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o Introduction




Due to the wide use of stochastic diffusion problem arose establish
conditions of stability and control of such systems. The paper [6]
sufficient conditions of stability of stochastic systems via Lyapunov
function properties and obtained estimates of large deviations of linear
diffusion systems.
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Due to the wide use of stochastic diffusion problem arose establish
conditions of stability and control of such systems. The paper [6]
sufficient conditions of stability of stochastic systems via Lyapunov
function properties and obtained estimates of large deviations of linear
diffusion systems. On the other hand, it is important asymptotic
behavior of diffusion processes that considered in [20] and [21].
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Due to the wide use of stochastic diffusion problem arose establish
conditions of stability and control of such systems. The paper [6]
sufficient conditions of stability of stochastic systems via Lyapunov
function properties and obtained estimates of large deviations of linear
diffusion systems. On the other hand, it is important asymptotic
behavior of diffusion processes that considered in [20] and [21].
Construction of semi-Markov processes and investigation of asymptotic
properties of random processes with semi-Markov switching are
devoted [1, 2, 3, 4].
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In this paper, we consider dynamical system with semi-Markov
switchings using small series parameter. x(t),t > 0 is a semi-Markov
process in the standard phase space of states (X, £), generated by
renewal Markov process x,, 7, n > 0 defined by a semi-Markov kernel:

Q(t,x, B) = P(z, B)Gx(1),
where the stochastic kernel
P(z,B) := P{zp4+1 € Blz, =2},Be€ €&
defines an embedded Markov chain z,, = z(7,) at renewal moments:

n
Tnzzek‘7n2077—0:07
k=1

with intervals 6,1 = 7,11 — 7% between renewal moments. 6,, are
defined by the distribution functions

G.(t) = P{Op4+1 < t|x, = x} =: P{0, < t}.

Rosa W., Chabanyuk Y., Khimka U. ‘Compensating operator of diffusion p September 9, 2016 5/ 42



A semi-Markov process is defined by the relation:
z(t) = 2y, >0,
where the counting process v(t) is defined by the formula:
v(t) == max{n: 1, <t},t >0.

We consider a semi-Markov process z(t),t > 0 that is regular and
uniformly ergodic with stationary distribution 7(B), B € &:

w(dz) = p(dx)m(zx)/m.

Here p(B), B € &, is a stationary distribution of Markov chain
attached.
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© Problem




Problem

Diffusion process uf(t) € R? in averaging scheme with a small
parameter € > 0 defined by stochastic differential equation

duf(t) = C (uf(t); z (é)) dt + o (u () duw(t) (1)

where: u®(t),t > 0 - random evolution in a diffusion process (1) [11][9,
14, 15];

x(t),t > 0 - semi-Markov process [11][8, 12, 13];

w(t) - Wiener process [3,4, 5].
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Semigroup C§+s(1:),t >0,s > 0,7 € X accompanying systems
dug(t) = Cug(t); 2)dt + 0 (ux(t))dw(t), uz(0) = u,
defined by the relation
Chys(@)p(u) = pug(t +5)), uz(t) = u

where
Ug(t+5) == uz(t + s,u), uz (t) := ug(t,u)

(4) - semigroup property.
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Generating operator C(z) semigroup C}, () is defined by form

C(z)p(u) = C(u, z)¢' (u) + 102( )¢ (w), (5)

where ¢(u) € C(RY).
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@ Main result




Theorem

Let regression function C(u,x) and variation o(u) satisfy the following
conditions:

C1: O(u,-) € C?(R%)

C2: o(u) € C?*(RY).

C3: the distribution functions Gx(t),t > 0,2 € X satisfy the Cramer
condition uniformly in z € X,

o0

sup /ehtam(t)dt < H < +o0,h >0
zeX

Then the solution u®(t),t > 0 of the equation (1) converges weakly to

the limit diffusion process ((t),t > 0 as € — 0, which is defined by the
generator

Lp(u) = Cu)g/ () + 50> () (u),

v
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@ Limit operator properties




MRP

We introduce advanced Markov renewal process (MRP) [11], which
given sequence:

Uy = U (Ty), 2y = 25(7,), 7y = €T, (6)

where 7, = Y p_, 0, n >0, 79 = 0, there are times renewal
semi-Markov process x(t),t > 0, [6] determined by the distribution
function of the time spent in the state x.

Rosa W., Chabanyuk Y himka U. ‘Compensating operator of diffusion p: September 9, 2016 14 / 42



Compensating operator

Definition 1. [11][16] Compensating operator advanced MRP (6) is
defined by the form

Li(2)p(u,z,t) = e [E{p(us 11, 2541, Ty U5y = u, 25, = 2,7, =t}

— p(u,2,1)]/9(x). (7)
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Lemma (1)
Compensating operator (7) on test-functions o(u) is defined by formula:
L (@)o(u, ) =
=14(0) | [ 6a(ds) Chyo(a) [ Plasdyotusy) — olusz)|  (®)
where : ) -
g(z) = ﬁ,g(ac) — B, — 0/(1 _ Ga())dt
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Proof: Given point u; we have:

e}
Bl af) = ECh, (a)p(u,21) = [ Galds)Clyla) [ Plasd)etuy
0 X

Here we have (9).
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Lemma (2)
Compensating operator L;(x) is defined by form

Li(z)p(u,z) = e Qp(u, &) + ' [Gi(z) — I] Qoe(u, ), (9)

where Gf(x fG (ds)Clyoq().
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Proof. From (8) have

Li (2)p(u, ) =g (2) / Go(ds)Cly () / P, dy)p(u,y) — ol z)
0 X

/p 2, dy) [p(u, y) — o(u, z)]

+e tg(x /Gxds ) [Clyes — 1] /dey ,Y).
0 X

Then we obtain (9) O
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Lemma (3)
Compensating operator L;(x) has the asymptotic representation
Li ()¢ (u, x) = e~ Qp(u, ) + 61 (z) Pp(u, z) (10)

Li (2)p(u, v) = €' Qp(u, v) + Clz)p(u, v) +eb3(z)p(u,x)  (11)

where

and
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Proof. We have semigroup equation Ci, . (z),t > 0,z € X,
dCt-‘res( ) - 5C($)Ci+ssd‘5'

Integrating by parts we have:

u = C£+€S d'l) — Gw(dé
du=¢eC(z)Ci ., ds v=—-GCG,

Gi(z)—1I = / Ga(ds) [Ciys(x) — 1] =
0

= _Gﬂf(s) [Cngss( 5/ $ C€+s( )dS
0
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Given Kramer condition we have:

Gi(r) ~T=¢ / Ga(5)C(2)CL oy (2)ds = £C(x) / Ga(5)Clyoy(w)ds
0 0

Hence we have (10).
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For

00
/ t—i—as dl‘
0

integrating by parts we have:

00
t
/ Ct+ss dm -
0
o]

—(2 00 —(2
= Cly(@) T+ e / C@)Ct, . (2) - G (s)ds
0

u=Cl, dv = G,(ds)
du=¢eC(z)Cl  ,ds v= —E; (s)

=m(z)l + C(x)e 6;2)C§+€sds.

[
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Thus we have
i1(x) =m(x)] + C(x)eGi ()

where:

2
/G() Ct—i—ss )d

(2) / G(l)

C(@)G5, (2) = Clx) [m(@) +2C(2) G o(2)]
— m(2)C(x) + £(C())G§ o).

Hence:
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where
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Lemma (4)

Compensating operator L;(x) has the asymptotic representation in the
function ¢ (u,x) = p(u) + ep1(u, x)

Li (2)¢" (u, ) = Qp1(u, x) + £~ Qp(u) + C(z)p(u) + e6°(z)p(u)

where 0°(«)p(u) = 05 () Pe1 (u, 2) + 05 () (u)
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Proof. We have
Li(z) [p(u) + ep1(u, )] =

€ [5_1Q + HiP] o1(u,z) + [s_lQ + C(z) + 60§(w)] o(u) =

Qo1 (u, ) + e (2)Pir(u, z) + £~ Qep(u) + Cla)p(u) + £b5(a)p(u).
0
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Lemma (5)

Given singular perturbation problem[6, 14,18], limit generator L is
defined by formula:
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Proof. From what ¢(u) € Ng we have

Qi (u) = 0.

Using formula from lemma 4 we have:

Qp1(u, ) + Cz)p(u) = Lp(u),

where L = IIC(z)II

Qip1(u, z) = (C(z) — L)p(u) = L(z)p(u)

where

Hence

#1(u, 2) = RoL()p(u). (12)

We lemma 5 statement [6].
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Theorem

[11] Pattern limit theorem: If the following conditions holds: (C1): The
family of embedded Markov renewal process &;,x5,t > 0,e > 0, is
relatively compact
(C2): There exists a family of test functions ¢°(u,x) in C°(RY x E),
such that

lim ° (u, 2) = p(u),

e—0

uniformly on u,x.
(C3): The following convergence holds
lim L% (u, 7) = Lip(u),

e—0

uniformly on w,x. The family of functions LFp® e > 0 is uniformly
bounded and Lf¢° and Ly belong to C(R? x E).
(C4): The convergence of the initial values holds, that is,

&5 g,e—0
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Pattern limit Theorem

Then the weak convergence:

& = &,e— 0

takes place. The limit process &,t > 0 with generator L and is
characterized by the martingale:

t
pe = (&) — /O Lo(&s)ds, t > 0.
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Corollary

The diffusion process ((t),t > 0 is the solution of the stochastic
differential equation:

d¢(t) = C(¢(8))dt + o (C(t))dw(t)
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Conclusions. This result can be used in Poisson Aproximation
scheme [17, 18] for the diffusion process with semi-Markov switching.
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Theorem

Let regression function C(u,x) and variation o(u,x) satisfy the
following conditions:

C1: O(u,-) € C?(R%)

C2: o(u,-) € C?(RY).

C3: the distribution functions G4(t),t > 0,2 € X satisfy the Cramer
condition uniformly in x € X,

sup /ehtax(t)dt < H < +o0,h >0
zeX
0

Then the solution u®(t),t > 0 of the equation

duf(t) = C (uf(t);x (é)) dtro (uf(t);a: (g)) dw(?)
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converges weakly to the limit diffusion process ((t),t > 0 as € — 0,
which is defined by the generator

Lo(u) = C(u)g' () + 50 ()" ()

where

o?(u) = /W(d:L‘)O’2(’LL,.’,E),O'2(U,ZII) = o*(u,x)o(u,x).

X
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