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Objective:
Modern statistics and analysis of x2 laws on
matrix cones

x° laws on matrices are called Wishart laws
Let X be a Gaussian random vector N(m,>) on R",
m e R", > € S’ymf,_al_

fx(z) = (det2r=) /2 exp(—5 (e — m)= ' (x —m)).

X has unknown mean m and covariance >



We dispose of an observed sample X(1) x(2)  x(s)

We want to estimate m and %, using the observed
results X(1), x (2 x(s)



The sample mean

0 o xW 4 x@ 4 4+ xG
XS — —m
S

is an estimator of m = [ XdP

and the sample covariance

is an estimator of ¥ = [(X — m)Y(X — m)dP.

.

> is a R” x ... x R" — Sym™(r,R).



Proposition. The estimators m and X are

maximum likelihood estimators(MLE),

l.e. they maximize the sample density treated as a
function of parameters (likelihood function)

(m, =) = [[ fx@) =11, . 28);m )
1=1

Proof. Maximizing of Inl(z(1), ... 2(8):m ) in (m, X).



Modern research in this area? All seems known and
done? NOQI!!I
Problems. Studying the MLE estimators for > when

1. Some entries of the vector X are known to be
conditionally independent with respect to other ones.

It follows that > is submitted to some restrictive con-
ditions; the range of > is no longer the whole cone
Sym™ (r,R)

but a subcone P C Sym™(r,R) of matrices with obliga-
tory zeros or its dual cone @ (explanation follows)
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2. Some data is missing in observations x (@)

A simplest example: We have s1 "full’ observations of
X and s, observations of first k terms of X. How to
estimate > from such a sample?



Conditional independence

Example: Simpson paradox

A university has 48 000 students
Half boys(24 000), half girls(24 000)

At the final exams: 10 000 boys and 14 000 girls fail
Feminist organizations threaten to close the university,
girl students want to lynch the president!

However, the president of the university proves that the
results R of the exams are independent of the sex S of
a student, knowing the department D



3 departments:

A(sciences)

B (literature, history, languages)
C(law)

16 000 students each

A Succ. Fail B Succ. Fail C Succ. Fail
Girls 3 O 4 4 3 1
Boys 1 3 4 4 9 3

Actually (RLS)|(D = d) for d =A,B,C
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Conditional independence in a.c. case

X = (X1, X5, X3) : Random vector
fx1 x,.x5(®1, 2, 23) : density function

X1 and X3 are conditionally independent knowing X»

S Ix1, X3 Xp=20 = fX1|Xp=00F X3 Xp=25
& fx1,Xx0,x3(71,72,23) = F(x1,22)G (72, 73)
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Example 1. X ~ N(0,X), X ¢ Sym}'j
Fx1 X0.x5(%1, 2, 23) = (det2nX) "1/ 2 exp(—tzZ~1z/2)

Put ¢ := X~1. Mixing z7 and z3 can be avoided only

when o013 = 0:

fx,x5,x5(%1,22,73)

= (2m)~3/2(det o)1/ 2exp(— (01123 + 20127172 + 02273) /2)
><exp(—(2023:1:2:c3 + 033:1;:23)/2)

T herefore,

(X11X3)[Xo & 013=0
The matrix ¢ = X! has obligatory zeros o713 = 037 = 0
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The position of zeros in > 1 is encoded by a graph

G = (V, E) : undirected graph

V ={1,...,7} . the set of vertices
E CV xV : the set of edges
i~j<(i,j) €FE

Zg:={z€Sym(rR)|z;; =0if i j and i j |
Po:=ZsN Sym;" a sub-cone of Sym;"

X ~N(0,5), = lep,

< X; and Xj are conditionally independent knowing all

other components if 1 = j and 7 % j

Example 1 (X;1X3)|X> corresponds to G: 1-2-3

13



Example 1. Graph G = A3: 1-2-3

r11 x12 O
Zg =149 [*r12 720 w23 ||7i; €R
0 x23 733
Po:=ZsN Symél_
This cone is homogeneous
(GL(Pg) acts transitively on Pg)
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§11 §12  *
Z =1 | €12 &2 &3 ||z €R
* €23 £33

Pl =Qq:={¢€zg|trag >0 for all z € Q1 \ {0} |

={§€Z§;| 22 L3l g f33>0}

§23 £33

11 €12

> 0,
§12 &22
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Example 2. Graph G = A4: 1-2-3-4

x11 x21 O 0 )
rp1 x22 x32 O
O x32 233 %43
L\ O O x43 w4 )
Pg = Zgn Sy
This cone is non-homogeneous

Ve

ZG =« |x11,...,:r;44€R

PY=Qq:={&€zg|trag >0 for all z € Q1 \ {0} |

={£€Z§‘;| £33 534>0,§44>O}

§34 §44

§22 &£23
§23 £33

11 €12

> 0,
§12 &22

> 0,

16



T heory of graphical models
started in 1976 by Lauritzen and Speed,
is for decomposable graphs G

(G is decomposable
< (G has no cycle of length > 4 as an induced subgraph
Example:. A; =1-2-3—4 from Example 2

Qo C Zqa is homogeneous if and only if
G is decomposable and Ay-free (Letac-Massam, Ishi)

17



Back to the estimation of the covariance matrix
of a normal vector
Conditional independence case

Simplification:

X =%Xq,...,Xn) : random vector obeying N(0,X)
known mean O, unknown covariance matrix 2 € S;,J"
with ==t € P = Zon St

Sample X(1) . x() g rn
The MLE of < on the whole cone S, is (when s > n)

> = E{X(l) tx(My x@tx(2) . . 4 x() tX(S)} € Sym(n,R)
s

Let us look for an estimator when ~~1 ¢ Pg.
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Example 1. G=1-2-3, 013 =0,

we shall estimate c =Xl e Py and = =o'

The density function of the sample X(1) .. x(s) ¢ R3
f(zD . 208):6) =

= [15_,{(2n)73/2(det o) /2 exp(—tzF) oz (k) /2)}

= (27)35/2(det o)%/2 exp(— Dy ty(K) oz (k) /2)

Note that

> te (k) g (k) = tr( > a:(k)t:c(k))a = <si,a> = <7r(si),a>
where © = projection on Z¢, (since o313 = 0)
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fa, .., 20); 0) = (2m)~3%/2(det 0)/2 exp(—1 <7r(si), 0>)

Which o € Pg is most likely?
Maximum Likelihood Estimation =
it's o = & for which f(z(1), ... 2(5):5) is maximum

We study log f(z(1), ... z(5):5) as a function of o € e

grad, does not contain 8%3; gradlogdetx = r—1

grad log f(z(D, ... 29 5) = %(W(a_l) — ()

If s > 3, then 7(X) belongs to Q.
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We must find o € P5 such that

m(6 1) =7(2) € Qg

The inverse map W to z € Pz — w(z~1) € Qg is needed.
Only if # = Id this is trivial (W (y) =y~ 1)

Then
o =W(r(X)) € Ps is the MLE of ¢
and, consequently

> =6"1=(Wwx(E)) 1 is the MLE of X.
7(X) is the MLE of #(X), which determines X

The MLE argument is valid for any graphical cone.
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CRUCIAL POINTS:
1. law of n(X) on Qg

2. knowledge of the inverse map W
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law of 7(X) on Qg

A~

S = n(5) = Lr(xWixWp x@tx @y 4 () tx()y
S

m(X) € Qg obeys a Wishart law on Qg
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Missing data

The simplest example:
X =t (X1,X5) €R?, X < N(u,X)

We dispose of

s1 "full” observations x(1) . x(s1)

s> incomplete observations x/(1) . . x/(s2)

X" =t (X1,%): the second entry X5 is not observed

It is natural to set
X’ < conditional law of X1|(Xo = uo) = N(u1,-1),

o011
o=3y"1
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f(:c(l), o atsn) (1) ar(s2); o) =
(2m)~(51452)/2 (det 0)51/2552/2 x
exp{—3[>; tzWoz(® + 5,611 (@F )2}, T=2—p

The power function appears

2
A(31—|—52 8_1)(0-) — JiQ]_/ (det 0)81/2
2 2

The MLE equation grad,log f =0 is

grad log A(51+52 31)(0) = 7(g(z(D), ... 701 Q) F(s2)))
2

with a quadratic form ¢(x) equal on the sample x to

a1 N Lys2 (z2(GY2 o < 5
33k, 2010 + (2 Zﬂ—lo(x ) o) =75 (2) @ ¢ ()
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The inverse map W, to
x € Pg — gradlog A(sl+32 81)(0) S@Je
2 2

IS needed.
We show its existence and write it explicitely ([GIM]).

Thus 6 = Ws(n(g(X)) € Py is the MLE of o

and, consequently
7(g(X)) is the MLE of n(X), which determines X
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T he equation

ry ) =¢€Qqg yePg

was solved by Lauritzen(1991) for decomposable graphs
G, in terms of graph theory (cliques, separators...); the
inverse map is called the Lauritzen map

We give such maps in monotonous missing data set-up:

W = (w(gradlog A(Sl,“_ﬁn))_l = —gradlogd_(s, . o)

where §_(,, ¢y is another power function (definitions
later)
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From now on,
G=A,=1—-2—...—n

Q4, and P4 are important non-homogeneous(n > 4)
cones appearing in the statistical theory of graphical
models

T hey correspond to the practical model of nearest neigh-
bour interactions:

in the Gaussian character (X1, X»,...,Xyn), non-neighbours
X, Xj, |t—j| > 1 are conditionally independent with re-

spect to other variables.
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The Wishart laws on Q4 and FPg were first studied by
LLetac, Massam

G. Letac and H. Massam,
Wishart distributions for decomposable graphs,
The Annals of Statistics, 35 (2007), 1278—1323.

Motivations:

- MLE theory
Lauritzen, S.L. (1996) Graphical models. Oxford Uni-
versity Press

- Bayesian statistics: searching conjugate prior dis-
tributions for 7n(X) € Q; and o € Pg

Diaconis P. and Ylvisaker D. (1979) Conjugate pri-
ors for exponential families. The Annals of Statistics
7(2):269-281.
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Letac-Massam, following the Lauritzen graph theory
methods, define power functions H on Q4 and Fg.

For G =A4,=1-2—...—n they are defined:
on @4, by:
ey 7450413
i=2 i

and on Py by
H(a, B,7(y~1))
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Our results:
1. we introduce natural power functions

sy on Qa, A () on Py, M=1,...,n

which contain (strictly) the Letac-Massam functions H.
T hese functions are densities of Riesz measures on the
cones 4, and Py respectively

2. We construct all Wishart families on Q 4, and Py

generated by 5§M)(n) and AéM)(y). They contain
(strictly) the Letac-Massam Wishart families W%By)

P
and (e, B8,m)

We give their properties (density, moments)

31



3. we give an essential extension and simplification of
Letac-Massam theory

4. we prove the Letac-Massam Conjecture on Q4. , ON
Laplace transform property of H(«, 5,1)

5. we find MLE of ¢ and «(X) in the monotonous
missing data case:

we construct an infinity of Lauritzen-type inverse maps
\U§ . QAn > PAn



6. We determine the variance function V(m) for the
Wishart families on @Q 4,, where the mean m = ms(y) is
the expectation of ~sgy.

In [GIK] V(m) is determined for homogeneous cones
This is done thanks to an explicit form of the inverse
mean map s.

W and s are closely related: Wy = —¢_;



Density of ¢(X), X= a normal sample

In order to find MLEs, one needs quadratic forms
g(xM ..., X)) — Wishart law vz ,

the simplest case: ¢(z) = z'z
png = q(Lebgr) a Riesz measure

Liig(n) = Jor e 170V da = [pr e #1%de = 77/2(det n) /2
For an s-sample £ s(n) = 7s/2(det n) /2

For more general q: /L%(n) = c.A_4(n)

Ag(z) =l (detzyy 1)k k41

— 51 detzyq o1 %2 det z o
— 11 11 e detx{l 7“—1}

.....
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If 1 is @ measure on a cone 2 C V = R", then the family
of probability measures

B e—(,9)
Yy (dz) = c(m(y)u(dfv)

is called exponential family generated by pu.

The density of v iS . (0)u§(dy).
Thus, the density of the Riesz measure ps is crucial.
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When Q = Sym,7 = S, the density of the Riesz mea-
sure is given by the multiparameter Siegel integral:

For s € C" with Rs > 551 (k=1,...,n),

;. et 5y (a)(detn) T dr =T 1 ()A 4(€) (£€ 5,

where et s1 detap, 1,51
(5§(ac)=( }) ( , ) 5

detx{z,ﬂ,’/ xnn nn

n—1
Mgt (s) == 2 [R_y T (sp— %)
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POWER FUNCTIONS AND THEIR LAPLACE TRANS-
FORMS for G = A,

Eliminating orders of vertices

There are many (but not all) orders of vertices 1,2,...,n
that we should consider in order to have a harmonious
theory of Riesz and Wishart distributions on the cones

related to A,, graphs.

These orders are called eliminating orders of vertices.

Let vt be the set of future(w.r. to the order) neigbours
(w.r. to the graph) of v.
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An eliminating order of the vertices of G is a permuta-
tion {v1,...,vn} of V such that for all v, the set vT is
a complete graph

Example. For the graph A3 :1 -2 —3:

the orders 1 < 2 <3, 1 <3 <2 3<2<1and
3 <1<2 are eliminating orders

2<1<3and 2 <3 <1 are not eliminating.

Proposition. All eliminating orders on A,, are obtained
by an intertwining of two sequences
1<2<3<...<M-1<M
n<n—1<...<M4+2<M+1<M
foran M e V.
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Definition 1. For s € C", we define functions

AL Pg— C"and o3 : Qg — C™ by

dety .\ Su
U
AF(y) = H< . t{v} - )
veV < Y-
N U AN
o () = 11 det
veV T]U"‘
where dety, =1 =detn,, V = {1,...

(y € Pg),

(n € Qg)
7n}

Property. On the cones Q4 and P4 _, the power func-
tions AZ(y) and 65°(n) for eliminating orders <, depend
only on the maximal element M of the order.

We write AF(y) = AéM)(y), 05 (n) = 5§M)(77)
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Proposition 2. Let M = 1,...,n. The " M-power
functions” AéM)(y) on Py and 5§M)(a:) on Q¢ are given
by:

M o J—
Aé )(y): yill 82...|y{1:M_1}|8M—1 3M|y|SM

><‘y{M—I—l:n}|SM_|_1_SM ynn

5§M)(77) _ |77{z z—|—1}| _T__M—I_l |77{z 1: z}|
- M-—-1 Si—1 SM—1—"SMTSM+1 n—1 Sz—l—l
Hz—2 ;i Ve Hz—M-I—l i

Theorem 3. For all y € Py,

s (r(y=1)) = AW (y).
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Characteristic function of a cone

po(@) = | e Wy = Lig. 1a)(Lebg:)(@)

wo(x)dx is the invariant measure of the cone :

| fea)ea(@)dz = | f@)¢q(@)dr.
For n > 2 define pn 1 Q4, — R4 by

en(n) = H ity =22 T1 ma
1=1n

We will see that ¢, is the characteristic function of the
cone Q4,,-
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Theorem 4. For all n > 1, for all 1 < M < n and for
all y € Py, , the integral

lo 4 e_tr(y”)ééM)(n)goAn(n)dn converges if and only if

S; > % for all + = M and s); > 0. In this case, we

have

Jo,. e TS (), (n)dn

= ORI s - D remnalPw)
i M
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Theorem 5. For alln > 1, for all 1 < M <n and for
allm e Qy4,, the integral

Ip, €~ tr(y”)A§M>(y)dy converges if and only if s; > —%,
for all + = M and sp; > —1. And in this case, we have

fp, e T A ()dy

= 2O DRL T i+ MGar+ D8 (e, ().
i#M
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LETAC-MASSAM LAPLACE INTEGRALS
Recall Letac-Massam power functions on Q4
-1 :
[G=1 [nganipayl®

H(a, ) = == A
i=2 T

The Laplace transform formula Vy € Py,

/QA e tr(yn)H(a’57n)gpQAn(n)d77 — Ca,BH(Oé,ﬁ,W_l(y)),

will be referred to as the Letac-Massam formula on

Qa,
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Define r; = O{i—ﬁi_|_1, foralll1 <:i:<n-—-3andp;, = o;— G,
forall 3<:<n-—1. We have

oy, M=o el |
H(aaﬁan) — 5§ (77) H 777;@'2—1 H 77%7
1=2 1=M+1

where s; = o4, forall 1 <+:< M -1, s; = «a;_1, for all
M4+1<:<nand BMZSM—1_3M+3M—|—1-

We have proved

Theorem. The Letac-Massam formula on @4, holds
if and only if

H(a, B,1) = 65 ()

for some M =2,...,n— 1.
(a new formulation of " Letac-Massam conjecture’ )
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Methods. Change of variables

Let @y i RT xR x Py, — Py, (a,b,2) — y with

ooooooooo

a O ... O
0

0

o}
O

O

The maps &, and W,, are bijections.

\ fao ..

(1
b
0
R 0
o\ [
0
o
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Back to MLE of ¢ and >

Theorem The map

—grad log A(_]\;[) c Py, — Qa,

has the inverse map

grad log 5§M) 1 Qa, — Py,

proved on homogeneous cones by Kai-Nomura (2005)

= solution of MLE equation
gradlog As(5) = m(qy 5 (2) ® ¢ 2(2"))
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