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LAREMA, UNIVERSITÉ D’ANGERS, FRANCJA

Estymatory kowariancji dla modeli graficznych
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Objective:
Modern statistics and analysis of χ2 laws on
matrix cones

χ2 laws on matrices are called Wishart laws

Let X be a Gaussian random vector N(m,Σ) on Rr,
m ∈ Rr, Σ ∈ Sym+

r

fX(x) = (det 2πΣ)−1/2 exp(−1
2
t(x−m)Σ−1(x−m)).

X has unknown mean m and covariance Σ
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We dispose of an observed sample X(1), X(2), ..., X(s)

We want to estimate m and Σ, using the observed

results X(1), X(2), ..., X(s)
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The sample mean

X̄s =
X(1) +X(2) + ...+X(s)

s
= m̂

is an estimator of m =
∫
XdP

and the sample covariance

Σ̂ =
1

s

s∑
i=1

(X(i) − X̄s)t(X(i) − X̄s)

is an estimator of Σ =
∫

(X −m)t(X −m)dP .

Σ̂ is a quadratic map Rr × . . .× Rr 7→ Sym+(r,R).
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Proposition. The estimators m̂ and Σ̂ are

maximum likelihood estimators(MLE),

i.e. they maximize the sample density treated as a

function of parameters (likelihood function)

(m,Σ) 7→
s∏

i=1

fX(x(i)) = l(x(1), . . . , x(s);m,Σ)

Proof. Maximizing of ln l(x(1), . . . , x(s);m,Σ) in (m,Σ).
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Modern research in this area? All seems known and

done? NO!!!

Problems. Studying the MLE estimators for Σ when

1. Some entries of the vector X are known to be

conditionally independent with respect to other ones.

It follows that Σ is submitted to some restrictive con-

ditions; the range of Σ is no longer the whole cone

Sym+(r,R)

but a subcone P ⊂ Sym+(r,R) of matrices with obliga-

tory zeros or its dual cone Q (explanation follows)
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2. Some data is missing in observations X(i)

A simplest example: We have s1 ”full” observations of

X and s2 observations of first k terms of X. How to

estimate Σ from such a sample?
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Conditional independence

Example: Simpson paradox

A university has 48 000 students

Half boys(24 000), half girls(24 000)

At the final exams: 10 000 boys and 14 000 girls fail

Feminist organizations threaten to close the university,

girl students want to lynch the president!

However, the president of the university proves that the

results R of the exams are independent of the sex S of

a student, knowing the department D
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3 departments:

A(sciences)

B(literature, history, languages)

C(law)

16 000 students each

A Succ. Fail B Succ. Fail C Succ. Fail

Girls 3 9 4 4 3 1

Boys 1 3 4 4 9 3

Actually (R⊥S)|(D = d) for d =A,B,C
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Conditional independence in a.c. case

X = (X1, X2, X3) : Random vector

fX1,X2,X3
(x1, x2, x3) : density function

X1 and X3 are conditionally independent knowing X2

⇔ fX1,X3|X2=x2
= fX1|X2=x2

fX3|X2=x2

⇔ fX1,X2,X3
(x1, x2, x3) = F (x1, x2)G(x2, x3)
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Example 1. X ∼ N(0,Σ), Σ ∈ Sym+
3

fX1,X2,X3
(x1, x2, x3) = (det 2πΣ)−1/2 exp(−txΣ−1x/2)

Put σ := Σ−1. Mixing x1 and x3 can be avoided only

when σ13 = 0:

fX1,X2,X3
(x1, x2, x3)

= (2π)−3/2(detσ)1/2exp
(
−(σ11x

2
1 + 2σ12x1x2 + σ22x

2
2)/2

)
×exp

(
−(2σ23x2x3 + σ33x

2
3)/2

)
Therefore,

(X1⊥X3)|X2 ⇔ σ13 = 0

The matrix σ = Σ−1 has obligatory zeros σ13 = σ31 = 0
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The position of zeros in Σ−1 is encoded by a graph

G = (V,E) : undirected graph

V = {1, . . . , r} : the set of vertices

E ⊂ V × V : the set of edges

i ∼ j ⇔ (i, j) ∈ E

ZG :=
{
x ∈ Sym(r,R) |xij = 0 if i 6= j and i 6∼ j

}
PG := ZG ∩ Sym

+
r a sub-cone of Sym+

r

X ∼ N(0,Σ), Σ−1 ∈ PG
⇔ Xi and Xj are conditionally independent knowing all

other components if i 6= j and i 6∼ j

Example 1 (X1⊥X3)|X2 corresponds to G: 1–2–3
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Example 1. Graph G = A3: 1–2–3

ZG :=


x11 x12 0
x12 x22 x23
0 x23 x33

 |xij ∈ R


PG := ZG ∩ Sym

+
3

This cone is homogeneous

(GL(PG) acts transitively on PG)
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Z∗G :=


ξ11 ξ12 ∗
ξ12 ξ22 ξ23
∗ ξ23 ξ33

 |xij ∈ R


P ∗G = QG :=

{
ξ ∈ Z∗G | tr xξ > 0 for all x ∈ Ω1 \ {0}

}
=

{
ξ ∈ Z∗G |

∣∣∣∣∣ξ11 ξ12
ξ12 ξ22

∣∣∣∣∣ > 0,

∣∣∣∣∣ξ22 ξ23
ξ23 ξ33

∣∣∣∣∣ > 0, ξ33 > 0

}
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Example 2. Graph G = A4: 1–2–3–4

ZG :=



x11 x21 0 0
x21 x22 x32 0
0 x32 x33 x43
0 0 x43 x44

 |x11, . . . , x44 ∈ R


PG := ZG ∩ S

+
4

This cone is non-homogeneous

P ∗G = QG :=
{
ξ ∈ Z∗G | tr xξ > 0 for all x ∈ Ω1 \ {0}

}
=

{
ξ ∈ Z∗G |

∣∣∣∣∣ξ11 ξ12
ξ12 ξ22

∣∣∣∣∣ > 0,

∣∣∣∣∣ξ22 ξ23
ξ23 ξ33

∣∣∣∣∣ > 0,

∣∣∣∣∣ξ33 ξ34
ξ34 ξ44

∣∣∣∣∣ > 0, ξ44 > 0

}
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Theory of graphical models

started in 1976 by Lauritzen and Speed,

is for decomposable graphs G

G is decomposable

⇔ G has no cycle of length ≥ 4 as an induced subgraph

Example: A4 =1–2–3–4 from Example 2

ΩG ⊂ ZG is homogeneous if and only if

G is decomposable and A4-free (Letac-Massam, Ishi)
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Back to the estimation of the covariance matrix
of a normal vector
Conditional independence case

Simplification:
X = t(X1, . . . , Xn) : random vector obeying N(0,Σ)
known mean 0, unknown covariance matrix Σ ∈ S+

n

with Σ−1 ∈ PG = ZG ∩ S
+
n

Sample X(1), . . . , X(s) ∈ Rn

The MLE of Σ on the whole cone S+
n is (when s ≥ n)

Σ̃ =
1

s
{X(1) tX(1)+X(2) tX(2)+· · ·+X(s) tX(s)} ∈ Sym(n,R)

Let us look for an estimator when Σ−1 ∈ PG.
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Example 1: G=1-2-3, σ13 = 0,

we shall estimate σ = Σ−1 ∈ PG and Σ = σ−1

The density function of the sample X(1), . . . , X(s) ∈ R3

f(x(1), . . . , x(s);σ) =

=
∏s
k=1{(2π)−3/2(detσ)1/2 exp(−tx(k)σx(k)/2)}

= (2π)−3s/2(detσ)s/2 exp(−
∑s
k=1

tx(k)σx(k)/2)

Note that
s∑

k=1

tx(k)σx(k) = tr (
s∑

k=1

x(k)tx(k))σ =
〈
sΣ̃, σ

〉
=
〈
π(sΣ̃), σ

〉
where π = projection on Z∗G (since σ13 = 0)
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f(x(1), . . . , x(s);σ) = (2π)−3s/2(detσ)s/2 exp(−1
2

〈
π(sΣ̃), σ

〉
)

Which σ ∈ PG is most likely?

Maximum Likelihood Estimation ⇒
it’s σ = σ̂ for which f(x(1), . . . , x(s); σ̂) is maximum

We study log f(x(1), . . . , x(s);σ) as a function of σ ∈ ZG
gradσ does not contain ∂

∂σ13
; grad log detx = x−1

grad log f(x(1), . . . , x(s);σ) =
s

2
(π(σ−1)− π(Σ̃))

If s ≥ 3, then π(Σ̃) belongs to QG.
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We must find σ̂ ∈ PG such that

π(σ̂−1) = π(Σ̃) ∈ QG
The inverse map Ψ to x ∈ PG 7→ π(x−1) ∈ QG is needed.

Only if π = Id this is trivial (Ψ(y) = y−1)

Then

σ̂ = Ψ(π(Σ̃)) ∈ PG is the MLE of σ

and, consequently

Σ̂ = σ̂−1 = (Ψ(π(Σ̃))−1 is the MLE of Σ.

π(Σ̃) is the MLE of π(Σ), which determines Σ

The MLE argument is valid for any graphical cone.
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CRUCIAL POINTS:

1. law of π(Σ̃) on QG

2. knowledge of the inverse map Ψ
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law of π(Σ̃) on QG

π(Σ̃) is a quadratic map of the normal sample with

values in QG:

Σ̂ = π(Σ̃) =
1

s
π(X(1) tX(1)+X(2) tX(2)+· · ·+X(s) tX(s))

π(Σ̃) ∈ QG obeys a Wishart law on QG
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Missing data

The simplest example:

X =t (X1, X2) ∈ R2, X ↪→ N(µ,Σ)

We dispose of

s1 ”full” observations X(1), . . . , X(s1)

s2 incomplete observations X ′(1), . . . , X ′(s2)

X ′ =t (X1, ∗): the second entry X2 is not observed

It is natural to set

X ′ ↪→ conditional law of X1|(X2 = µ2) = N(µ1,
1
σ11

),

σ = Σ−1
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f(x(1), . . . , x(s1), x′(1), . . . , x′(s2);σ) =

(2π)−(s1+s2)/2 (detσ)s1/2σ
s2/2
11 ×

exp{−1
2[
∑
i
tx̄(i)σx̄(i) +

∑
j σ11(x̄′(j))2]}, x̄ = x− µ

The power function appears

∆
(
s1+s2

2 ,
s1
2 )

(σ) = σ
s2/2
11 (detσ)s1/2

The MLE equation gradσ log f = 0 is

grad log ∆
(
s1+s2

2 ,
s1
2 )

(σ) = π(q̃(x̄(1), . . . , x̄(s1), x̄′(1), . . . , x̄′(s2)))

with a quadratic form q̃(x) equal on the sample x to

1
2
∑s1
i=1 x̄

(i) tx̄(i) +

(
1
2
∑s2
j=1(x̄′(j))2 0

0 0

)
= q

⊗s1
1,2 (x)⊗ q⊗s2

1 (x′)
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The inverse map Ψs to

x ∈ PG 7→ grad log ∆
(
s1+s2

2 ,
s1
2 )

(σ) ∈ QG

is needed.

We show its existence and write it explicitely ([GIM]).

Thus σ̂ = Ψs(π(q̃(X)) ∈ PG is the MLE of σ

and, consequently

π(q̃(X)) is the MLE of π(Σ), which determines Σ
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The equation

π(y−1) = ξ ∈ QG, y ∈ PG
was solved by Lauritzen(1991) for decomposable graphs

G, in terms of graph theory (cliques, separators...); the

inverse map is called the Lauritzen map

We give such maps in monotonous missing data set-up:

Ψs = (π(grad log ∆(s1,...,sn))−1 = −grad log δ−(s1,...,sn)

where δ−(s1,...,sn) is another power function (definitions

later)
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From now on,

G = An = 1− 2− . . .− n

QAn and PAn are important non-homogeneous(n ≥ 4)

cones appearing in the statistical theory of graphical

models

They correspond to the practical model of nearest neigh-

bour interactions:

in the Gaussian character (X1, X2, . . . , Xn), non-neighbours

Xi, Xj, |i− j| > 1 are conditionally independent with re-

spect to other variables.
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The Wishart laws on QG and PG were first studied by
Letac, Massam

G. Letac and H. Massam,
Wishart distributions for decomposable graphs,
The Annals of Statistics, 35 (2007), 1278–1323.

Motivations:

- MLE theory
Lauritzen, S.L. (1996) Graphical models. Oxford Uni-
versity Press

- Bayesian statistics: searching conjugate prior dis-
tributions for π(Σ) ∈ QG and σ ∈ PG
Diaconis P. and Ylvisaker D. (1979) Conjugate pri-
ors for exponential families. The Annals of Statistics
7(2):269-281.
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Letac-Massam, following the Lauritzen graph theory

methods, define power functions H on QG and PG.

For G = An = 1− 2− . . .− n they are defined:

on QAn by:

H(α, β, η) =

∏n−1
i=1 |η{i:i+1}|αi∏n−1

i=2 η
βi
ii

and on PAn by

H(α, β, π(y−1))
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Our results:
1. we introduce natural power functions

δ
(M)
s (η) on QAn, ∆(M)

s (y) on PAn, M = 1, . . . , n

which contain (strictly) the Letac-Massam functions H.
These functions are densities of Riesz measures on the
cones QAn and PAn respectively

2. We construct all Wishart families on QAn and PAn

generated by δ
(M)
s (η) and ∆(M)

s (y). They contain
(strictly) the Letac-Massam Wishart families γ

Q
(α,β,y)

and γP(α,β,η)

We give their properties (density, moments)
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3. we give an essential extension and simplification of

Letac-Massam theory

4. we prove the Letac-Massam Conjecture on QAn, on

Laplace transform property of H(α, β, η)

5. we find MLE of σ and π(Σ) in the monotonous

missing data case:

we construct an infinity of Lauritzen-type inverse maps

Ψs : QAn 7→ PAn



6. We determine the variance function V (m) for the

Wishart families on QAn, where the mean m = ms(y) is

the expectation of γs,y.

In [GIK] V (m) is determined for homogeneous cones

This is done thanks to an explicit form of the inverse

mean map ψs.

Ψs and ψs are closely related: Ψs = −ψ−s



Density of q̃(X), X= a normal sample

In order to find MLEs, one needs quadratic forms
q̃(X(1), . . . , X(s)) ↪→ Wishart law γq̃,σ

the simplest case: q(x) = x tx
µq = q(LebRr) a Riesz measure

Lµq(η) =
∫
Rr e
−〈η,x tx〉dx =

∫
Rr e
−txηxdx = πr/2(det η)−1/2

For an s-sample L
µ⊕sq

(η) = πrs/2(det η)−s/2

For more general q̃: Lµq̃(η) = c.∆−s(η)

∆s(x) :=
∏r
k=1(detx{1,...,k})

sk−sk+1

= x
s1
11

(
detx{1,2}

x11

)s2
. . .

(
detx

detx{1,...,r−1}

)sr
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If µ is a measure on a cone Ω ⊂ V = Rn, then the family

of probability measures

γy(dx) =
e−(x,y)

L(µ)(y)
µ(dx)

is called exponential family generated by µ.

The density of γs,σ is e−(y,σ)

Lµs(σ)µs(dy).

Thus, the density of the Riesz measure µs is crucial.
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When Ω = Sym+
n = S+

n , the density of the Riesz mea-

sure is given by the multiparameter Siegel integral:

For s ∈ Cn with <sk > k−1
2 (k = 1, . . . , n),

∫
S+
n

e−tr xξδs(x)(detx)−
n+1

2 dx = Γ
S+
n

(s)∆−s(ξ) (ξ ∈ S+
n ),

where

δs(x) =
(

detx
detx{2,...,n}

)s1
. . .

(
detx{n−1,n}

xnn

)sn−1
xsnnn,

Γ
S+
n

(s) := π
n−1

2
∏n
k=1 Γ(sk − k

2)
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POWER FUNCTIONS AND THEIR LAPLACE TRANS-
FORMS for G = An

Eliminating orders of vertices

There are many (but not all) orders of vertices 1,2, . . . , n
that we should consider in order to have a harmonious
theory of Riesz and Wishart distributions on the cones
related to An graphs.

These orders are called eliminating orders of vertices.

Let v+ be the set of future(w.r. to the order) neigbours
(w.r. to the graph) of v.
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An eliminating order of the vertices of G is a permuta-
tion {v1, . . . , vn} of V such that for all v, the set v+ is
a complete graph

Example. For the graph A3 : 1− 2− 3:
the orders 1 ≺ 2 ≺ 3, 1 ≺ 3 ≺ 2, 3 ≺ 2 ≺ 1 and
3 ≺ 1 ≺ 2 are eliminating orders
2 ≺ 1 ≺ 3 and 2 ≺ 3 ≺ 1 are not eliminating.

Proposition. All eliminating orders on An are obtained
by an intertwining of two sequences

1 ≺ 2 ≺ 3 < . . . ≺M − 1 ≺M
n ≺ n− 1 ≺ . . . ≺M + 2 ≺M + 1 ≺M
for an M ∈ V .
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Definition 1. For s ∈ Cn, we define functions

∆≺s : PG → Cn and δ≺s : QG → Cn by

∆≺s (y) :=
∏
v∈V

(det y{v}∪v−

det y
v−

)sv
(y ∈ PG),

δ≺s (η) :=
∏
v∈V

(det η{v}∪v+

det η
v+

)sv
(η ∈ QG)

where det y∅ = 1 = det η∅, V = {1, . . . , n}

Property. On the cones QAn and PAn, the power func-

tions ∆≺s (y) and δ≺s (η) for eliminating orders ≺, depend

only on the maximal element M of the order.

We write ∆≺s (y) = ∆(M)
s (y), δ≺s (η) = δ

(M)
s (η)
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Proposition 2. Let M = 1, . . . , n. The ”M-power

functions” ∆(M)
s (y) on PG and δ(M)

s (x) on QG are given

by:

∆(M)
s (y) = y

s1−s2
11 . . . |y{1:M−1}|sM−1−sM |y|sM

×|y{M+1:n}|sM+1−sM . . . y
sn−sn−1
nn .

δ
(M)
s (η) =

∏M−1
i=1 |η{i:i+1}|si

∏n
i=M+1 |η{i−1:i}|si∏M−1

i=2 η
si−1
ii · ηsM−1−sM+sM+1

MM ·
∏n−1
i=M+1 η

si+1
ii

.

Theorem 3. For all y ∈ PAn,

δ
(M)
s (π(y−1)) = ∆(M)

−s (y).
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Characteristic function of a cone

ϕΩ(x) =
∫

Ω∗
e−(x,y)dy = L(Ω∗,Leb)(LebΩ∗)(x)

ϕΩ(x)dx is the invariant measure of the cone Ω:∫
Ω
f(gx)ϕΩ(x)dx =

∫
Ω
f(x)ϕΩ(x)dx.

For n ≥ 2 define ϕn : QAn → R+ by

ϕn(η) =
n−1∏
i=1

|η{i,i+1}|
−3/2 ∏

i6=1,n

ηii

We will see that ϕn is the characteristic function of the

cone QAn.
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Theorem 4. For all n ≥ 1, for all 1 ≤ M ≤ n and for

all y ∈ PAn, the integral∫
QAn

e− tr(yη)δ
(M)
s (η)ϕAn(η)dη converges if and only if

si >
1
2, for all i 6= M and sM > 0. In this case, we

have ∫
QAn

e− tr(yη)δ
(M)
s (η)ϕAn(η)dη

= π(n−1)/2
{ ∏
i 6=M

Γ(si −
1

2
)
}

Γ(sM)∆(M)
−s (y).
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Theorem 5. For all n ≥ 1, for all 1 ≤ M ≤ n and for

all η ∈ QAn, the integral∫
PAn

e− tr(yη)∆(M)
s (y)dy converges if and only if si > −3

2,

for all i 6= M and sM > −1. And in this case, we have∫
PAn

e− tr(yη)∆(M)
s (y)dy

= π(n−1)/2
{ ∏
i6=M

Γ(si +
3

2
)
}

Γ(sM + 1)δ(M)
−s (η)ϕAn(η).
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LETAC-MASSAM LAPLACE INTEGRALS

Recall Letac-Massam power functions on QAn

H(α, β, η) =

∏n−1
i=1 |η{i:i+1}|αi∏n−1

i=2 η
βi
ii

The Laplace transform formula ∀y ∈ PAn∫
QAn

e− tr(yη)H(α, β, η)ϕQAn(η)dη = Cα,βH(α, β, π−1(y)),

will be referred to as the Letac-Massam formula on

QAn
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Define ri = αi−βi+1, for all 1 ≤ i ≤ n−3 and pi = αi−βi,
for all 3 ≤ i ≤ n− 1. We have

H(α, β, η) = δ
(M)
s (η)

M−1∏
i=2

η
ri−1
ii

n−1∏
i=M+1

η
pi
ii ,

where si = αi, for all 1 ≤ i ≤ M − 1; si = αi−1, for all
M + 1 ≤ i ≤ n and βM = sM−1 − sM + sM+1.

We have proved

Theorem. The Letac-Massam formula on QAn holds
if and only if

H(α, β, η) = δ
(M)
s (η)

for some M = 2, . . . , n− 1.
(a new formulation of ”Letac-Massam conjecture”)
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Methods. Change of variables

Let Φn : R+ × R× PAn−1
−→ PAn, (a, b, z) 7−→ y with

y =


1
b . . .
0
... . . .
0 . . . . . . . . . 0 1



a 0 . . . 0
0
... z
0




1
b . . .
0
... . . .
0 . . . . . . . . . 0 1



T

Let Ψn : R+ × R×QAn−1
−→ QAn, (α, β, x) 7−→ η with

η = π




1
β . . .
0
... . . .
0 . . . . . . . . . 0 1



T 
α 0 . . . 0
0
... x
0




1
β . . .
0
... . . .
0 . . . . . . . . . 0 1



.

The maps Φn and Ψn are bijections.
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Back to MLE of σ and Σ

Theorem The map

−grad log ∆(M)
−s : PAn → QAn

has the inverse map

grad log δ(M)
s : QAn → PAn

proved on homogeneous cones by Kai-Nomura (2005)

⇒ solution of MLE equation

grad log ∆s(σ̂) = π(q⊗s1
1,2 (x)⊗ q⊗s2

1 (x′))
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