) −
km∑
k=1

(T u
n )ndn(k, i)ηk| ≤

≤ sup
η∈P (Em)

sup
i,j=1,2,...,αn

∣∣∣
km∑
k=1

(dn(k, i) − dn(k, j))ηk

∣∣∣
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and by (3.102)

sup
η∈P (Em)

sup
i,j=1,2,...,αn

∣∣∣
km∑
k=1

(dn(k, i) − dn(k, j))ηk

∣∣∣

≤ (1 − β)−1 sup
k=1,...,km

sup
a,a′∈UH

|c(k, a) − c(k, a′)|

from (3.111) we obtain (3.106).

It will be important to have an interpretation of the function vβ,m,n de-
fined in (3.105) as value of a certain cost functional corresponding to a con-
trolled Markov process.

To this effect consider the pair (πm
n , y

m
n ), consisting of the filtering process

πm
n , corresponding to the Markov chain xm

n with transition matrix in the
generic period n equal to P an

n (k, p), and the observation process ym
n , where

for ym
0 we take a fixed element of Dm.

We have almost immediately that (see (3.57) and (3.58))

Lemma 3.34 If the control an in the generic period n is of the form an =
u(πm

n , y
m
n ) with u ∈ B(P (Em) ×Dm, UH), the pair (πm

n , y
m
n ) forms a Markov

process with respect to the σ-field Y m
n with transition operator

T u(η,y)(η, y, v) =
km∑
k=1

sm∑
s=1

v(Mu(η,y)
m (dm

s , η), d
m
s )

km∑
j=1

rm(j, dm
s )P u(η,y)

m (k, j)ηk
(3.112)

for v ∈ bB(P (Em) ×Dm).

Recalling now that the cost functional Jβ,m
η ((an)), corresponding to a

control (an), where an is adapted to Y m
n , can be written as follows

Jβ,m
η ((an)) =

∞∑

n=0

βnEu
η

{ km∑

k=1

c(k, an)πm
n (k)

}
(3.113)

we see that the partially observed control problem of the process xm
n with

observations ym
n and adapted controls an can be replaced by the completely

observed control problem of the Markov process (πm
n , y

m
n ) with transition

operator T an(πm
n , y

m
n , ·) in the generic period n.

In particular

95



Corollary 3.35 If for u ∈ B(P (Em), UH), the partition V u
n = {V n

1 , . . . , V
n
αn
}

and the function γn (see (3.103)) have been constructed, if

a0 = ui for an initial law η ∈ V n
i

a1 = uγn(i,y1)

. . .

ap = uγ
p
n(i,y1,...,yp)

. . .

(3.114)

where for simplicity we use yj to denote ym
j , for j = 1, 2, . . . , p, ui stands for

the value of u on V n
i and for p = 1, 2, . . .,

γp
n(i, y1, . . . , yp) = γn(γn(. . . γn(γn(i, y1), y2), . . .), yp)

then we have
Jβ,m

η ((ap)) = vβ,m,n(η|u) (3.115)

We still need an additional definition, namely for a given control function
u ∈ B(P (Em), UH) let

vβ,m,n(η|u): = min
i=1,2,...,αn

km∑

k=1

dn(k, i)ηk (3.116)

Clearly this function vβ,m,n satisfies

vβ,m,n(η|u) ≤ vβ,m,n(η|u) for η ∈ P (Em)

and represents the concave hull of the piecewise linear function vβ,m,n(η|u).
We show below that vβ,m,n too is the value of the cost functional Jβ,m

η

corresponding to a certain control for the process given by the completely
observable pair (πm

p , y
m
p )p=1,2....

Lemma 3.36 There is an adapted control (ap) for the pair (πm
p , y

m
p ) for

which we have
Jβ,m

η ((ap)) = vβ,m,n(η|u) (3.117)
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P r o o f . For j = 1, 2, . . . , αn, define the sets

Wj = {η ∈ P (Em): vβ,m,n(η|u) =
km∑

k=1

dn(k, j)ηk}

and choose representative points ηj ∈ Wj.
We construct now (ap) as follows:

– if the initial law η is such that vβ,m,n(η|u) = vβ,m,n(η|u) we put ap = ap,
p = 0, 1, 2, . . ., with (ap) defined by (3.114)

– if, for the initial law η, vβ,m,n(η|u) > vβ,m,n(η|u) and η ∈ Wj construct
(ap) as (ap) with the initial law η replaced by ηj.

By a direct calculation one can check that for the strategy (ap) as defined
above, (3.117) holds.

For the purpose of being now able to describe Sondik’s algorithm we recall
the Howard-Blackwell policy improvement procedure (see e.g. [18]).

Lemma 3.37 Assume we are given a completely observed controlled Markov
process (zn) on a state space Z, with transition operator P an(zn, ·) in the
generic period n, control (an), and corresponding cost functional

Jβ
z0

((an)) =
∞∑

n=0

βnEz0{c(zn, an)} (3.118)

where c is a bounded cost function, and the set of admissible control param-
eters U is finite. Let (an) be a control strategy that is defined for each initial
state z = z0 ∈ Z and takes values (an(z)). Define the corresponding value
function as

w(z) = Jβ
z ((an(z))) (3.119)

and denote by u a Borel measurable function u:Z → U , for which

min
a∈U

[c(z, a) + P a(z, w)] (3.120)

is attained for a = u(z) (policy improvement).
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Then we have
Jβ

z ((u(zn))) ≤ w(z) (3.121)

and if w(z) 6≡ inf
(an)

Jβ
z (an), there is z ∈ Z for which the strong inequality in

(3.121) holds.

Lemma 3.37 is now used to obtain our main result, on which Sondik’s
algorithm is based, and this result can be formulated as follows

Theorem 3.38 Assume that for given u ∈ B(P (Em), UH) and positive in-
teger n, the partition V u

n = {V n
1 , . . . , V

n
αn
} and the functions γn, v

β,m,n and
vβ,m,n have been constructed.

Let û ∈ B(P (Em), UH) be such that

min
a∈UH

[ km∑

k=1

c(k, a)ηk + β
∏a

m
(η, vβ,m,n)

]
(3.122)

is attained for a = û(η).
Then

Jβ,m
η ((û(πm

p ))) ≤ vβ,m,n(η|u) ≤ vβ,m,n(η|u) ≤
≤ Jβ,m

η ((u(πm
p ))) +

βn

1 − βn
· K

1 − β

(3.123)

with K = sup
k=1,2,...,km

sup
a,a′∈UH

|c(k, a) − c(k, a′)|.
Moreover,

sup
η∈P (Em)

|vβ,m,n(η|u) − w
β,m
H (η)| ≤

≤ (1 − β)−1 sup
η∈P (Em)

|vβ,m,n(η|u) − min
a∈UH

[ km∑

k=1

c(k, a)ηk

+β
∏a

m(η, vβ,m,n)
]
|

(3.124)

where wβ,m
H is defined in section 3.3.3a.
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P r o o f . By Lemma 3.36, vβ,m,n is the value function corresponding to the
control (ap). According to Lemma 3.37 applied to the pair (πm

p , y
m
p ) with

transition operator T a(η, y, ·) and cost functional Jβ,m
η , construct now the

control function u:P (Em) ×Dm 7→ UH , for which

min
a∈UH

[ km∑

k=1

c(k, a)ηk + βT a(y, η, vβ,m,n)
]

is achieved.
Since (see 3.116) vβ,m,n does not depend on y

T a(y, η, vβ,m,n) =
∏a

m
(η, vβ,m,n)

for y ∈ Dm and, consequently, we can take u = û. By (3.121), Jβ,m
η ((û(πm

p ))) ≤
vβ,m,n(η|u).

The second part of the inequality (3.123) follows from Proposition 3.33.
It remains to show (3.124). By (3.97) we have

sup
η∈P (Em)

|wβ,m
H (η) − vβ,m,n(η|u)| ≤ sup

η∈P (Em)

{∣∣∣ min
a∈UH

[ km∑

k=1

c(k, a)ηk

+β
∏a

m
(η, wβ,m

H )
]
− min

a∈UH

[ km∑

k=1

c(k, a)ηk + β
∏a

m
(η, vβ,m,n)

]∣∣∣

+
∣∣∣ min

a∈UH

[ km∑

k=1

c(k, a)ηk + β
∏a

m
(η, vβ,m,n)

]
− vβ,m,n(η|u)

∣∣∣
}

≤ sup
η∈P (Em)

|wβ,m
H (η) − vβ,m,n(η|u)| +

+ sup
η∈P (Em)

| min
a∈UH

[ km∑

k=1

c(k, a)ηk + β
∏a

m
(η, vβ,m,n)

]
− vβ,m,n(η|u)|

from which we obtain (3.124).

The algorithm

Sondik’s algorithm, whose convergence is guaranteed by the results of this
subsection, can now be synthesized in the following steps:
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Step 1: Choose two levels of accuracy, a level ε > 0, and a much smaller
level ε∗ > 0 that will be the actually desired one, as well as an initial
control function u ∈ B(P (Em), UH)

Step 2: Choose an integer n ≥ 1

Step 3: Corresponding to the chosen u and n, determine the function
vβ,m,n(η|u)

Step 4: Perform the policy improvement in (3.122) to obtain a new control
function û and determine ε̂ as the value of the right hand side of (3.124)

Step 5: If ε̂ > ε, increase the originally chosen value of n to n′ and return
to step 3; otherwise continue to

Step 6: If ε̂ > ε∗, replace u by û and ε by ε̂ and return to step 2; otherwise
stop.

Once the algorithm is stopped, the first inequality in (3.123) together
with the inequality (3.124) imply that the control function û, determined in
step 4, when applied to the filter (πm

n ), is ε̂-optimal for the control problem
described at the beginning of this subsection which, we recall, has Jβ,m

µ as

its cost functional with minimal value wβ,m
H over the controls in UH .

Furthermore, recalling the Bellman equation (3.97), by (3.122) and (3.124)
we may now write

w
β,m
H (η) + βε̂ ≥

≥
km∑

k=1

c(k, û(η))ηk + β
∏û(η)

m
(η, vβ,m,n) ≥

≥
km∑

k=1

c(k, û(η))ηk + β
∏û(η)

m
(η, wβ,m

H ) − βε̂

which shows that the control function û obtained from Sondik’s algorithm
satisfies relation (3.84) of Theorem 3.27 for ε = 2βε̂. Combining this finally
with Corollary 3.19 we have that, for H and m large enough that (3.83) and
(3.67) hold, the control with generic term

an = û(πn(Bm
1 ), . . . , πn(Bm

km
))

is, with ε = 2βε̂, 5ε
1−β

-optimal for the original cost function Jβ
µ .
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3.3.3.b Continuous control functions

We now restrict ourselves to the controls of the form an = u(πm
n ), where

u ∈ Am(L, n) and πm
n is the filtering process corresponding to (xm

n ), defined
in (3.57).

As already pointed out in subsection 3.3.3.a although xm
n and ym

n take a
finite number of values, (πm

n ) still takes its values in the infinite space P (Em).
Of the two possibilities described in 3.3.3.a for the actual construction of a
nearly optimal control function, here we consider only the analog of the first
one which is based on the discretization of the space P (Em).

For a given partition (Gq
k)k=1,2,...,kq

of P (Em) with representative elements

{eq
1, . . . , e

q
kq
} we thus define a projection operator Q̂q as

Q̂q:P (Em) ∋ η 7→ e
q
Qqη (3.125)

where Qq is as in (3.90). Define furthermore a transition operator
∏̂

on
{eq

1, . . . , e
q
kq
} as

∏̂u(eq

k
)

m
(eq

k, e
q
p) =

∏u(eq

k
)

m
(eq

k, G
q
p) (3.126)

with u ∈ Am(L, n).
Denote by (π̂n) a Markov process on {eq

1, . . . , e
q
kq
} with transition matrix

∏̂u(eq

k
)

m (eq
k, e

q
p), and let the corresponding cost functional Ĵβ,q

e
q
p

(u) be given by

Ĵ
β,q

e
q
p

(u) =
∞∑

n=0

βnEu
e
q
p

{ km∑

k=1

c(k, u(π̂n))π̂n(k)
}

(3.127)

for u ∈ Am(L, n), where by π̂n(k) we denote the k-th coordinate of π̂n in
P (Em).

We have

Theorem 3.39 Under (A2), (A5) and (B9) we have for given m

sup
u∈Am(L,n)

sup
η∈P (Em)

|Jβ,m
η (u) − Ĵ

β,q

Q̂qη
(u)| → 0 (3.128)

as q → ∞.
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P r o o f . For a given u ∈ Am(L, n), consider a process (π̌n) on P (Em) with
transition operator

∏̌u(η)

m
(η, ·) =

∏u(Q̂qη)

m
(Q̂qη, ·)

and corresponding cost functional J̌β,q
η (u) defined as follows

J̌β,q
η (u) =

∞∑

n=0

βnEu
η

{ km∑

k=1

c(k, u(Q̂qπ̌
u
n))Q̂qπ̌

u
n(k)

}

Letting

Cu
q (η) =

km∑

k=1

c(k, u(Q̂qη))Q̂qη

we have

J̌β,q
η (u) = Cu

q (η) +
∞∑

n=1

βn(
∏̌u

m
)nCu

q (η) (3.129)

and clearly
Ĵ

β,q

Q̂qη
(u) = J̌β,q

η (u) (3.130)

Assume now, for some sequences uq ∈ Am(L, n), ηq ∈ P (Em) q = 1, 2, . . .,
we have

|Jβ,m
ηq

(uq) − J̌β,q
ηq

(uq)| > δ (3.131)

for q = 1, 2, . . ..
By the compactness of Am(L, n) and P (Em) we may assume that uq → u

and ηq → η as q → ∞.
However by Lemma 3.25 (iii) if bB(P (Em)) ∋ Fq → F ∈ C(P (Em)),

uniformly as q → ∞, we have

∏uq(η)
m (η, Fq) →

∏u(η)
m (η, F )

∏̌uq(η)

m (η, Fq) →
∏u(η)

m (η, F )
(3.132)

as q → ∞, uniformly in η ∈ P (Em).
Since by the continuity of c(k, a) with respect to a ∈ U , Cu

q (η) → Cu(η) =
km∑
k=1

c(k, u(η))ηk, uniformly in η ∈ P (Em) and u ∈ Am(L, n), and

Jβ,m
η (u) = Cu(η) +

∞∑

n=1

βn(
∏u

m
)nCu(η)
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by (3.129), (3.132) we obtain a contradiction to (3.131). Consequently

sup
u∈Am(L,n)

sup
η∈P (Em)

|Jβ,m
η (u) − J̌β,q

η (u)| → 0 as q → ∞

and in view of (3.130) we have (3.128).

By Theorem 3.39 we immediately have

Corollary 3.40 Under the assumptions of Theorem 3.39 if u ∈ Am(L, n) is
an ε-optimal control function for the cost functional Ĵβ,q

Q̂qη
, η ∈ P (Em), and

q is so large that

sup
u∈Am(L,n)

sup
η∈P (Em)

|Jβ,m
η (u) − Ĵ

β,q

Q̂qη
(u)| < ε (3.133)

then u is a 3ε-optimal control function for the cost functional Jβ,m
η .

We have now reduced the problem of the construction of a nearly opti-
mal control function for Jβ,m

η in the class Am(L, n) to that for Ĵβ,q

Q̂qη
with q

sufficiently large.
Notice now that the controls for Ĵβ,q

Q̂qη
are obtained by applying a control

function u ∈ Am(L, n) to the completely observed Markov process (π̂n),
restricted to take values in the finite set {eq

1, . . . , e
q
kq
}. A crucial consequence

of this is that, for a given u ∈ Am(L, n), we need only a finite number of its
values, i.e. u(ζi), i = 1, . . . , kq, where

ζi =
( km∑

k=1

ϕ1(b
m
k )eq

i (k), . . . ,
km∑

k=1

ϕn(bmk )eq
i (k)

)
(3.134)

with u: [−‖ϕ1‖, ‖ϕ1‖]× . . .× [−‖ϕn‖, ‖ϕn‖] → U the Lipschitz function cor-
responding to u in the definition of the class Am(L, n), and bmk the selectors
in (3.47).

It therefore suffices to consider the values a1, . . . , akq ∈ U corresponding
to the various control functions in Am(L, n), when the process (π̂n) is in the
states eq

1, . . . , e
q
kq

respectively, with the restriction that a1, . . . , akq satisfy the
following Lipschitz condition

ρ
U
(aj, al) ≤ L max

i=1,...,n

∣∣∣
km∑

k=1

ϕi(b
m
k )(eq

j(k) − e
q
l (k))

∣∣∣ (3.135)
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for 1 ≤ j, l ≤ kq. Condition (3.135) implies in fact that, given the values of
a Lipschitz function u with constant L at the points ζ1, . . . , ζkq

. i.e. given
ai = u(ζi), 1 ≤ i ≤ kq, by linear interpolation we obtain again a Lipschitz
function u with the same constant L, that is defined on [−‖ϕ1‖, ‖ϕ1‖] ×
. . . × [−‖ϕn‖, ‖ϕn‖] and that takes the same values at the points ζi. This
procedure gives us the possibility to construct control functions in Am(L, n)
from their values at the points eq

j . In what follows we shall denote by U q(L)
the set of vectors a = (a1, . . . , akq) ∈ Ukq that satisfy condition (3.135).
As a consequence of the foregoing, in what follows we shall also use Ĵβ,q

e
q
p

(a),

a ∈ U q(L), to denote the value of the cost functional (3.127) that corresponds
to a control function in Am(L, n) which at eq

j has value aj for j = 1, . . . , kq.
We immediately have

Lemma 3.41

inf
u∈Am(L,n)

Ĵ
β,q

e
q
p

(u) = inf
a∈Uq(L)

Ĵ
β,q

e
q
p

(a)

The admissible control values a1, . . . , akq now belong to U , which is still
infinite. For actual computation we therefore again introduce a partition
(UH

k )k=1,...,H of U and choose representative elements forming a set UH =
{αH

1 , . . . , α
H
H}. In the same way as described at the beginning of section 3.3.3.a

assume that the partition (Gq
k)k=1,...,kq

of P (Em) satisfies

(B10) the mapping U ∋ a→ ∏a

m(eq
k, G

q
p) is continuous for 1 ≤ k, p ≤ kq.

Let U q
H(L) denote the subset of U q(L) consisting of vectors a ∈ U

kq

H .
For easier reference we state as lemma the following fact

Lemma 3.42 Given kq, L and H, there exists an operator ẐH :Ukq → U
kq

H

such that

(i) ẐH(a) ∈ U
q
H(L) for a ∈ U q(L)

Moreover

(ii) ẐH(a) → a uniformly in a ∈ Ukq as H → ∞.

From the Lemma we obtain
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Corollary 3.43 Under (B10) there exists H0 such that, for H > H0,

sup
a∈Uq(L)

|Ĵβ,q

e
q
p

(a) − Ĵ
β,q

e
q
p

(ẐHa)| < ε (3.136)

To find a nearly optimal control function in Am(L, n), by Corollary 3.43,
Lemma 3.41 and the discussion preceding it, we are now left with the problem
of finding an ε-optimal vector in U q

H(L), namely a∗ ∈ U
q
H(L) such that

Ĵ
β,q

e
q
p

(a∗) ≤ inf
a∈U

q

H
(L)
Ĵ

β,q

e
q
p

(a) + ε (3.137)

In this way the problem has been reduced to a finite search problem that can
be approached by adapting any of the existing methods of global optimization
with constraints (see e.g. [33], [41]).

Given an ε-optimal a∗ ∈ U
q
H(L), let u∗ ∈ Am(L, n) be the function ob-

tained by linear interpolation from a∗ as mentioned below (3.135).
We have

Theorem 3.44 If H is sufficiently large that (3.136) holds, then

Ĵ
β,q

e
q
p

(u∗) ≤ inf
u∈Am(L,n)

Ĵ
β,q

e
q
p

(u) + 2ε (3.138)

P r o o f . By (3.136) and (3.137) we have

Ĵ
β,q

e
q
p

(a∗) ≤ inf
a∈Uq(L)

Ĵ
β,q

e
q
p

(a) + 2ε (3.139)

By the construction of u∗, Lemma 3.41 and the discussion preceding it,
(3.139) is equivalent to the statement of the Theorem.

Remark 3.45 Combining Theorem 3.44 with Corollary 3.40 we have that,
if q is so large that (3.133) holds, the control u∗ ∈ Am(L, n) is 4ε-optimal for
Jβ,m

η . Combining this in turn with Corollary 3.23, if m is such that (3.81)
holds, the extension of the control according to (3.73) is 5ε-optimal for Jβ

µ

over A(L, n). Finally, by Corollary 3.14 this extension will be 6ε-optimal for
Jβ

µ over A if also L and n are taken sufficiently large.
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3.4 Approximating operators separated in the vari-

ables

In this section we present an alternative general approximation approach,
that can be used instead of the specific approximations studied in 3.3.2 and
3.3.3 and that is applicable only for the case when the state space E is
compact.

Namely, following section 2.3.2 we assume that the approximating tran-
sition operators P a

m(x, dz) are of the form (2.28) i.e.

P a
m(x, dz) =

m∑

i=1

ϕm
i (x)γm

i (a, dz) (3.140)

with ϕm
i ∈ bB(E), ϕm

i ≥ 0, and γm
i (a, dz) being for a ∈ U finite measures

on E, such that for B ∈ B(E), the mappings U ∋ a → γm
i (a,B) are Borel

measurable and

m∑

i=1

ϕm
i (x)γm

i (a,E) = 1 for x ∈ E, a ∈ U

As mentioned in 2.3.2 this form includes in particular the case (3.50) studied
in 3.3.2.

For a Markov process (xm
n ) with transition operator P an

m (xm
n , dz) as in

(3.140), observations (ym
n ), ym

n ∈ Rd, satisfying

P{ym
n+1 ∈ A|xm

0 , x
m
1 , . . . , x

m
n+1, Y

n
m} =

∫

A

r(xm
n+1, y) dy (3.141)

for n = 0, 1, 2, . . ., A ∈ B(Rd), Y n
m = σ{ym

1 , . . . , y
m
n }, Y 0

m = {∅,Ω}, taking
controls u = (an), with an adapted to Y n

m for n = 0, 1, 2, . . ., we obtain
analogously to (3.14) the following representation formula for the associated
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filtering process (πm,u
n ):

π
m,u
0 (A) = µ(A), where µ is the initial law of (xm

n )

π
m,u
n+1(A) =

m∑

i=1

∫

A

r(z, ym
n+1)γ

m
i (an, dz)π

m,u
n (ϕm

i )

m∑

i=1

∫

E

r(z, ym
n+1)γ

m
i (an, dz)π

m,u
n (ϕm

i )

(3.142)

for A ∈ B(E), n = 0, 1, 2, . . . .
Then the cost functional Jβ,m

µ of (3.12), where (see section 2.3.2) we may
take cm = c, can be rewritten in terms of the filtering process (πm,u

n ) as
follows

Jβ,m
µ (u) =

∞∑

n=0

βnEu
µ

{ ∫

E

c(x, an)πm,u
n (dx)

}
=

=
∫

E

c(x, a0)µ(dx) +
∞∑

n=1

βnEu
µ

{ m∑

i=1

∫

E

c(z, an)r(z, ym
n )

γm
i (an−1, dz)π

m,u
n−1(ϕ

m
i )

( m∑

j=1

∫

E

r(z, ym
n )γm

j (an−1, dz)π
m,u
n−1(ϕ

m
j )

)−1}

: =
∫

E

c(x, a0)µ(dx) +
∞∑

n=1

βnEu
µ{Cm(an, y

m
n , an−1, π

m,u
n−1(ϕ

m
1 ), . . . ,

π
m,u
n−1(ϕ

m
m))}

(3.143)
where we implicitly defined the function Cm.

Notice that in the above cost functional the filtering process (πm,u
n ) ap-

pears only through the values (πm,u
n (ϕm

i )) with i = 1, 2, . . . ,m; furthermore
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by (3.142) the statistics πm,u
n (ϕm

i ) can be calculated in a recursive way, namely

π
m,u
n+1(ϕ

m
i ) =

m∑

j=1

∫

E

ϕm
i (z)r(z, ym

n+1)γ
m
j (an, dz)π

m,u
n (ϕm

j )

( m∑

k=1

∫

E

r(z, ym
n+1)γ

m
k (an, dz)π

m,u
n (ϕm

k )
)−1

: = Man
m (ym

n+1, π
m,u
n (ϕm

1 ), . . . , πm,u
n (ϕm

m))(i)

(3.144)

Notice moreover that the function Man
m is the same as in (3.14) except

that we take rm identically equal to r.
As in the previous sections of this chapter 3, the purpose is to determine a

nearly optimal control function which, when applied to the true observations
and filter values, yields nearly optimal controls.

To this effect, in the present case of approximating operators separated
in the variables, we cannot apply directly the convergence results of sec-
tion 3.3.1.a.

Therefore in subsection 3.4.1 we introduce a generalized Bellman equation
for the original problem, which is used in subsection 3.4.2 to show that ε-
optimal control functions for the approximating problem are nearly optimal
for the original problem.

3.4.1 Generalized Bellman equation

Notice first that for the original cost functional Jβ
µ (u) we have

Jβ
µ (u) =

∫

E

c(x, a0)µ(dx) +
∞∑

n=1

βnEu
µ

{ ∫

E

c(x, an)

Man−1(yn, π
u
n−1)(dx)

}
=

∫

E

c(x, a0)µ(dx)+

+
∞∑

n=1

βnEu
µ{C(an, yn, an−1, π

u
n−1)}

(3.145)

with Ma(y, π)(·) as in (1.8) and where the function C is defined implicitly.
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Theorem 3.46 Under (A1)–(A5) there exists a unique continuous bounded
function wβ, wβ:Rd × P (E) × U 7→ R, that satisfies the following equation

wβ(y, µ, a) = inf
a1∈U

[C(a1, y, a, µ) + β

∫

Rd

wβ(ζ,Ma(y, µ), a1)

∫

E

∫

E

r(z, ζ)P a1(z1, dz)M
a(y, µ)(dz1)dζ]

(3.146)

Moreover, wβ has the following interpretation

wβ(y, µ, a) = inf
(an),a0=a

Eµ

{ ∞∑

n=1

βn−1C(an, yn, an−1, πn−1)|y1 = y
}

Pµa.e.

(3.147)
where we set a0 = a and the infimum is taken over all sequences (an) that
are adapted to σ{y1, . . . , yn}.

Furthermore, there exists a Borel measurable function uβ:Rd × P (E) ×
U 7→ U such that

wβ(y, µ, a) = C(uβ(y, µ, a), y, a, µ)

+β
∫

Rd

wβ(ζ,Ma(y, µ), uβ(y, µ, a))

∫

E

∫

E

r(z, ζ)P uβ(y,µ,a)(z1, dz)M
a(y, µ)(dz1)dζ

(3.148)

and in addition

wβ(y, µ, a) = Eµ

{ ∞∑

n=1

βn−1C(ân, yn, ân−1, πn−1)|y1 = y
}

(3.149)

with ân = uβ(yn, πn−1, ân−1), â0 = a.

P r o o f . By Proposition 1.4 the mapping

T :C(Rd × P (E) × U) ∋ w 7→ Tw(y, µ, a) =

= inf
a1∈U

[C(a1, y, a, µ) + β

∫

Rd

w(ζ,Ma(y, µ), a1)
∫

E

∫

E

r(z, ζ)

P a1(z1, dz)M
a(y, µ)(dz1)dζ]

(3.150)
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is a contraction in C(Rd×P (E)×U), and therefore by the Banach contraction
principle there exists a unique function wβ ∈ C(Rd × P (E) × U) for which
(3.146) is satisfied.

Since the right hand side of (3.146) under the infimum sign is a continuous
function with respect to a1 ∈ U , by using any of the existing measurable
selection theorems there exists a Borel measurable function uβ for which the
infimum is attained i.e. (3.148) holds.

It remains to show the representation formulae (3.147) and (3.149).
Let (yn) be the original observation process in (1.1) and u = (an) a

control, an adapted to Y n.
From (3.146) we have for all an+1

wβ(yn+1, π
u
n, an) ≤ C(an+1, yn+1, an, π

u
n)+

+β
∫

Rd

wβ(ζ,Man(yn+1, π
u
n), an+1)

∫

E

∫

E

r(z, ζ)P an+1(z1, dz)

Man(yn+1, π
u
n)(dz1)dζ

(3.151)

Multiplying both sides of (3.151) by βn, summing the above inequalities for
n = 0, 1, . . . , k−1 and taking conditional expectation given y1 = y we obtain

Eu
µ

{ k−1∑

n=0

βnC(an+1, yn+1, an, π
u
n)|y1 = y

}
≥

≥ Eu
µ

{ k−1∑

n=0

βn+1
[
−

∫

Rd

wβ(ζ,Man(yn+1, π
u
n), an+1)

∫

E

∫

E

r(z, ζ)P an+1(z1, dz)M
an(yn+1, π

u
n)(dz1)dζ

+wβ(yn+2, π
u
n+1, an+1)

]
|y1 = y

}

−Eu
µ{βkwβ(yk+1, π

u
k , ak)|y1 = y} + wβ(y, µ, a0)

= −βkEu
µ{wβ(yk+1, π

u
k , ak)|y1 = y} + wβ(y, µ, a0)

(3.152)

with equality for an = ân.
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Letting k → ∞ in (3.152) we have

wβ(y, µ, a0) ≤
k−1∑

n=0

βnEu
µ{C(an+1, yn+1, an, π

u
n)|y1 = y}

with equality for an = ân, from which (3.147) and (3.149) follow.

Corollary 3.47 For vβ(µ) as defined in (3.1) we have, under the assump-
tions of Theorem 3.46,

vβ(µ) = inf
a

[ ∫

E

c(x, a)µ(dx) + β

∫

Rd

wβ(y, µ, a)
∫

E

r(z, y)P a(µ, dz)dy
]

(3.153)

Moreover, assuming that E is compact, for given ε > 0 one can find a compact
set L ⊂ Rd and functions u0 ∈ B(P (E), U), u ∈ B(Rd × P (E) × U,U)
satisfying the following inequalities

sup
x∈E

R(x, Lc) ≤ ε

‖c‖ (3.154)

(with R defined in (A4) and, see (A5), ‖c‖ = sup
x∈E

sup
a∈U

c(x, a)),

∫

E

c(x, u0(µ))µ(dx)

+β
∫

Rd

wβ(y, µ, u0(µ))
∫

E

r(z, y)P u0(µ)(µ, dz)dy

≤ vβ(µ) + ε for µ ∈ P (E)

(3.155)

C(u(y, µ, a), y, a, µ) + β

∫

Rd

wβ(ζ,Ma(y, µ), u(y, µ, a))

∫

E

∫

E

r(z, ζ)P u(y,µ,a)(z1, dz)M
a(y, µ)(dz1)dζ ≤

≤ wβ(y, µ, a) + ε for y ∈ L, µ ∈ P (E), a ∈ U

(3.156)
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The control (a∗n), defined as

a∗0 = u0(µ)

. . .

a∗n+1 = u(yn+1, π
u
n, a

∗
n)

. . .

(3.157)

is 4ε(1 − β)−1 optimal for the cost functional Jβ
µ (u).

In addition, if for uβ
0 ∈ B(P (E), U) the infinimum in (3.153) is attained

and for uβ ∈ B(Rd × P (E) × U,U), (3.148) holds, then the control

â∗0 = u
β
0 (µ)

. . .

â∗n+1 = uβ(yn+1, πn, ân)

. . .

(3.158)

is optimal.

P r o o f . Notice first that the existence of L, u0 and u satisfying (3.154)-
(3.156) is immediate. Using the representation formulae (3.145) and (3.147)
we have for any u = (an)

Jβ
µ (u) =

∫

E

c(x, a0)µ(dx) + Eu
µ

{
Eu

µ

{ ∞∑

n=1

βnC(an, yn, an−1, πn−1)|y1

}}
≥

≥
∫

E

c(x, a0)µ(dx) + βEu
µ{wβ(y1, µ, a0)} =

=
∫

E

c(x, a0)µ(dx) + β

∫

Rd

wβ(y, µ, a0)
∫

E

r(z, y)P a0(µ, dz)dy
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with (see (3.149)) equality for u = (ân), where ân is given by (3.158), and
the existence of uβ

0 follows from the continuity in a of the right hand side of
(3.153). Therefore we have (3.153) and the optimality of the control (ân).

It remains to show the near optimality of the control (a∗n).
Notice first that by the inequality (3.154), we have for n = 1, 2, . . .,

Pµ{yn 6∈ L} = Eµ{Pµ{yn 6∈ L|xn, Y
n−1}}

= Eµ

{ ∫

Lc

r(xn, y)dy
}
≤ ε

‖c‖

Therefore by the inequalities (3.155) and (3.156) we obtain

Jβ
µ ((a∗n)) ≤

∫

E

c(x, u0(µ))µ(dx) + Eu
µ

{
Eu

µ

{ ∞∑

n=1

βn

C(a∗n, yn, a
∗
n−1, πn−1)χL

(yn)|y1

}}
+ ε · β

1 − β

≤
∫

E

c(x, u0(µ))µ(dx) + Eu
µ

{
Eu

µ

{ ∞∑

n=1

βn(wβ(yn, πn−1, a
∗
n−1)

−β
∫

Rd

wβ(ζ,Ma∗

n−1(yn, πn−1), u(yn, πn−1, a
∗
n−1))

∫

E

∫

E

r(z, ζ)P u(yn,πn−1,a∗

n−1)(z1, dz)M
a∗

n−1(yn, πn−1)(dz1)dζ

χ
L
(yn)|y1

}}
+ 2ε

β

1 − β
=

=
∫

E

c(x, u0(µ))µ(dx) + Eu
µ

{
Eu

µ

{ ∞∑

n=2

βnwβ(yn, πn−1, a
∗
n−1)

(χ
L
(yn) − χ

L
(yn−1))|y1

}}
+ βEu

µ{χL
(y1)w

β(y1, π0, a
∗
0)}

+2ε
β

1 − β
≤

∫

E

c(x, u0(µ))µ(dx) + ‖c‖Eu
µ

{ ∞∑

n=2

βnχ
L
(yn)

χ
Lc(yn−1)

}
+ βEu

µ{wβ(y1, µ, a
∗
0)} + 2ε

β

1 − β

≤ vβ(µ) + ε+ ε
β2

1 − β
+ 2ε

β

1 − β
≤ vβ(µ) +

4ε

1 − β

113



from which the near optimality of (a∗n) follows.

3.4.2 Convergence of approximations

In what follows we shall assume that the state space E is compact and
consider the setting as described in the beginning of this section 3.4. The
purpose is to determine a nearly optimal control function for Jβ

µ .
We start with the following auxiliary result

Proposition 3.48 Assume E is compact, (A1)–(A4) hold, the sequence of
transition kernels P a

m satisfies (D1) and a sequence wm ∈ bB(Rd×P (E)×U)
is uniformly bounded and converges uniformly on compact subsets of Rd ×
P (E) × U to w ∈ C(Rd × P (E) × U).

Then for any compact set L ⊂ Rd

∫

Rd

wm(ζ,Ma
m(y, µ), a1)

∫

E

∫

E

r(z, ζ)P a1
m (z1, dz)M

a
m(y, µ)(dz1)dζ →

∫

Rd

w(ζ,Ma(y, µ), a1)
∫

E

∫

E

r(z, ζ)P a1(z1, dz)M
a(y, µ)(dz1)dζ

(3.159)

as m→ ∞, uniformly in (y, µ, a, a1) ∈ L× P (E) × U × U .

P r o o f . Since wm are uniformly bounded, under (A4) and using the com-
pactness of E it suffices to show (3.159) replacing integration over Rd by
integration over any compact set L1 ⊂ Rd, namely

∫

L1

wm(ζ,Ma
m(y, µ), a1)

∫

E

∫

E

r(z, ζ)P a1
m (z1, dz)M

a
m(y, µ)(dz1)dζ →

∫

L1

w(ζ,Ma(y, µ), a1)
∫

E

∫

E

r(z, ζ)P a1(z1, dz)M
a(y, µ)(dz1)dζ

(3.160)

as m→ ∞, uniformly in (y, µ, a, a1) ∈ L× P (E) × U × U .
To show (3.160) it is sufficient to prove that

wm(ζ,Ma
m(y, µ), a1) → w(ζ,Ma(y, µ), a1) (3.161)
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and ∫

E

∫

E

r(z, ζ)P a1
m (z1, dz)M

a
m(y, µ)(dz1) →

∫

E

∫

E

r(z, ζ)P a1(z1, dz)M
a(y, µ)(dz1)

(3.162)

as m→ ∞, uniformly in (ζ, y, µ, a, a1) ∈ L1 × L× P (E) × U × U .
We show (3.161) and (3.162) by contradiction. Suppose (3.161) does not

hold. Then for δ > 0 there exist ζm → ζ, ym → y, µm ⇒ µ, am → a, am
1 → a1

such that for m = 1, 2, . . .,

|wm(ζm,M
am

m (ym, µm), am
1 ) − w(ζm,M

am(ym, µm), a1)| > δ (3.163)

By Proposition 1.4 and the continuity of w

w(ζm,M
am(ym, µm), am

1 ) → w(ζ,Ma(y, µ), a1) (3.164)

as m→ ∞.
Since by Proposition 3.5

Mam

m (ym, µm) ⇒Ma(y, µ) (3.165)

and wm → w, as m→ ∞ uniformly on compact sets, we also have

wm(ζm,M
am

m (ym, µm), am
1 ) → w(ζ,Ma(y, µ), a1)

as m → ∞, which together with (3.164) contradicts (3.163). Therefore
(3.161) holds.

Suppose now (3.162) does not hold.
In that case there is δ > 0 and sequences ζm → ζ, ym → y, µm ⇒ µ,

am → a, am
1 → a1 such that

∣∣∣
∫

E

∫

E

r(z, ζm)P am
1

m (z1, dz)M
am

m (ym, µm)(dz1)

−
∫

E

∫

E

r(z, ζm)P am
1 (z1, dz)M

am(ym, µm)(dz1)
∣∣∣ > δ

(3.166)

for m = 1, 2, . . .
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By (1.18)
Mam(ym, µm) ⇒Ma(y, µ)

as m→ ∞, and therefore by (1.21)

∫

E

∫

E

r(z, ζm)P am
1 (z1, dz)M

am(ym, µm)(dz1)

→
∫

E

∫

E

r(z, ζ)P a1(z1, dz)M
a(y, µ)(dz1)

(3.167)

as m→ ∞.
On the other hand by (D1) and (3.165)

∫

E

∫

E

r(z, ζm)P am
1

m (z1, dz)M
am

m (ym, µm)(dz1)

→
∫

E

∫

E

r(z, ζ)P a1(z1, dz)M
a(y, µ)(dz1)

as m→ ∞ and we obtain a contradiction to (3.166).
The proof of Proposition 3.48 is complete.

Assume now, that the transition kernels P a
m are of the particular form

(2.28) and that

(C11) for ϕ ∈ C(E), i = 1, 2, . . . ,m, the mappings U ∋ a 7→
∫

E

ϕ(z)γm
i (a, dz)

are continuous.

By analogy to Theorem 3.46 and Corollary 3.47 we have

Proposition 3.49 Under (A3), (A5), (C11) there exists a unique function
Rd× [0, ‖ϕm

1 ‖]× . . .× [0, ‖ϕm
m‖]×U ∋ (y, η1, . . . , ηm, a) 7→ wβ

m(y, η1, . . . , ηm, a)
that is continuous bounded and satisfies the following equation

wβ
m(y, η1, . . . , ηm, a) = inf

a1∈U
[Cm(a1, y, a, η1, . . . , ηm)+

+β
∫

Rd

wβ
m(ζ,Ma

m(y, η1, . . . , ηm)(1), . . . ,Ma
m(y, η1, . . . , ηm)(m), a1)

m∑

i=1

∫

E

r(z, ζ)γm
i (a1, dz)M

a
m(y, η1, . . . , ηm)(i)dζ]

(3.168)
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where Cm is the function defined in (3.143).
Moreover, with (ym

n ) and (πm
n ) the observations and filtering processes

from (3.141) and (3.142) respectively,

wβ
m(y, µ(ϕm

1 ), . . . , µ(ϕm
m), a) =

inf
(an) a0=a

Eu
µ

{ ∞∑

n=1

βn−1Cm(an, y
m
n , an−1, π

m,u
n−1(ϕ

m
1 ), . . . , πm,u

n−1(ϕ
m
m)|ym

1 = y
}

(3.169)
where y ∈ Rd, a ∈ U , we set a0 = a and the infimum is taken over all
sequences (an) that are adpted to σ{ym

1 , . . . , y
m
n }.

Furthermore, for vβ,m as defined in (3.13) we have

vβ,m(µ) = inf
a

[ ∫

E

c(x, a)µ(dx) + β

∫

Rd

wβ
m(y, µ(ϕm

1 ), . . . , µ(ϕm
m), a)

m∑

i=1

∫

E

r(z, y)γm
i (a, dz)µ(ϕm

i )dy
] (3.170)

Finally, for a given ε > 0 we can choose a compact set L ⊂ Rd and functions
um

0 ∈ B(P (E), U) and um ∈ B(Rd × [0, ‖ϕm
1 ‖] × . . .× [0, ‖ϕm

m‖] × U,U) such
that the following inequalities hold

sup
x∈E

R(x, Lc) ≤ ε

‖c‖ (3.171)

∫

E

c(x, um
0 (µ))µ(dx) + β

∫

Rd

wβ
m(y, µ(ϕm

1 ), . . . , µ(ϕm
m), um

0 (µ))

m∑

i=1

∫

E

r(z, y)γm
i (um

0 (µ), dz)µ(ϕm
i )dy ≤ vβ,m(µ) + ε

(3.172)

for µ ∈ P (E)
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and

Cm(um(y, η1, . . . , ηm, a), y, a, η1, . . . , ηm)+

+β
∫

Rd

wβ
m(ζ,Ma

m(y, η1, . . . , ηm)(1), . . . ,Ma
m(y, η1, . . . , ηm)(m),

um(y, η1, . . . , ηm, a))
m∑

i=1

∫

E

r(z, ζ)γm
i (um(y, η1, . . . , ηm, a), dz)

Ma
m(y, η1, . . . , ηm)(i)dζ ≤ wβ

m(y, η1, . . . , ηm, a) + ε

(3.173)

for y ∈ L, ηi ∈ [0, ‖ϕm
i ‖], i = 1, 2, . . . ,m, a ∈ U .

The control (am∗

n ) of the form

am∗

0 = um
0 (µ)

. . .

am∗

n+1 = um(ym
n+1, π

m,u
n (ϕm

1 ), . . . , πm,u
n (ϕm

m), a∗n)

. . .

(3.174)

for n = 0, 1, 2, . . ., is 4ε(1 − β)−1 optimal for the cost functional Jβ,m
µ in

(3.143).

Remark 3.50 If for uβ
0 ∈ B(P (E), U) and uβ ∈ B(Rd × P (E) × U,U) the

infima in (3.170) and (3.168) are attained respectively, then the control â0 =
u

β
0 (µ), . . . , ân+1 = uβ(ym

n+1, π
m,u
n (ϕm

1 ), . . . , πm,u
n (ϕm

m), ân) is optimal for Jβ,m
µ .

P r o o f . Notice that under (A3), (A5), (C11) the operator

Tmw(y, η1, . . . , ηm, a): = inf
a1∈U

[Cm(a1, y, a, η1, . . . , ηm)+

+β
∫

Rd

w(ζ,Ma
m(y, η1, . . . , ηm)(1), . . . ,Ma

m(y, η1, . . . , ηm)(m), a1)

m∑

i=1

∫

E

r(z, ζ)γm
i (a1, dz)M

a(y, η1, . . . , ηm)(i)dζ]

(3.175)
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in a contraction on C(Rd × [0, ‖ϕm
1 ‖] × . . . × [0, ‖ϕm

m‖] × U) and follow the
considerations of subsection 3.4.1.

Our main approximation result is now

Theorem 3.51 Assume E is compact and (A1)–(A5) as well as (D1), (C11)
hold.

Then for any compact set L ⊂ Rd

wβ
m(η, µ(ϕm

1 ), . . . , µ(ϕm
m), a) → wβ(η, µ, a) (3.176)

as m→ ∞, uniformly in (y, µ, a) ∈ L× P (E) × U and

vβ,m(µ) → vβ(µ) (3.177)

as m→ ∞ uniformly on P (E).
Furthermore, given ε > 0 there exist a compact set L ⊂ Rd and functions

um
0 ∈ B(P (E), U) and um ∈ B(Rd×[0, ‖ϕm

1 ‖]×. . .×[0, ‖ϕm
m‖]×U,U) satisfying

(3.171), (3.172) and (3.173) respectively and the control a∗n defined as

a∗0 = um
0 (µ)

. . .

a∗n+1 = um(yn+1, π
u
n(ϕm

1 ), . . . , πu
n(ϕm

m), a∗n)

. . .

(3.178)

for n = 0, 1, 2, . . . is nearly optimal for the cost functional Jβ
µ with yn and

πu
n being now the original observations and true filter process from (1.1) and

(1.7) respectively.

Remark 3.52 If, given ε > 0, L ⊂ Rd satisfies (3.171) and m0 is such that
for m ≥ m0 also the inequalities (3.181)–(3.185) below hold, then from the
proof of Theorem 3.51, to be given next, it follows that the control (a∗n) in

(3.178) is more precisely
24ε

(1 − β)2
optimal for Jβ

µ .
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P r o o f . Let φ denote the function that is identically equal to zero. Notice
first that, by the Banach contraction principle, the functions wβ and wβ

m,
solutions of (3.146) and (3.168) respectively, can be uniformly approximated
by the iterations T kφ and T k

mφ of the contraction (with constant β) operators
T and Tm defined in (3.150) and (3.175) respectively. To prove (3.176) it
therefore suffices to show that for each k = 0, 1, 2, . . .

(T k
mφ)(y, µ(ϕm

1 ), . . . , µ(ϕm
m), a) → (T kφ)(y, µ, a) (3.179)

uniformly on compact subsets of Rd × P (E) × U .
The proof of (3.179) is by induction in k = 0, 1, 2, . . . . Since T 0

mφ = 0 =
T 0φ, (3.179) holds for k = 0.

Assume (3.179) holds for k. Then by Proposition 3.48 we have
∫

Rd

(T k
mφ)(ζ,Ma

m(y, µ(ϕm
1 ), . . . , µ(ϕm

m))(1), . . . ,

Ma
m(y, µ(ϕm

1 ), . . . , µ(ϕm
m))(m), a1)

m∑

i=1

∫

E

r(z, ζ)γm
i (a1, dz)M

a
m(y, µ(ϕm

1 ), . . . , µ(ϕm
m))(i)dζ

→
∫

Rd

(T kφ)(ζ,Ma(y, µ), a1)
∫

E

∫

E

r(z, ζ)P a1(z1, dz)M
a(y, µ)(dz1)dζ

as m → ∞, uniformly in (y, µ, a, a1) ∈ L× P (E) × U × U , where L ⊂ Rd is
any compact set.

Since by the defining relations (3.143) and (3.145) as well as by (3.18)

Cm(a1, y, a, µ(ϕm
1 ), . . . , µ(ϕm

m)) =
m∑

i=1

∫

E

c(z, a1)r(z, y)γ
m
i (a, dz)

µ(ϕm
i )

( m∑

j=1

∫

E

r(z, y)γm
j (a, dz)µ(ϕm

j )
)−1

=

=
∫

E

c(z, a1)M
a
m(y, µ)(dz) →

∫

E

c(z, a1)M
a(y, µ)(dz) = C(a1, y, a, µ)

(3.180)
as m→ ∞ uniformly in (y, µ, a, a1) ∈ L× P (E) × U × U , we obtain that

(T k+1
m φ)(y, µ(ϕm

1 ), . . . , µ(ϕm
m), a) → (T k+1φ)(y, µ, a)
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as m→ ∞ uniformly in (y, µ, a, a1) ∈ L× P (E) × U × U .
Therefore (3.179) holds for k+1 and by induction, it holds for any positive

integer. The convergence (3.176) is thus proved. By (3.153) and (3.170) as
well as by (3.176) and (D1) we have for L ⊂ Rd satisfying (3.171)

sup
µ∈P (E)

|vβ,m(µ) − vβ(µ)| ≤ sup
µ∈P (E)

sup
a∈U

∣∣∣
∫

Rd

wβ
m(y, µ(ϕm

1 ), . . . , µ(ϕm
m), a)

∫

E

r(z, y)P a
m(µ, dz)dy −

∫

Rd

wβ(y, µ, a)
∫

E

r(z, y)P a(µ, dz)dy
∣∣∣

≤ sup
µ∈P (E)

sup
a∈U

[
sup
y∈L

|wβ
m(y, µ(ϕm

1 ), . . . , µ(ϕm
m), a) − wβ(y, µ, a)|

+
2ε

1 − β
+

∣∣∣
∫

Rd

wβ(y, µ, a)
∫

E

r(z, y)(P a
m(µ, dz) − P a(µ, dz))dy

∣∣∣
]

→ 2ε

1 − β
as m→ ∞

thus implying (3.177).
It remains to show the near optimality of the control (a∗n) in (3.178) for

the cost functional Jβ
µ . For this purpose we shall more precisely show that

there exists m0 such that for m ≥ m0 the control (a∗n) is
24ε

(1 − β)2
optimal

for Jβ
µ . Given ε > 0 let then L ⊂ Rd satisfy (3.171) and notice that, by

Proposition 3.49 we can choose functions um
0 and um so that they satisfy

(3.172) and (3.173) respectively.
By (3.176), Proposition 3.48, (3.177), (3.180) there exists furthermore m0

such that for m ≥ m0

sup
y∈L

sup
µ∈P (E)

sup
a∈U

∣∣∣wβ
m(y, µ(ϕm

1 ), . . . , µ(ϕm
m), a)

∫

E

r(z, y)P a
m(µ, dz)

−wβ(y, µ, a)
∫

E

r(z, y)P a(µ, dz)
∣∣∣ < ε (3.181)

sup
µ∈P (E)

|vβ,m(µ) − vβ(µ)| < ε (3.182)

sup
a1∈U

sup
a∈U

sup
y∈L

sup
µ∈P (E)

|Cm(a1, y, a, µ(ϕm
1 ), . . . , µ(ϕm

m))

−C(a1, y, a, µ)| < ε (3.183)
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sup
y∈L y′∈L

sup
µ∈P (E)

sup
a1∈U

sup
a∈U

∣∣∣wβ
m(y′,Ma

m(y, µ(ϕm
1 ), . . . , µ(ϕm

m))(1), . . . ,

Ma
m(y, µ(ϕm

1 ), . . . , µ(ϕm
m))(m), a1)

m∑

i=1

∫

E

r(z, y′)γm
i (a1, dz)

Ma
m(y, µ(ϕm

1 ), . . . , µ(ϕm
m))(i) − wβ(y′,Ma(y, µ), a1)∫

E

∫

E

r(z, y′)P a1(x, dz)Ma(y, µ)(dx)
∣∣∣ < ε (3.184)

sup
µ∈P (E)

sup
y∈L

sup
a∈U

|wβ
m(y, µ(ϕm

1 ), . . . , µ(ϕm
m), a) − wβ(y, µ, a)| < ε (3.185)

By the choice of L, by (3.181)–(3.182) and by the fact that um
0 satisfies (3.172)

we now have for m ≥ m0 and µ ∈ P (E)

∫

E

c(x, um
0 (µ))µ(dx) + β

∫

Rd

wβ(y, µ, um
0 (µ))

∫

E

r(x, y)P um
0 (µ)(µ, dz)dy

≤
∫

E

c(x, um
0 (µ))µ(dx) + βε(‖wβ‖ + ‖wβ

m‖)+

+β
∫

Rd

wβ
m(y, µ(ϕm

1 ), . . . , µ(ϕm
m), um

0 (µ)) (3.186)

m∑

i=1

∫

E

r(z, y)γm
i (um

0 (µ), dz)µ(ϕm
i )dy + ε ≤ 2ε

1 − β
+ vβ,m(µ) + 2ε ≤

≤ 2ε

1 − β
+ 3ε+ vβ(µ) for µ ∈ P (E)

Similarly, by the choice of L, by (3.183)–(3.185) and by the fact that um
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satisfies (3.173) we have for m ≥ m0 and y ∈ L, µ ∈ P (E), a ∈ U

C(um(y, µ(ϕm
1 ), . . . , µ(ϕm

m), a), y, a, µ) + β

∫

Rd

wβ(ζ,Ma(y, µ),

um(y, µ(ϕm
1 ), . . . , µ(ϕm

m), a))
∫

E

∫

E

r(z, ζ)P um(y,µ(ϕm
1 ),...,µ(ϕm

m),a)(z1, dz)

Ma(y, µ)(dz1)dζ ≤ Cm(um(y, µ(ϕm
1 ), . . . , µ(ϕm

m), a), y, a,

µ(ϕm
1 ), µ(ϕm

2 ), . . . , µ(ϕm
m)) + ε+ βε(‖wβ‖ + ‖wβ

m‖))+

β

∫

Rd

wβ
m(ζ,Ma

m(y, µ(ϕm
1 ), . . . , µ(ϕm

m))(1), . . . ,Ma
m(y, µ(ϕm

1 ), . . . , µ(ϕm
m))(m),

um(y, µ(ϕm
1 ), . . . , µ(ϕm

m), a)
m∑

i=1

∫

E

r(z, ζ)γm
i (um(y, µ(ϕm

1 ), . . . , µ(ϕm
m), a), dz)

Ma
m(y, µ(ϕm

1 ), . . . , µ(ϕm
m))(i)dζ + ε ≤ 2ε+

2ε

1 − β

+wβ
m(y, µ(ϕm

1 ), . . . , µ(ϕm
m), a) + ε ≤ 4ε+

2ε

1 − β
+ wβ(y, µ, a)

(3.187)
At this point notice that (3.186) and (3.187) correspond to (3.155) and

(3.156) respectively if ε is put equal to
6ε

1 − β
. By Corollary 3.47 we therefore

have that the control (a∗n) in (3.178) is
24ε

(1 − β)2
optimal for Jβ

µ .

By Theorem 3.51, the construction of a nearly optimal control function
for Jβ

µ is thus reduced to the problem of determining a nearly optimal con-
trol function for Jβ,m

µ that satisfies (3.172) and (3.173) and that involves the
filter only through the values of the statistic πm,u

n (ϕm
i ). To practically con-

struct functions satisfying (3.172) and (3.173), we have to consider further
discretizations both of the observation and the control spaces. Recalling the
definition of the projection operators WH , ZH in (2.48), (2.50), and that
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UH = {ZHa, a ∈ U}, consider then the following relations

w
β
m,H(y, η1, . . . , ηm, a) = inf

a1∈U
[Cm(ZHa1,WHy, ZHa, η1, . . . , ηm)

+β
∫

Rd

w
β
m,H(ζ,MZHa

m (WHy, η1, . . . , ηm)(1), . . . ,

M
ZHa
m (WHy, η1, . . . , ηm)(m), ZHa)

m∑

i=1

∫

E

r(z, ζ)

γm
i (ZHa1, dz)M

ZHa
m (WHy, η1, . . . , ηm)(i)dζ]

(3.188)

v
β,m
H (µ) = inf

a∈U

[ ∫

E

c(x, ZHa)µ(dx) + β

∫

Rd

w
β
m,H(WHy,

µ(ϕm
1 ), . . . , µ(ϕm

m), ZHa)
m∑

i=1

∫

E

r(z, y)γm
i (ZHa, dz)µ(ϕm

i )dy
] (3.189)

that correspond to (3.168) and (3.170) respectively.
From the definition in (3.188) notice that the functions wβ

m,H depend on y
and a only through the finite number of values ofWHy and ZHa; furthermore,
the infimum over a1 is actually a minimum over the finite set of values of
ZHa1 ∈ UH .

Proposition 3.53 Under (A3)–(A5), and (C11), for E compact there exists
a unique function w

β
m,H ∈ bB(Rd × [0, ‖ϕm

1 ‖] × . . .× [0, ‖ϕm
m‖] × U) that is a

solution to (3.188). One also has

w
β
m,H(y, η1, . . . , ηm, a) → wβ

m(y, η1, . . . , ηm, a) (3.190)

as H → ∞, uniformly in ηi ∈ [0, ‖ϕm
i ‖], i = 1, 2, . . . ,m, a ∈ U , and y

belonging to a compact set L ⊂ Rd. Moreover, for fixed y ∈ Rd, a ∈ U the
mapping

[0, ‖ϕm
1 ‖] × . . .× [0, ‖ϕm

m‖] ∋ (η1, . . . , ηm) → w
β
m,H(y, η1, . . . , ηm, a)

is continuous. Furthermore, for v
β,m
H defined in (3.189) one has v

β,m
H ∈

C(P (E)) and
v

β,m
H (µ) → vβ,m(µ) (3.191)
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as H → ∞, uniformly in µ ∈ P (E).
Finally, given ε > 0, if H0 is such that for H > H0, u

H
0 ∈ B(P (E), UH)

and uH ∈ B(WHR
d×[0, ‖ϕm

1 ‖]×. . .×[0, ‖ϕm
m‖]×UH , UH) satisfy the following

inequalities

∫

E

c(x, uH
0 (µ))µ(dx) + β

∫

Rd

w
β
m,H(y, µ(ϕm

1 ), . . . , µ(ϕm
m), uH

0 (µ))

m∑

i=1

∫

E

r(z, y)γm
i (uH

0 (µ), dz)µ(ϕi)dy ≤ v
β,m
H (µ) + ε for µ ∈ P (E)

(3.192)

Cm(uH(WHy, η1, . . . , ηm, a),WHy, a, η1, . . . , ηm)+

+β
∫

Rd

w
β
m,H(ζ,Ma

m(WHy, η1, . . . , ηm)(1), . . . ,Ma
m(WHy, η1, . . . , ηm)(m),

uH(WHy, η1, . . . , ηm, a))
m∑

i=1

∫

E

r(z, ζ)γm
i (uH(WHy, η1, . . . , ηm, a), dz)

Ma
m(WHy, η1, . . . , ηm)(i)dζ ≤ w

β
m,H(WHy, η1, . . . , ηm, a) + ε

(3.193)
for y ∈ Rd, ηi ∈ [0, ‖ϕm

i ‖], i = 1, 2, . . . ,m, a ∈ UH respectively, then the
control aH∗

n defined by analogy to (3.178) as

aH∗

0 = uH
0 (µ)

. . .

aH∗

n+1 = uH(WHy
m
n+1, π

m,u
n (ϕm

1 ), . . . , πm,u
n (ϕm

m), aH∗

n )

. . .

(3.194)

is, for n = 0, 1, 2, . . ., nearly optimal for the cost functional Jβ,m
µ .

Remark 3.54 If, given ε > 0, L ⊂ Rd satisfies (3.171) and H0 is such that
for H > H0 also the inequalities (3.195)–(3.199) below hold, then from the
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proof given below it follows (see also Remark 3.52) that the control (aH∗

n ) in

(3.194) is more precisely
24ε

(1 − β)2
optimal for Jβ,m

µ .

sup
y∈L

sup
i

sup
ηi∈[0,‖ϕm

i
‖]

sup
a∈U

∣∣∣wβ
m,H(y, η1, . . . , ηm, a)

m∑

i=1

r(z, y)γm
i (a, dz)ηi − wβ

m(y, η1, . . . , ηm, a)
m∑

i=1

∫

E

r(z, y)

γm
i (a, dz)ηi

∣∣∣ < ε (3.195)

sup
µ∈P (E)

|vβ,m
H (µ) − vβ,m(µ)| < ε (3.196)

sup
a1∈U

sup
a∈U

sup
y∈L

sup
i

sup
ηi∈[0,‖ϕm

i
‖]

|Cm(a1,WHy, a, η1, . . . , ηm) − Cm(a1, y, a, η1, . . . , ηm)| < ε (3.197)

sup
y∈L y′∈L

sup
i

sup
ηi∈[0,‖ϕm

i
‖]

sup
a1∈U

sup
a∈U

∣∣∣wβ
m,H(y′,

Ma
m(WHy, η1, . . . , ηm)(1), . . . ,Ma

m(WHy, η1, . . . , ηm)(m), a1)
m∑

i=1

∫

E

r(z, y′)γm
i (a1, dz)M

a
m(WHy, η1, . . . , ηm)(i)

−wβ
m(y′,Ma

m(y, η1, . . . , ηm)(1), . . . ,Ma
m(y, η1, . . . , ηm)(m), a1)

m∑

i=1

∫

E

∫

E

r(z, y′)γm
i (a1, dz)M

a
m(y, η1, . . . , ηm)(i)

∣∣∣ < ε (3.198)

sup
y∈L

sup
i

sup
ηi∈[0,‖ϕm

i
‖]

sup
a∈U

|wβ
m,H(WHy, η1, . . . , ηm, a)

−wβ
m(y, η1, . . . , ηm, a)| < ε (3.199)

P r o o f . The existence and uniqueness of wβ
m,H follows from the Banach con-

traction principle. To prove (3.190), by analogy to the proof of Theorem 3.51
it is sufficient to show the convergence of the iterations of the contraction
operators that are used to prove the existence of solutions to (3.188) and
(3.168) respectively.

The contiunuity of wβ
m,H(y, η1, . . . , ηm, a) with respect to η1, . . . , ηm fol-

lows from the continuity in η1, . . . , ηm of the iterations of the contraction
operators that approximate uniformly wβ

m,H , recalling that inf
a1

is actually a
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minimum over the finite set of values of ZHa1. Consequently, by (3.189) we
have vβ,m

H ∈ C(P (E)) as well as the convergence (3.191). To obtain the near
optimality of the control (aH∗

n ) in (3.194), one may proceed analogously as in
the proof of Theorem 3.51 using Proposition 3.49, instead of Corollary 3.47.

Although the functions wβ
m,H(y, η1, . . . , ηm, a) depend on y, a only through

the finite number of values ofWHy, ZHa, they still depend on an infinite num-
ber of values of ηi ∈ [0, ‖ϕm

i ‖], i = 1, 2, . . . ,m. To make the construction of
the nearly optimal control (aH∗

n ) feasible, one has therefore to perform also a
discretization of ηi which does not create additional problems because of the
continuity of wβ

m,H with respect to (η1, . . . , ηm). Since this further discretiza-
tion would repeat arguments already discussed previously in subsection 2.3.2,
it is left to the reader.

3.4.3 The approximation procedure

Summarizing, the procedure to obtain a nearly optimal control function for
Jβ

µ in the context of this section 3.4 is as follows:

a) For sufficiently largem andH, use an iterative procedure of the value it-
eration type to determine a uniformly approximating solution to (3.188).
Due to the contraction property of the operator on the right hand side
of (3.188) any degree of approximation can thereby be reached and
the computations can actually be carried out since, after an additional
discretization of ηi (i = 1, 2, . . . ,m), all quantities involved are finite-
valued.

The minimizing values of a1 (actually of ZHa1 ∈ UH), obtained at
the last iteration corresponding to the various possible values of WHy,

η1, . . . , ηm, ZHa, lead to a function uH ∈ B(WH(Rd)× [0, ‖ϕm
1 ‖]× . . .×

[0, ‖ϕm
m‖] × UH , UH).

b) With the (uniform) approximation to w
β
m,H from (3.188), determine

according to (3.189) an approximation to vβ,m
H (µ) for the given initial

measure µ.

Provided the integrals in (3.189) with respect to x, y and z can be carried
out, this computation is again feasible due to the fact that the ”inf” is actually
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a ”min” over the finite number of values of ZHa. The minimizing a is the
value, at the given initial measure, of a function uH

0 ∈ B(P (E), UH).
Concerning the functions uH

0 and uH thus constructed, the results of
subsection 3.4.2 allow to conclude the following:

i) For a sufficiently large number of iterations to solve (3.188), if H is
chosen sufficiently large that conditions (3.192) and (3.193) as well as
(3.195)–(3.199) are satisfied for a given ε > 0, by Proposition 3.53 as

well as by Remark 3.54, the control (aH∗

n ) is
24ε

(1 − β)2
optimal for Jβ,m

µ .

ii) Based on (3.192) and (3.193), and taking also (3.196), (3.197), (3.199)
into account, we have that the control functions um

0 (µ): = uH
0 (µ) and

um(y, η1, . . . , ηm, a): = uH(WHy, η1, . . . , ηm, ZHa)

satisfy (3.172) and (3,173) for suitable values of ε.

If therefore also m is chosen sufficiently large, by Theorem 3.51 we have
that the control (aH∗

n ) given accordingly to (3.178) by

aH∗

0 = um
0 (µ)

. . .

aH∗

n+1 = um(yn+1, π
u
n(ϕm

1 ), . . . , πu
n(ϕm

m), aH∗

n )

. . .

is nearly optimal for Jβ
µ .

3.5 Filter approximation and near optimal control val-

ues

The previous sections of this Chapter 3 were devoted to the construction
of nearly optimal control functions which, when applied to the true filter
process (πn) with values in P (E) and defined in (1.7), yield nearly optimal
controls.

In the context of section 3.3 the nearly optimal control functions belong
either to the space B(P (E), U) or to C(P (E), U) and can thus be applied
directly to (πn) to yield controls of the form an = u(πn). In the context of
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section 3.4 the control functions belong to B(Rd ×Rm × U,U), they depend
on (πn) only through the values of the statistic (πn(ϕm

1 ), . . . , πn(ϕm
m)), but de-

pend also on the values of the current observation and previous control; they
thus yield controls of the form an = u(yn, πn−1(ϕ

m
1 ), . . . , πn−1(ϕ

m
m), an−1).

Since the true filter process (πn) takes its values in the infinite dimen-
sional space of measures P (E), it cannot be computed in practice. On the
other hand, to able to determine nearly optimal control functions, already
in sections 3.3 and 3.4 we considered approximating finite dimensional fil-
ter processes. More precisely, in subsection 3.3.2 we considered the process
(π̄m,u

n ) with values in the simplex P (Em) that can be computed recursively by
(3.57). Analogously, in section 3.4 we considered the process (πm,u

n ), whose
finite-dimensional statistics πm,u

n (ϕm
i ) (i = 1, 2, . . . ,m) can be computed re-

cursively by (3.144).
Although these finite-dimensional processes are computable, they are

based on the approximating fictitions observations (ym
n ) defined in (3.54)

and (3.141) respectively, and are thus fictitions processes themselves.
The purpose of this section is now to define a real approximating finite-

dimensional filtering process, that can be computed, and to show that the
nearly optimal control functions determined in sections 3.3 and 3.4, provided
they are continuous, still yield nearly optimal control values when applied to
the approximating filtering process.

We shall do this in two subsections, the first subsection 3.5.1 correspond-
ing to the context of section 3.3, the second 3.5.2 corresponding to section 3.4.
A common feature of the two subsections is that, since the approximating fil-
ter process itself is not Markov, we shall consider pairs of processes, each pair
consisting of an approximating filter to be used as argument of the control
function and a ”true” filtering process.

3.5.1 Filter approximation and near optimal control values in the

context of section 3.3

Given the initial measure µ ∈ P (E) for the process (xn), let µ ∈ P (Em) be
the vector (µ(Bm

1 ), . . . , µ(Bm
km

)) as specified below (3.74). Starting from µ as
initial measure we shall construct a computable real process πm(µ)

n ∈ P (Em)
(see (3.204) below) that will serve as approximating filtering process; it will
then be shown that any of the nearly optimal control functions derived in
section 3.3, provided they are continuous, yield nearly optimal controls when
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applied to (πm(µ)
n ). There are essentially two classes of nearly optimal control

functions in section 3.3. The first class, corresponding to subsections 3.3.2a
and 3.3.3a, belongs to the space B(P (Em), U). Each control function from
this class can be applied directly to πm(µ)

n to yield controls an = u(πm(µ)
n ), but

the results below hold only if first we verify that u is also continuous. The
second class, corresponding to subsections 3.3.2b and 3.3.3b, belongs to the
space C(P (E), U). Although each control function u from this second class
is already continuous, the process (πm(µ)

n ) with values in P (Em) has first to
be lifted to the space P (E) via the procedure connected with the operator
L̃m introduced in subsection 3.3.2.b.

Both classes of controls can however be treated in one single approach
by assuming that the nearly optimal control function u belongs to A =
C(P (E), U) and considering controls obtained as an = L̃mu(π

m(µ)
n ).

As already mentioned, we shall now consider pairs of processes, each
consisting of an approximating and a ”true” filtering process. For reasons
that will become apparent below, we shall actually consider three such pairs,
each corresponding to one of the three processes (πn), (πm

n ), (πm
n ) defined in

(1.7), (3.14) and (3.57) respectively.
To define the three pairs, it will be convenient to consider the operators

Q(y, ν)(A) =

∫

A

r(z, y)ν(dz)

∫

E

r(z, y)ν(dz)
(3.200)

for y ∈ Rd, ν ∈ P (E), A ∈ B(E), and

ζ(µ, a)(A) =
∫

E

P a(x,A)µ(dx) (3.201)

for a ∈ U , µ ∈ P (E), A ∈ B(E).
Given a fixed control function u ∈ A, for ν, µ ∈ P (E), η ∈ P (Em) and

Ma(y, π) as in (1.8), Ma
m(y, π) as in (3.14), M

a

m(y, π) as in (3.57), define





π
(ν)
0 (·) = ν(·) π

(ν)
n+1(·) = Man(yn+1, π

(ν)
n )(·) with an = u(π(ν)

n )

π
(µ,ν)
0 (·) = µ(·) π

(µ,ν)
n+1 (·) = Q(yn+1, ζ(π

(µ,ν)
n , u(π(ν)

n ))(·)
(3.202)
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



π
m(ν)
0 (·) = ν(·) π

m(ν)
n+1 (·) = Man

m (yn+1, π
m(ν)
n )(·) with an = Lmu(π

m(ν)
n )

π
m(µ,ν)
0 (·) = µ(·) π

m(µ,ν)
n+1 (·) = Q(yn+1, ζ(π

m(µ,ν)
n ,Lmu(π

m(ν)
n ))(·)

(3.203)





π
m(η)
0 (·) = η(·) π

m(η)
n+1 (·) = M

an

m (Wmyn+1, π
m(η)
n )(·) with

an = L̃mu(π
m(η)
n )

π̃
m(µ,η)
0 (·) = µ(·) π̃

m(µ,η)
n+1 (·) = Q(yn+1, ζ(π̃

m(µ,η)
n , L̃mu(π

m(η)
n ))(·)

(3.204)

where Wm is the projection of Rd to Dm defined as in (2.48) and where yn

denote the ”real” observations, namely the observations, according to (1.1),
of the given state process (xn) that starts with initial law µ and is controlled
in the generic period n by a control taking the values an = u(π(ν)

n ), an =
Lmu(π

m(ν)
n ) and an = L̃mu(π

m(η)
n ) respectively. The ”real” filtering processes

(recall that the state process (xn) has initial measure µ) are therefore given
by π(µ,ν)

n , πm(µ,ν)
n and π̃m(µ,ν)

n respectively.
The processes π(ν)

n , πm(ν)
n and πm(η)

n will thus play the role of arguments
of the control function.

Notice also that, for η = ν = (ν(Bm
1 ), . . . , ν(Bm

km
)), we have πm(µ,ν)

n (·) =
π̃m(µ,ν)

n (·).

Lemma 3.55 The pairs (π(ν)
n , π(µ,ν)

n ), (πm(ν)
n , πm(µ,ν)

n ) and (πm(η)
n , π̃m(µ,η)

n )
form Markov processes with transition operators T , Tm and Tm defined in
the following way: for F ∈ bB(P (E) × P (E)), f ∈ bB(P (Em) × P (E)),
µ, ν ∈ P (E), η ∈ P (Em) we have

TF (ν, µ): = Eµ,ν{F (π
(ν)
1 , π

(µ,ν)
1 )} =

=
∫

E

∫

Rd

F (Mu(ν)(y, ν), Q(y, ζ(µ, u(ν))))r(z, y)dyP u(ν)(µ, dz)
(3.205)

131



TmF (ν, µ): = Eµ,ν{F (π
m(ν)
1 , π

m(µ,ν)
1 )} =

=
∫

E

∫

Rd

F (MLmu(ν)
m (y, ν), Q(y, ζ(µ,Lmu(ν))))r(z, y)dyP

Lmu(ν)(µ, dz)

(3.206)

Tmf(η, µ): = Eµ,η{f(π
m(η)
1 , π̃

m(µ,η)
1 )} =

=
∫

E

∫

Rd

f(M
L̃mu(η)
m (Wmy, η), Q(y, ζ(µ, L̃mu(η))))r(z, y)dyP

L̃mu(η)(µ, dz)

(3.207)
respectively.

Moreover, under (A1)–(A4), T is Feller. Assuming additionally (B9), we
have the Feller property of Tm as well.

P r o o f . The proof of the Markov property and of the form of the operators T ,
Tm, Tm respectively, is analogous to that of Lemma 1.3. The Feller property
of T and Tm can be shown by arguments similar to those of Proposition 1.4
and Corollary 1.5.

Proposition 3.56 Under (A1)–(A4) and (D1),(D2) if B(P (E) × P (E)) ∋
Fm 7→ F ∈ C(P (E) × P (E)), as m → ∞ uniformly on compact subsets of
P (E) × P (E) and the family {Fm,m = 1, 2, . . .} is uniformly bounded, we
have that for k = 1, 2, . . .,

(Tm)kFm(ν, µ) → (T )kF (ν, µ) as m→ ∞ (3.208)

uniformly in (ν, µ) from compact subsets of P (E) × P (E), where (Tm)k and
(T )k denote the k-th iterates of Tm and T respectively.

P r o o f . We show (3.208) by induction. Therefore we prove first (3.208) for
k = 1.
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By Proposition 3.5, for ϕ ∈ C(E)

|MLmu(ν)
m (y, ν)(ϕ) −MLmu(ν)(y, ν)(ϕ)| → 0 (3.209)

as m→ ∞, uniformly in (y, ν) from compact subsets of Rd × P (E).
Now,

Q(y, ζ(µ,Lmu(ν))) ⇒ Q(y, ζ(µ, u(ν))) (3.210)

as m→ ∞, uniformly in (y, µ, ν) from compact subsets of Rd×P (E)×P (E).
In fact, if (3.210) does not hold, then there are sequences ym → y, µm ⇒

µ, νm ⇒ ν such that for ϕ ∈ C(E) and some δ > 0 we have

|Q(ym, ζ(µm,Lmu(νm)))(ϕ) −Q(ym, ζ(µm, u(νm)))(ϕ)| > δ (3.211)

Since
Q(ym, ζ(µm,Lmu(νm)))(ϕ) = Mam(ym, µm)(ϕ)

with am = Lmu(νm)
and

Q(ym, ζ(µm, u(νm)))(ϕ) = Mam(ym, µm)(ϕ)

with am = u(νm) and by Lemma 3.21(i), am → u(ν), according to Proposi-
tion 1.4 we obtain

|Mam(ym, µm)(ϕ) −Mu(ν)(ym, µ)(ϕ)| → 0

and
|Mam(ym, µm)(ϕ) −Mu(ν)(ym, µ)(ϕ)| → 0

a contradiction to (3.211).
Thus (3.210) holds.
Since

MLmu(ν)(y, ν) = Q(y, ζ(ν,Lmu(ν)))

by (3.209) and (3.210) it is immediate that

MLmu(ν)
m (y, ν) ⇒ Q(y, ζ(ν, u(ν)) = Mu(ν)(y, ν)

as m→ ∞, uniformly in (y, ν) from compact subsets of Rd × P (E).
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Now, for B(P (E) × P (E)) ∋ Fm → F ∈ C(P (E) × P (E)) as m → ∞,
uniformly on compact subsets of P (E)×P (E), and ‖Fm‖ uniformly bounded
we have

|TmFm(µ, ν) − TF (µ, ν)| ≤
∫

E

∫

Rd

|Fm(MLmu(ν)
m (y, ν),

Q(y, ζ(µ,Lmu(ν)))) − F (Mu(ν)(y, ν), Q(y, ζ(µ, u(ν)))|r(z, y)dy
PLmu(ν)(µ, dz) +

∣∣∣
∫

E

∫

Rd

F (Mu(ν)(y, ν), Q(y, ζ(µ, u(ν))))r(z, y)dy

(PLmu(ν)(µ, dz) − P u(ν)(µ, dz)))
∣∣∣ = Im + IIm

Let H ⊂ P (E) be a compact set. By (A2) and (A4) for any ε > 0 we can
find compact sets K ⊂ E and L ⊂ Rd such that for µ ∈ H

µ(Kc) < ε PLmu(ν)(µ,Kc) < ε for m = 1, 2, . . . ; ν ∈ P (E)

and
sup
z∈K

∫

Lc

r(z, y)dy ≤ ε

Then for an additional compact set H1 ⊂ P (E) we have

Im ≤ 2(‖F‖ + ‖Fm‖)ε+ sup
µ∈H

sup
ν∈H1

sup
y∈L

|Fm(MLmu(ν)
m (y, ν),

Q(y, ζ(µ,Lmu(ν))) − F (Mu(ν)(y, ν), Q(y, ζ(µ.u(ν))))|

and by (3.209), (3.210), Lemma 3.8 and the compactness of the set
{(Mu(ν)(y, ν), Q(y, ζ(µ, u(ν)))), y ∈ L, µ ∈ H, ν ∈ H1} we obtain Im → 0,
as m→ ∞ uniformly in (µ, ν) ∈ H ×H1.

Moreover, we have

IIm ≤ 2‖F‖ε+ sup
µ∈H

sup
ν∈H1

sup
y∈L

∣∣∣
∫

E

F (Mu(ν)(y, ν),

Q(y, ζ(µ, u(ν))))r(z, y)(PLmu(ν)(µ, dz) − P u(ν)(µ, dz))
∣∣∣

By Lemma 3.6 with M1 = Rd × P (E) × P (E) × P (E), M2 = R, K =
L × H × H1 × H̃, function F there defined as (compare with the proof of
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(3.21))

F :Rd × P (E) × P (E) × P (E) ∋ (y, ν1, ν2, ν3)

7→
∫

E

ϕ(y, ν1, ν2, z)ν3(dz)

where

H̃ = {P u(ν)(µ, ·), ν ∈ H1, µ ∈ H}
ϕ(y, ν1, ν2, z) = F (Mu(ν2)(y, ν2), Q(y, ζ(ν1, u(ν2))))r(z, y)

we obtain IIm → 0 as m→ ∞, uniformly in (µ, ν) ∈ H ×H1.
Therefore

sup
ν∈H1

sup
µ∈H

|TmFm(ν, µ) − TF (ν, µ)| → 0

as m→ ∞, and we proved (3.208) for k = 1.
Assume now, that (3.208) is satisfied for k. Then

F
k

m(ν, µ): = (Tm)kFm(ν, µ) → (T )kF (ν, µ): = F
k
(ν, µ)

as m → ∞, uniformly in (ν, µ) from compact subsets of P (E) × P (E). By
step k = 1

(Tm)k+1Fm(ν, µ) = TmF
k

m(ν, µ) → TF
k
(ν, µ) = (T )k+1F (ν, µ)

as m → ∞, uniformly in (ν, µ) from compact subsets of P (E) × P (E), and
therefore (3.208) holds for k + 1.

Finally, by induction (3.208) is satisfied for any positive integer k.

The near optimality of the control an = L̃mu(π
m(µ)
n ) follows now from

Corollary 3.57 Under the assumptions of Proposition 3.56, assuming ad-
ditionaly also (A5), for any u ∈ A

Jβ
µ ((L̃mu(π

m(µ)
n ))) → Jβ

µ (u(πn)) (3.212)

as m→ ∞, uniformly in µ from compact subsets of P (E).
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P r o o f . We have to show that for each i = 0, 1, 2, . . .,

Eµ,µ

{ ∫

E

c(x, L̃mu(π
m(µ)
i ))π̃

m(µ,µ)
i (dx)

}

→ Eµ

{ ∫

E

c(x, u(πi))πi(dx)
}

as m→ ∞,

(3.213)

uniformly in µ from compact subsets of P (E).
Notice first that

Eµ,µ

{ ∫

E

c(x, L̃mu(π
m(µ)
i ))π̃

m(µ,µ)
i (dx)

}
=

= Eµ,µ

{ ∫

E

c(x,Lmu(π
m(µ)
i )π

m(µ,µ)
i (dx)

} (3.214)

Thus, by Lemma 3.16, (3.213) is satisfied for i = 0.
For i > 0 we have

Eµ,µ

{ ∫

E

c(x,Lmu(π
m(µ)
i ))π

m(µ,µ)
i (dx)

}
=

= Eµ,µ{Cm(π
m(µ)
i , π

m(µ,µ)
i } = (Tm)iCm(µ, µ)

(3.215)

with
Cm(ν, µ): =

∫

E

c(x,Lmu(ν))µ(dx)

By Lemma 3.21(i), Cm(ν, µ) → C(ν, µ): =
∫
E

c(x, u(ν))µ(dx) as m → ∞,

uniformly in (ν, µ) from compact subsets of P (E) × P (E). Noting again
from (3.202) that π(µ)

n = π(µ,µ)
n = πn, from Proposition 3.56 we obtain

(Tm)iCm(µ, µ) → (T )iC(µ, µ) =

= Eµ,µ

{ ∫

E

c(x, u(π
(µ)
i ))π

(µ,µ)
i (dx)

}
=

= Eµ

{ ∫
E

c(x, u(πi))πi(dx)
}

(3.216)
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as m → ∞, uniformly in µ from compact subsets of P (E). Summarizing
(3.214)–(3.216), we obtain (3.213) and consequently (3.212).

Corollary 3.57 concludes our approach for the construction of nearly opti-
mal controls in infinite horizon problems with discounting when no measure
transformation is used and the context is that of Section 3.3:

First determine a nearly optimal control function u by using any of the
methods described in section 3.3 and make sure that this function is contin-
uous (automatically true for some of the methods). Applying the extension
procedure (described following (3.66) or below (3.71)) this function can be
considered as an element of the class A = C(P (E), U). For an initial mea-
sure µ ∈ P (E) and corresponding η = µ = (µ(Bm

1 ), . . . , µ(Bm
km

)), compute
then the approximating filter process (πm(µ)

n ) according to (3.204) for a suf-
ficiently large value of m. Since πm(µ)

n ∈ P (Em), this process can actually be
determined.

A nearly optimal control is then obtained by choosing in the generic
period n a control value an given by an = L̃mu(π

m(µ)
n ).

3.5.2 Filter approximation and near optimal control values in the

context of section 3.4

This subsection parallels the previous one and considers the context of sec-
tion 3.4. We shall in fact construct an approximating real filtering pro-
cess πm(µ)

n ∈ P (E) (see (3.220) below), whose finite dimensional statistics
(πm(µ)

n (ϕ1), . . . , π
m(µ)
n (ϕm

m)) can be computed recursively according to (3.144)
and where we use the real observations (yn) instead of the fictitious ones
(ym

n ). We shall then show that the nearly optimal control functions derived
in section 3.4, provided they are continuous, yield nearly optimal controls
when applied to (πm(µ)

n ).
At this stage let us point out the double usage of the index m: In sec-

tion 3.4 it was used to index the approximation induced by considering the
approximating transition operators P a

m(x, dz) in (3.140); it determines the
number of elements in the statistic (πu

n(ϕm
1 ), . . . , πu

n(ϕm
m)) to be used as ar-

guments of a nearly optimal control function um as in (3.178). In this sec-
tion it will index a certain approximating process (see (3.220) below) and
also determine the number of elements to be considered in the statistic
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(πm(µ)
n (ϕm

1 ), . . . , πm(µ)
n (ϕm

m)) when computing it according to the recursions
specified below (3.220) that correspond to those in (3.144). Theorem 3.51
in section 3.4 states that, for m sufficiently large, the control function um is
nearly optimal. Similarly, in Proposition 3.59 below we shall show that, for
m sufficiently large, the approximating process in (3.220) that will provide
the arguments to be used in the nearly optimal control functions comes close
in a certain sense to a limiting process related to the true filter (πn).

Since it will be convenient to let the two indices vary independently from
one another, below we shall denote by m the index in the first usage, while
we shall leave it as m in the second usage. Of the statistic (πm(ν)

n (ϕm
1 ), . . . ,

πm(ν)
n (ϕm

m)) we shall then use only the first m components as arguments of
the nearly optimal control function thereby requiring m > m. To ensure
consistency, we shall then also have to require that, for m′ > m

{ϕm′

1 , . . . , ϕm′

m′} ⊃ {ϕm
1 , . . . , ϕ

m
m} (3.217)

Furthermore, we shall require

(C12) ϕm
i ∈ C(E) for i = 1, 2, . . . ,m

Fix now a positive integer m and recall from section 3.4 that the nearly
optimal control functions are pairs of Borel functions of the form

u0:P (E) 7→ U

u:Rd × [0, ‖ϕm
1 ‖] × . . .× [0, ‖ϕm

m‖] × U 7→ U

(3.218)

that we shall now require to be continuous.
Again, since the approximating process (πm(µ)

n ) itself will not be Markov,
we shall consider pairs of processes, each pair consisting of an approximating
and a ”real” filter. Actually, since the control functions in the present context
depend also on the values of the current observation and the previous control,
we shall more precisely consider quadruples of processes. Notice however
that, since here the approximating filter (πm(µ)

n ) takes values in P (E) (wee
need to compute only its statistic (πm(µ)

n (ϕm
1 ), . . . , πm(µ)

n (ϕm
m)), contrary to

the previous subsection here we shall consider only two such quadruples,
each corresponding to one of the two processes (πn) and (πm

n ) in (1.7) and
(3.14) respectively.
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Given a fixed pair (u0, u) of continuous functions of the form (3.218), for
ν, µ ∈ P (E) let then

qn+1: = (yn+1, π
(ν)
n , π(µ,ν)

n , an), (3.219)

where

π
(ν)
0 (·) = ν(·), π

(µ,ν)
0 (·) = µ(·), a0 = u0(ν)

an+1 = u(yn+1, π
(ν)
n (ϕm

1 ), . . . , π(ν)
n (ϕm

m), an)

π
(ν)
n+1(·) = Man(yn+1, π

(ν)
n )(·), π

(µ,ν)
n+1 (·) = Man(yn+1, π

(µ,ν)
n )(·)

and
qm
n+1: = (yn+1, π

m(ν)
n , πm(µ,ν)

n , an), (3.220)

where

π
m(ν)
0 (·) = ν(·), π

m(µ,ν)
0 (·) = µ(·), a0 = u0(ν)

an+1 = u(yn+1, π
m(ν)
n (ϕm

1 ), . . . , πm(ν)
n (ϕm

m), an)

π
m(ν)
n+1 (·) = Man

m (yn+1, π
m(ν)
n )(·), π

m(µ,ν)
n+1 (·) = Man(yn+1, π

m(µ,ν)
n )(·)

where, again, yn denote the real observations of (xn) according to (1.1) when
the controls are given by (a0, an) as specified below (3.219) and (3.220) re-
spectively.

Lemma 3.58 The processes qn+1, q
m
n+1 are Markov with respect to the σ-

field Y n+1 and have the transition operators T and Tm defined below where
F ∈ bB(Rd × P (E) × P (E) × U)

TF (y, ν1, ν2, a) =
∫

E

∫

Rd

F (y,Ma(y, ν1),M
a(y, ν2),

u(y, ν1(ϕ
m
1 ), . . . , ν1(ϕ

m
m), a))r(z, y)dyMa(y, ν2)(dz)

(3.221)

TmF (y, ν1, ν2, a) =
∫

E

∫

Rd

F (y,Ma
m(y, ν1),M

a(y, ν2),

u(y, ν1(ϕ
m
1 ), . . . , ν1(ϕ

m
m), a))r(z, y)dyMa(y, ν2)(dz)

(3.222)

Moreover, under (A1)–(A4), (C12), the operator T is Feller, and, assuming
additionally (C11), we have the Feller property also of Tm.
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P r o o f . The proof of Markov property follows the considerations of Lem-
ma 1.3 (see also Lemma 3.55). The Feller property is a simple implication of
Proposition 1.4 and the assumption (C12).

Proposition 3.59 Assume (A1)–(A4), (C12) and (D1),(D2). Then if B(Rd×
P (E) × P (E) × U) ∋ Fm → F ∈ C(Rd × P (E) × P (E) × U) as m → ∞
uniformly on compact subsets of Rd × P (E) × P (E) × U and the functions
Fm are uniformly bounded, we have for k = 1, 2, . . .

(Tm)kFm(y, ν1, ν2, a) → (T )kF (y, ν1, ν2, a) (3.223)

as m → ∞ uniformly in (y, ν1, ν2, a) from compact subsets of Rd × P (E) ×
P (E) × U .

P r o o f . By the proof of Proposition 3.56 it suffices to show (3.223) for
k = 1. Let L and Γ, Γ1 be compact subsets of Rd, and P (E) respectively.
For a given ε > 0 one can find compact sets K ⊂ E, L1 ⊂ Rd such that

sup
ν2∈Γ

sup
y∈L

sup
a∈U

Ma(y, ν2)(K
c) ≤ ε

and
sup
z∈K

∫

Lc
1

r(z, y)dy ≤ ε

Then

sup
y∈L

sup
ν1∈Γ

sup
ν2∈Γ

sup
a∈U

|TmFm(y, ν1, ν2, a) − TF (y, ν1, ν2, a)|

≤ 2ε(‖F‖ + ‖Fm‖) + sup
y∈L1

sup
y∈L

sup
ν1∈Γ

sup
ν2∈Γ

sup
a∈U

|Fm(y,Ma
m(y, ν1),M

a(y, ν2), u(y, ν1(ϕ
m
1 ), . . . , ν1(ϕ

m
m), a))

−F (y,Ma(y, ν1),M
a(y, ν2), u(y, ν1(ϕ

m
1 ), . . . , ν1(ϕ

m
m), a))|

By Proposition 3.5, Lemma 3.8 and the compactness of the set {(y,Ma(y, ν1),
Ma(y, ν2), u(y, ν1(ϕ

m
1 ), . . . , ν1(ϕ

m
m), a) with y ∈ L1, y ∈ L, ν1 ∈ Γ, ν2 ∈ Γ, a ∈

U} we obtain (3.223) for k = 1.

The near optimality of the control am
0 = u0(µ), am

n = u(yn, π
m(µ)
n−1 (ϕm

1 ), . . . ,

π
m(µ)
n−1 (ϕm

m), am
n−1) follows now from
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Corollary 3.60 Under the assumptions of Proposition 3.59 for u0 ∈
C(P (E), U), u ∈ C(Rd × [‖0, ϕm

1 ‖] × . . .× [‖0, ϕm
m‖] × U,U),

am
0 = u0(µ)

. . .

am
n+1 = u(yn+1, π

m(µ)
n (ϕm

1 ), . . . , πm(µ)
n (ϕm

m), am
n )

. . .

(3.224)

and

a0 = u0(µ)

. . .

an+1 = u(yn+1, πn(ϕm
1 ), . . . , πn(ϕm

m), an)

. . .

(3.225)

We have
Jβ

µ (am
n ) → Jβ

µ (an) (3.226)

as m→ ∞ uniformly in µ from compact subsets of P (E).

P r o o f . By (3.145)

Jβ
µ (am

n ) =
∫

E

c(x, u0(µ))µ(dx)+

+
∞∑

n=1

βnEu
µ{C(u(yn, π

m(µ)
n−1 (ϕm

1 ), . . . , π
m(µ)
n−1 (ϕm

m), am
n−1), yn,

am
n−1, π

(µ,µ)
n−1 } =

∫

E

c(x, u0(µ))µ(dx)+

+
∞∑

n=1

βnEu
µ{F (yn, π

m(µ)
n−1 , π

(µ,µ)
n−1 , a

m
n−1)} =

=
∫

E

c(x, u0(µ))µ(dx) +
∞∑

n=1

βnEu
µ{(Tm)n−1F (y1, µ, µ, u0(µ))}

(3.227)
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defining thus implicitly the function F that is easily seen to be continuous.
Similarly, noticing that π(µ,µ)

n = πn

Jβ
µ (an) =

∫

E

c(x, u0(µ))µ(dx)+

+
∞∑

n=1

βnEu
µ{C(u(yn, πn−1(ϕ

m
1 ), . . . , πn−1(ϕ

m
m), an−1), yn, an−1, πn−1)}

=
∫

E

c(x, u0(µ))µ(dx) +
∞∑

n=1

βnEu
µ{F (yn, πn−1, πn−1, an−1)} =

=
∫

E

c(x, u0(µ))µ(dx) +
∞∑

n=1

βnEu
µ{(T )n−1F (y1, µ, µ, u0(µ))}

(3.228)
Therefore by Proposition 3.59 we obtain (3.226).

Analogously to Corollary 3.57, the previous Corollary 3.60 concludes our
approach for the construction of nearly optimal controls in infinite horizon
problems with discounting and in the context of section 3.4:

First determine for a sufficiently large m a nearly optimal control function
pair (u0, u) according to the method of section 3.4 and make sure that u0

and u are continuous.
For the initial measure µ ∈ P (E) and for sufficiently large m, with m >

m, compute, according to (3.144) and with the use of the real observations
yn, the statistics (πm(µ)

n (ϕm
1 ), . . . , πm(µ)

n (ϕm
m)). A nearly optimal control is

then given by (3.224).
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