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Abstract

The existence of global regular axisymmetric solutions to the Navier-Stokes equa-
tions without swirl and in a finite axisymmetric cylinder is proved. The solutions
are such that norms bounded with respect to time are controlled by the same con-
stant for all t ∈ R+. Assuming that the initial velocity and the external force are
sufficiently close to the initial velocity and the external force of a nonswirl axisym-
metric solutions, we prove existence of global regular axisymmetric solutions which
remain close to the nonswirl axisymmetric solution for all time. In this sense we
have stability of nonswirl axisymmetric solutions. However, to prove this we need
a smallness condition on the aximuthal component of vorticity of the external force
for the nonswirl solution.
AMS subject classification. Primary, 35Q30, 35B35, 76D03, 76D05, 76D10;
Secondary,
Key words: axisymmetric solutions to the Navier-Stokes equations, stability of
nonswirl solutions, global regular axisymmetric solutions, special slip boundary con-
ditions

1 Introduction

In this paper we consider axially symmetric solutions to the Navier-Stokes equations

(1.1) vt + v · ∇v − ν∆v +∇p = f,

(1.2) div v = 0,

where v = (v1(x, t), v2(x, t), v3(x, t)) ∈ R3 is the velocity of the fluid, p = p(x, t) ∈ R is
the pressure, f = (f1(x, t), f2(x, t), f3(x, t)) ∈ R3 is the external force field, ν > 0 is the
constant viscosity ceofficient, x = (x1, x2, x3) are the Cartesian coordinates.
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Equations (1.1), (1.2) are considered in an axisymmetric cylindrical bounded domain
Ω ⊂ R3 with the axis of symmetry equal to the x3-axis. Let S be the boundary of Ω. On
S we assume the following conditions

(1.3) v · n̄ = 0, on S,

(1.4) azimuthal component of vorticity vanishes on S,

(1.5) azimuthel component of velocity vanishes on S,

where n̄ is the unit outward vector normal to S.

The boundary S is split two parts S = S1 ∪ S2, where S1 is parallel to x3-axis and S2

perpendicular. We have that S2 = S2(−a) ∪ S2(a), where a > 0 is given and S2(b) meets
the x3-axis at x3 = b, b ∈ {−a, a}.
Finally, we add the initial conditions

(1.6) v|t=0 = v(0).

The aim of this paper is to prove stability of nonswirl axisymmetric solutions in a set of
general axisymmetric solutions. Moreover, we have to prove global existence of regular
nonswirl axisymmetric solutions bounded by constants independent of time. To examine
axisymmetric solutions we introduce the cylindrical coordinates r, φ, z by the relations

(1.7) x1 = r cosφ, x2 = r sinφ, x3 = z.

Next, we use the orthonormal basis

(1.8) ēr = (cosφ, sinφ, 0), ēφ = (− sinφ, cosφ, 0), ēz = (0, 0, 1) ≡ ē3.

Then the cylindrical coordinates of v, ω = rotv, f are defined by

(1.9) v(r, z, t) = vr(r, z, t)ēr + vφ(r, z, t)ēφ + vz(r, z, t)ēz,

(1.10)

ω̄(r, z, t) = ωr(r, z, t)ēr + ωφ(r, z, t)ēφ + ωz(r, z, t)ēz

= −vφ,z ēr + (vr,z − vz,r)ēφ +

(
vφ,r +

1

r
vφ

)
ēz,

(1.11) f(r, z, t) = fr(r, z, t)ēr + fφ(r, z, t)ēφ + fz(r, z, t)ēz

Let us recall that the swirl is defined by

(1.12) u0 = rvφ.

Nonswirl axisymmetric solutions satisfy (see [1]) (vφ = 0)

(1.13)
1
ω,t +

1
v · ∇ 1

ω − ν

(
∇2 − 1

r2

)
1
ω − 1

r

1
vr

1
ω =

1

Fφ in Ω+ = Ω× R+,
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(1.14) −
(
∇2 − 1

r2

)
1

ψ =
1
ω in Ω+,

where
1

Fφ =
1

f r,z −
1

f z,r,
1
ω =

1
ωφ,

1

ψ is the stream function, which implies the radial and
axial components of velocity

(1.15)
1
vr = −

1

ψ,z,
1
vz =

1

r
(r

1

ψ),r.

From (1.3)–(1.5) we have

(1.16)
1
ω|S = 0,

1
vr|S1 = 0,

1
vz|S2 = 0.

In view of (1.15) boundary conditions (1.16)2,3 are satisfied if

(1.17)
1

ψ|S = 0.

The axisymmetric solutions with nonvanishing swirl to the Navier-Stokes equations satisfy
the problem

(1.18)
2
u,t +

2
v · ∇2

u− ν

(
∇2 − 1

r2

)
2
u+

1

r

2
vr

2
u =

2

fφ in Ω+,

(1.19)
2
ω,t +

2
v · ∇ 2

ω − ν

(
∇2 − 1

r2

)
2
ω − 1

r

2
vr

2
ω − 2

r

2
u
2
u,z =

2

Fφ in Ω+,

(1.20) −
(
∇2 − 1

r2

)
2

ψ =
2
ω in Ω+,

where
2
ω =

2
ωφ,

2

Fφ =
2

f r,z −
2

f z,r,
2
u =

2
vφ and

2

ψ implies the radial and axial components of
velocity

(1.21)
2
vr = −

2

ψ,z,
2
vz =

1

r
(r

2

ψ),r

From (1.3)–(1.5) we have

(1.22)
2
ω|S = 0,

2
u|S = 0,

2
vr|S1 = 0,

2
vz|S2 = 0.

The last two boundary conditions in (1.22) are satisfied in view of the assumption

(1.23)
2

ψ|S = 0.

To complete the above problems we assume the following initial conditions

(1.24)
1

ψ|t=0 =
1

ψ(0),
1
ω|t=0 =

1
ω(0)
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and

(1.25)
2

ψ|t=0 =
2

ψ(0),
2
ω|t=0 =

2
ω(0),

2
u|t=0 =

2
u(0).

To examine the above problems and show stability we introduce the quantities with lower
index 1 by the following relations

(1.26)
k
u = r

k
u1,

k
ω = r

k
ω1,

k

ψ = r
k

ψ1,
k

fφ = r
k

fφ1,
k

Fφ = r
k

Fφ1, k = 1, 2,

where
1
u1 = 0,

1

fφ1 = 0. Hence, the functions with upper index k are solutions to the
problems

(1.27)

k
u1,t +

k
v · ∇k

u1 − ν

(
∆

k
u1 +

2

r

k
u1,r

)
= 2

k
u1

k

ψ1,z +
k

fφ1 in Ω+,

k
ω1,t +

k
v · ∇ k

ω1 − ν

(
∆

k
ω1 +

2

r

k
ω1,r

)
= 2

k
u1

k
u1,z +

k

Fφ1 in Ω+,

−
(
∆

k

ψ1 +
2

r

k

ψ1,r

)
=

k
ω1 in Ω+,

k
ω1|S+ = 0,

k

ψ1|S+ = 0,
k
u1|S+ = 0,

k
ω1|t=0 =

k
ω1(0),

k

ψ1|t=0 =
k

ψ1(0),
k
u1|t=0 =

k
u1(0),

where k = 1, 2, and
1
u1 = 0,

1

fφ1 = 0, S+ = S × R+, Si+ = Si × R+, i = 1, 2.

To prove stability of nonswirl axisymmetric solutions we introduce the differences

(1.28) ω =
2
ω − 1

ω, ψ =
2

ψ −
1

ψ, u =
2
u− 1

u, v =
2
v − 1

v

and

(1.29) ω = rω1, ψ = rψ1, u = ru1.

The functions u1, ω1, ψ1 are solutions to the problem

(1.30)

u1,t + v · ∇u1 +
1
v · ∇u1 − ν

(
∆u1 +

2

r
u1,r

)
= 2u1ψ1,z + u1

1

ψ1,z + fφ1,

ω1,t + (v +
1
v) · ∇ω1 + v · ∇ 1

ω1 − ν

(
∆ω1 +

2

r
ω1,r

)
= 2u1u1,z + Fφ1,

−
(
∆ψ1 +

2

r
ψ1,r

)
= ω1,

ω1|S+ = 0, ψ1|S+ = 0, u1|S+ = 0,

ω1|t=0 = ω1(0), ψ1|t=0 = ψ1(0), u1|t=0 = u1(0),

v · n̄|S+ = 0,
1
v · n̄|S+ = 0.
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Moreover,

(1.31) vr = −ψ,z, vz =
1

r
(rψ),r

The considered in this paper boundary conditions are more restrictive than the slip bound-
ary conditions on S

(1.32) v · n̄ = 0

(1.33) n̄ · D(v) · τ̄α = 0, α = 1, 2,

where D(v) = ∇v +∇vT is the dilatation tensor, τ̄α, α = 1, 2, is the tangent vector to S.
In view of [2, Ch. 4] (1.32), (1.33) imply the following boundary conditions

(1.34) vr|S1 = 0, vz|S2 = 0, ω|S = 0, u1,r|S1 = 0, u1,z|S2 = 0.

Now, we formulate the main results of this paper. From Lemma 3.4 and (4.1), (4.2) we
have

Theorem 1.1. Assume that
1
ω1(0) ∈ L2(Ω),

1

Fφ1 ∈ L2(kT, (k + 1)T ;L6/5(Ω)), k ∈ N0.
Then there exists a nonswirl axisymmetric solution to problem (1.1)–(1.6) such that

v′ ∈ L∞(R+;H
1(Ω)) ∩ L2(kT, (k + 1)T ;H2(Ω)), k ∈ N0,

where v′ = (vr, vz).

From Lemma 4.1 it follows

Theorem 1.2. Let the assumptions of Theorem 1.1 hold. Let γ ∈ (0, γ∗], where γ∗ is
so small that ν1 − c0

ν1
γ∗ ≥ c∗

2
, c∗ ∈ (0, ν1], c0 appears in (4.11) and ν1 in Lemma 3.1.

Let ∥ω1(0)∥2L2(Ω) + ∥u1(0)∥4L4(Ω) ≤ γ, where ω1 = ω/r, u1 = u/r and ω, u are intro-

duced in (1.28). Let c0(∥Fφ1(t)∥2L6/5(Ω) + ∥fφ1(t)∥4L4/3(Ω)) ≤ c∗
4
γ for t ∈ [kT, (k + 1)T ],

c0
∫ (k+1)T

kT
(∥Fφ1(t)∥2L6/5(Ω) + ∥fφ1(t)∥4L4/3(Ω))dt ≤ αγ, k ∈ N0.

Let Ā1(k) =
c0
ν21

∫ (k+1)T

kT
∥

1

Fφ1(t)∥2L6/5(Ω)dt +
1
ν1
(∥ 1
ω1(kT )∥2L2(Ω) − ∥ 1

ω1((k + 1)T )∥L2(Ω)), and

Ā2
1 = supk∈N0

Ā2
1(k). Let α exp(Ā2

1) + exp
(
− c∗

4
T
)
≤ 1. Then

(1.35) ∥ω1(t)∥2L2(Ω) + ∥u1(t)∥4L4(Ω) ≤ γ for any t ∈ R+.

Since ω and u describe a distance between swirl and nonswirl axisymmetric solutions
to problem (1.1)–(1.6) we have

Theorem 1.3. Let the assumptions of Theorems 1.1, 1.2 hold. Then there exists a global
axisymmetric solution to problem (1.1)–(1.6) which remains close to nonswirl axisymmet-
ric solutions for all time if they are sufficiently close at the initial time.

There is a wide literature concerning stability of some special solutions to the Navier-
Stokes equations. By the special solutions we mean either two-dimensional or nonswirl
axisymmetric solutions. Stability ot two-dimensional solutions to the Navier-Stokes equa-
tions is considered in papers [5, 7, 8]. In [5, 7] the periodic boundary conditions are
considered, so the fluid motion is located in a box. In [8] we consider the fluid motion
in a cylindrical domain. Moreover, the Navier boundary conditions imply existence of
two-dimensional solutions without any additional restrictions, which are bounded by a
fixed constant independent of time.

More literature concerning stability of special solutions is cited in papers [5, 7, 8].
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2 Notation and auxiliary results

Let N0 = N ∪ {0}. By Lp(Ω), p ∈ [1,∞], Ω ⊂ Rn we denote the Lebesgue space of
integrable functions and by Hs(Ω), s ∈ N0, Ω ⊂ Rn, the Sobolev space of functions with
the finite norm

∥u∥Hs(Ω) =

( ∑
|α|≤s

∫
Ω

|Dα
xu(x)|2dx

)1/2

,

whereDα
x = ∂α1

x1
. . . ∂αn

xn
, |α| = α1+α2+· · ·+αn, αi ∈ N0, i = 1, . . . , n. Let u = (u1, . . . , un)

be a vector. Then |u| =
√
u22 + · · ·+ u2n.

The following Poincaré inequality holds

Lemma 2.1. Let u ∈ H1(Ω), u|S = 0. Then there exists a constant cp such that

(2.1) cp∥u∥2L2(Ω) ≤ ∥∇u∥2L2(Ω).

3 Solutions without swirl

In this Section we prove the existence of regular global soltuions to problem (1.13)–(1.17),
(1.24). We apply the energy method. We restrict our considerations to obtain necessary
estimates only because existence follows from the Faedo-Galerkin method.

Estimates in this section are performed in the sense of a priori. We assume that there
exist sufficiently regular solutions to problem (1.13)–(1.17), (1.24). Then after getting
the estimates and performing the closure procedure we have estimates for solutions with
regularity described by these estimates.

Lemma 3.1. Let us consider (1.13). Let

(3.1)
A2

1 =
cs
ν1

sup
k

(k+1)T∫
kT

∥
1

Fφ1(t)∥2L6/5(Ω)dt <∞,

A2
2 =

A2
1

1− e−ν,T
+ ∥ 1

ω1(0)∥2L2(Ω) <∞,

ν1 = νc1
2
, c1 = min{1, cp}, cp is the Poincaré constant from (2.1) and cs is the constant

from the imbedding H1(Ω) ⊂ L6(Ω). Then

(3.2) ∥ 1
ω1(t)∥2L2(Ω) + ν1

t∫
kT

∥ 1
ω1(t

′)∥2H1(Ω)dt
′ ≤ A2

1 + A2
2,

where t ∈ (kT, (k + 1)T ], k ∈ N0.

Proof. Multiplying (1.13) by
1
ω1 and integrating the result over Ω yields

(3.3)
1

2

d

dt
∥ 1
ω1∥2L2(Ω) + ν∥∇ 1

ω1∥2L2(Ω) − 2ν

∫
Ω

1
ω1,r

1
ω1drdz =

∫
Ω

1

Fφ1
1
ω1dx.
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The last term on the l.h.s. of (3.3) equals

−ν
∫
Ω

(
1
ω2
1),rdrdz = ν

a∫
−a

1
ω2
1|r=0dz,

where we used that
1
ω1|r=R = 0. Since the term is positive on the l.h.s. of (3.3), it can be

omitted. By the Poincaré inequality (see Lemma 2.1) we have

(3.4)
d

dt
∥ 1
ω1∥2L2(Ω) + νc1∥

1
ω1∥2H1(Ω) ≤ 2

∫
Ω

1

Fφ1
1
ω1dx,

where c1 = min{1, cp} and cp is the constant from (2.1). Applying the Hölder and the
Young inequalities to the r.h.s. of (3.4) we derive

(3.5)
d

dt
∥ 1
ω1∥2L2(Ω) +

νc1
2

∥ 1
ω1∥2H1(Ω) ≤

2cs
νc1

∥
1

Fφ1∥2L6/5(Ω),

where cs is the constant from the Sobolev imbedding H1(Ω) ⊂ L6(Ω). Setting ν1 = νc1
2

in (3.5) it follows

(3.6)
d

dt
∥ 1
ω1∥2L2(Ω) + ν1∥

1
ω1∥2L2(Ω) ≤

cs
ν1
∥

1

Fφ1∥2L6/5(Ω).

Continuing, we have

(3.7)
d

dt
(∥ 1
ω1∥2L2(Ω)e

ν1t) ≤ cs
ν1
∥

1

Fφ1∥2L6/5(Ω)e
ν1t

Integrating (3.7) with respect to time from t = kT to t ∈ (kT, (k + 1)T ] we derive

(3.8) ∥ 1
ω1(t)∥2L2(Ω) ≤

cs
ν1

t∫
kT

∥
1

Fφ1(t
′)∥2L6/5(Ω)dt

′ + exp(−ν1(t− kT ))∥ 1
ω1(kT )∥2L2(Ω).

Setting t = (k + 1)T inequality (3.8) implies

(3.9) ∥ 1
ω1((k + 1)T )∥2L2(Ω) ≤ A2

1 + exp(−ν1T )∥
1
ω1(kT )∥2L2(Ω).

Hrence, iteration yields

(3.10) ∥ 1
ω1(kT )∥2L2(Ω) ≤

A2
1

1− e−ν1T
+ e−ν1kT∥ 1

ω1(0)∥2L2(Ω) ≤ A2
2.

Integrating (3.5) with respect to time from t = kT to t ∈ (kT, (k + 1)T ] yields

(3.11) ∥ 1
ω1(t)∥2L2(Ω) + ν1

t∫
kT

∥ 1
ω1(t

′)∥2H1(Ω) ≤
cs
ν1

t∫
kT

∥
1

Fφ1(t
′)∥2L6/5(Ω)dt

′ + ∥ 1
ω1(kT )∥2L2(Ω).

Using (3.1)1 and (3.10) gives (3.2). This concludes the proof.
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Next, we consider the problem (see (1.14), (1.17) without upper index 1)

(3.12) −∆ψ +
ψ

r2
= ω, ψ|S = 0.

Using the cylindrical coordinates problem (3.12) is expressed in the form

(3.13) −
(
ψ,rr + ψ,zz +

1

r
ψ,r

)
+
ψ

r2
= ω, ψ|S = 0.

From (3.12) the following problem for ψ1 = ψ/r follows,

(3.14) −
(
∆ψ1 +

2

r
ψ1,r

)
= ω1, ψ1|S = 0

so in cylindrical coordinates it takes the form

(3.15) −
(
ψ1,rr + ψ1,zz +

3

r
ψ1,r

)
= ω1, ψ1|S = 0.

Lemma 3.2. Assume that ω1 ∈ L2(Ω). Assume that solutions to (3.14) vanish sufficiently
quickly near the axis of symmetry. Then solutions to (3.15) satisfy the estimate

(3.16) ∥ψ1∥2H2(Ω) +

∫
Ω

1

r2
|ψ(1)

1,r |2dx ≤ c∥ω1∥2L2(Ω),

where ψ
(1)
1 is only different from zero in some neighborhood of the axis of symmetry.

Proof. To obtain estimates for solutions to problem (3.12) we introduce the following
partition of unity

2∑
k=1

φ(k)(r) = 1, 0 ≤ r ≤ R,

such that φ(1)(r) = 1 for r ≤ r0, φ
(1)(r) = 0 for r ≥ 2r0, φ

(2)(r) = 1 for r ≥ 2r0,
φ(2)(r) = 0 for r ≤ r0, 2r0 < R. Next we introduce the notation

ψ(k) = ψφ(k), ω(k) = ωφ(k), k = 1, 2.

Multiplying (3.14) by ψ1, integrating over Ω and using the boundary conditions we get

(3.17)

∫
Ω

|∇ψ1|2dx−
∫
Ω

(ψ2
1),rdrdz =

∫
Ω

ω1ψ1dx.

Using the boundary conditions again and the Hölder, the Young and the Poincaré in-
equalities to the r.h.s. of (3.17) we obtain the estimate

(3.18) ∥ψ1∥2H1(Ω) +

a∫
−a

ψ2
1|r=0dz ≤ c∥ω1∥2L2(Ω).
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Multiplying (3.14) by φ(1) we obtain the problem

(3.19) −∆ψ
(1)
1 − 2

r
ψ

(1)
1,r + 2ψ1,rφ̇

(1) + ψ1φ̈
(1) +

2

r
ψ1φ̇

(1) = ω
(1)
1 , ψ

(1)
1 |S2 = 0,

where the dot denotes the derivative with respect to r. Differentiating (3.19) with respect
to r yields

(3.20)
−∆ψ

(1)
1,r −

2

r
ψ

(1)
1,rr +

3

r2
ψ

(1)
1,r = −

[
2ψ1,rφ̇

(1) + ψ1φ̈
(1) +

2

r
ψ1φ̇

(1)

]
,r

+ ω
(1)
1,r ,

ψ
(1)
1,r |S2 = 0.

Multiply (3.20) by ψ
(1)
1,r and integrate over Ω. Then we get

(3.21)

∫
Ω

|∇ψ(1)
1,r |2dx− 2

∫
Ω

ψ
(1)
1,rrψ

(1)
1,rdrdz + 3

∫
Ω

1

r2
|ψ(1)

1,r |2dx

=

∫
Ω

[
2ψ1,rφ̇

(1) + ψ1φ̈
(1) +

2

r
ψ1φ̇

(1)

]
(ψ

(1)
1,rr),rdrdz

+

∫
Ω

ω
(1)
1,rψ

(1)
1,rdx.

The first integral on the r.h.s. of (3.21) is bounded by

ε(∥ψ(1)
1,rr∥2L2(Ω) + ∥ψ(1)

1,r∥2L2(Ω)) + c/ε∥ψ1∥2H1(Ω).

The second integral on the r.h.s. of (3.21) can be expressed in the form

(3.22)

∫
Ω

(ω
(1)
1 ψ

(1)
1,rr),rdrdz −

∫
Ω

ω
(1)
1 ψ

(1)
1,rrdx−

∫
Ω

ω
(1)
1 ψ

(1)
1,rdrdz.

Since
∫
Ω
(ω

(1)
1 ψ

(1)
1,rr),zdrdz = 0 the first integral in (3.22) equals∫
Ω

[(ω
(1)
1 ψ

(1)
1,rr),r + (ω

(1)
1 ψ

(1)
1,rr),z]drdz =

∫
Ω

div (ω
(1)
1 ψ

(1)
1,r)dx = 0,

where ω
(1)
1 ψ

(1)
1,r = (ω

(1)
1 ψ

(1)
1,r , ω

(1)
1 ψ

(1)
1,r).

The last two integrals in (3.22) are bounded by

ε

(
∥ψ(1)

1,rr∥2L2(Ω) +

∥∥∥∥ 1

r2
ψ

(1)
1,r

∥∥∥∥2

L2(Ω)

)
+ c/ε∥ω(1)

1 ∥2L2(Ω).

Employing the above estimates in (3.21) and using that ε is sufficiently small we derive
the inequality

(3.23)

1

2
∥∇ψ(1)

1,r∥2L2(Ω) +

∥∥∥∥1rψ(1)
1,r

∥∥∥∥2

L2(Ω)

− 2

∫
Ω

ψ
(1)
1,rrψ

(1)
1,rdrdz

≤ c(∥ω(1)
1 ∥2L2(Ω) + ∥ψ1∥2H1(Ω)).
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Finally, the last term on the l.h.s. of (3.23) equals

a∫
−a

|ψ(1)
1,r |2|r=0dz.

Employing this and (3.18) in (3.23) yields

(3.24) ∥∇ψ(1)
1,r∥2L2(Ω) +

∥∥∥∥1rψ(1)
,r

∥∥∥∥2

L2(Ω)

+

a∫
−a

|ψ(1)
1,r |2|r=0dz ≤ c∥ω1∥2L2(Ω).

Expressing (3.19) in the form

−ψ(1)
1,zz = ψ

(1)
1,rr +

3

r
ψ

(1)
1,r −

(
2ψ1,rφ̇

(1) + ψ1φ̈
(1) +

2

r
ψ1φ̇

(1)

)
+ ω

(1)
1

we have

∥ψ(1)
1,zz∥2L2(Ω) ≤ c

(
∥ψ(1)

1,rr∥2L2(Ω) +

∥∥∥∥1rψ(1)
1,r

∥∥∥∥2

L2(Ω)

+ ∥ψ1∥2H1(Ω) + ∥ω(1)
1 ∥2L2(Ω)

)
.

In view of (3.18) and (3.24) it follows that

(3.25) ∥ψ(1)
1,zz∥2L2(Ω) ≤ c∥ω1∥2L2(Ω)

Estimates (3.18), (3.24) and (3.25) imply

(3.26) ∥ψ(1)
1 ∥2H2(Ω) +

∥∥∥∥1rψ(1)
1,r

∥∥∥∥2

L2(Ω)

≤ c∥ω1∥2L2(Ω).

Next we examine solutions to (3.14) in a neighborhood located in a positive distance from
the axis of symmetry. For this purpose we multiply (3.14) by φ(2). Then we get

(3.27)
−∆ψ

(2)
1 − 2

r
ψ

(2)
1,r + 2ψ1,rφ̇

(2) + ψ1φ̈
(2) +

2

r
ψ1φ̇

(2) = ω
(2)
1 ,

ψ
(2)
1 |S = 0, ψ

(2)
1 |r=r0 = 0.

From (3.18) and (3.27) we have

(3.28) ∥∆ψ(2)
1 ∥L2(Ω) ≤ c(∥ψ1∥H1(Ω) + ∥ω(2)

1 ∥L2(Ω)) ≤ c∥ω1∥L2(Ω).

From (3.28) and boundary conditions in (3.27) we derive

(3.29) ∥ψ(2)
1 ∥H2(Ω) ≤ c∥ω1∥L2(Ω).

To prove (3.29) we need local considerations. Expecially, to perform the estimate near the
angle between S1 and S2 we have to use reflections with respect to S1 and S2, respectively.
Hence, (3.26) and (3.29) imply (3.16). This concludes the proof.
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Since we are not able to derive an estimate for the third derivatives with respect to
r to solutions to problem (3.14) we obtain such estimate for solutions to problem (3.12).
Hence, we have

Lemma 3.3. Assume that ω ∈ H1(Ω). Assume that solutions to problem (3.12) vanish
sufficiently fast near the axis of symmetry.
Then the following a priori estimate holds

(3.30)

∥ψ∥H3(Ω) +

∥∥∥∥1rψ,rr

∥∥∥∥
L2(Ω)

+

∥∥∥∥1rψ,zz

∥∥∥∥
L2(Ω)

+

∥∥∥∥1rψ1,r

∥∥∥∥
L2(Ω)

+

( a∫
−a

1

r2
ψ2
,r|r=0dz

)1/2

≤ c∥ω∥H1(Ω).

Proof. First we examine solutions to problem (3.12) in a neighborhood of the axis of
symmetry. Multiplying (3.12) by φ(1) we get

(3.31)
−∆ψ(1) +

ψ(1)

r2
= −(2ψ,rφ̇

(1) + ψφ̈(1)) + ω(1),

ψ(1)|S2 = 0.

It is convenient to express (3.31) in the form

(3.32)
−
(
ψ(1)
,rr + ψ(1)

,zz +
1

r
ψ(1)
,r

)
+
ψ(1)

r2
= −(2ψ,rφ̇

(1) + ψφ̈(1)) + ω(1)

ψ(1)|S = 0.

Differentiating (3.32) twice with respect to r, multiplying the result by ψ
(1)
,rr and integrating

over Ω, gives

(3.33)

−
∫
Ω

(
ψ(1)
,rrrr + ψ(1)

,rrzz +
1

r
ψ(1)
,rrr −

2

r2
ψ(1)
,rr +

2

r3
ψ(1)
,r

)
ψ(1)
,rrdx

+

∫
Ω

(
ψ(1)

r2

)
,rr

ψ(1)
,rrdx = −

∫
Ω

(2ψ,rφ̇
(1) + ψφ̈(1)),rrψ

(1)
,rrdx

+

∫
Ω

ω(1)
,rrψ

(1)
,rrdx.

Using that ψ
(1)
,rr |S2 = 0, we obtain from (3.33) the inequality

(3.34)

∫
Ω

|∇ψ(1)
,rr |2dx+ 2

∫
Ω

1

r2
|ψ(1)

,rr |2dx− 2

∫
Ω

1

r3
ψ(1)
,r ψ

(1)
,rrdx

+

∫
Ω

(
ψ(1)

r2

)
,rr

ψ(1)
,rrdx ≤ ε∥ψ(1)

,rrr∥2L2(Ω) + c/ε∥ψ1∥2H2(Ω)

+

∫
Ω

(ω(1)
,r ψ

(1)
,rrr),rdrdz −

∫
Ω

ω(1)
,r ψ

(1)
,rrrdx−

∫
Ω

ω(1)
,r ψ

(1)
,rrdrdz.
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Exploiting that
∫
Ω
(ω

(1)
,r ψ

(1)
,rrr),zdrdz = 0 the third term on the r.h.s. of (3.34) equals∫

Ω

[(ω(1)
,r ψ

(1)
,zrr),r + (ω(1)

,r ψ
(1)
,rrr),z]drdz =

∫
Ω

div (ω
(1)
,r ψ

(1)
,rr )dx = 0,

where
1
ω,rψ

(1)
,rr = (

1
ω,rψ

(1)
,rr ,

1
ω,rψ

(1)
,rr ). The fourth term on the r.h.s. of (3.34) is estimated by

ε∥ψ(1)
,rrr∥2L2(Ω) + c/ε∥ω(1)

,r ∥2L2(Ω).

Finally, the last term on the r.h.s. of (3.34) is bounded by∣∣∣∣ ∫
Ω

ω(1)
,r (rψ

(1)
1 ),rrdrdz

∣∣∣∣ = ∣∣∣∣ ∫
Ω

ω(1)
,r (2ψ

(1)
1,r + rψ

(1)
1,rr)drdz

∣∣∣∣
≤ ε

(∫
Ω

|ψ(1)
1,r |2

r2
dx+

∫
Ω

ψ2
1,rrdx

)
+ c/ε∥ω(1)

,r ∥2L2(Ω).

Employing the above considerations in (3.34) and assuming that ε is sufficiently small we
derive the inequality

(3.35)

∫
Ω

|∇ψ(1)
,rr |2|dx+ 2

∫
Ω

1

r2
|ψ(1)

,rr |2dx− 2

∫
Ω

1

r3
ψ(1)
,r ψ

(1)
,rrdx

+

∫
Ω

(
ψ(1)

r2

)
,rr

ψ(1)
,rrdx ≤ ε

∫
Ω

|ψ(1)
1,r |2

r2
dx+ ε

∫
Ω

ψ2
1,rrdx

+ c/ε∥ω(1)
,r ∥2L2(Ω) + c∥ψ1∥2H2(Ω).

From (3.16), (3.35) and sufficiently small ε we have

(3.36)

∥∇ψ(1)
,rr∥2L2(Ω) + ∥ψ1∥2H2(Ω) + 2

∫
Ω

1

r2
|ψ(1)

,rr |2dx+
∫
Ω

1

r2
|ψ(1)

1,r |2dx

− 2

∫
Ω

1

r3
ψ(1)
,r ψ

(1)
,rrdx+

∫
Ω

(
ψ(1)

r2

)
,rr

ψ(1)
,rrdx ≤ c∥ω(1)

,r ∥2L2(Ω)

+ c∥ω1∥2L2(Ω).

The fifth term on the l.h.s. of (3.36) equals

(3.37)

−
∫
Ω

1

r3
(|ψ(1)

,r |2),rdx = −
∫
Ω

1

r2
(|ψ(1)

,r |2),rdrdz = −
∫
Ω

∂r

(
1

r2
|ψ(1)

,r |2
)
drdz

− 2

∫
Ω

1

r4
|ψ(1)

,r |2dx =

a∫
−a

1

r2
|ψ(1)

,r |2|r=0dz − 2

∫
Ω

1

r4
|ψ(1)

,r |2dx.
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The last integral in (3.37) is examined in the following way∫
Ω

1

r4
|ψ(1)

,r |2dx =

∫
Ω

1

r4
|(rψ(1)

1 ),r|2dx ≤
∫
Ω

1

r4
(|rψ(1)

1,r |2 + |ψ(1)
1 |2)dx

≤
∫
Ω

1

r2
|ψ(1)

1,r |2dx+
∫
Ω

1

r4
|ψ(1)

1 |62dx ≤ c

∫
Ω

1

r2
|ψ(1)

1,r |2dx,

where the last inequality follows from the Hardy inequality. The last term on the l.h.s.
of (3.36) equals

I1 ≡
∫
Ω

((
ψ(1)

r2

)
,r

ψ(1)
,rrr

)
,r

drdz −
∫
Ω

(
ψ(1)

r2

)
,r

ψ(1)
,rrrdx−

∫
Ω

(
ψ(1)

r2

)
,r

ψ(1)
,rrdrdz,

where the first integral in I1 vanishes because ψ
(1)
,rr |S2 = 0 and the same idea implying

vanishing of the first term in (3.22) is used and the second and the third terms are
bounded by

ε

∫
Ω

|ψ(1)
,rrr|2dx+ ε

∫
Ω

1

r2
|ψ(1)

,rr |2dx+ c/ε

∫
Ω

(
ψ

(1)
1

r

)2

,r

dx,

where the last integral is bounded by

c

∫
Ω

1

r2
|ψ(1)

1,r |2dx+ c

∫
Ω

1

r4
|ψ(1)

1 |2dx ≤ c

∫
Ω

1

r2
|ψ(1)

1,r |2dx,

where the Hardy inequality is used. Employing the above estimates in (3.36) and using
again (3.16) we have

(3.38)

∥∇ψ(1)
,rr∥2L2(Ω) + ∥ψ1∥2H2(Ω) +

∫
Ω

1

r2
|ψ(1)

,rr |2dx+
∫
Ω

1

r2
|ψ(1)

1,r |2dx

+

a∫
−a

1

r2
|ψ(1)

,r |2|r=0dz ≤ c∥ω(1)
,r ∥2L2(Ω) + c∥ω1∥2L2(Ω).

Differentiating (3.12) twice with respect to z, multiplying by ψ,zz, integrating over Ω and
by parts we get

(3.39) −
∫
S2

n̄ · ∇ψ,zz · ψ,zzdS2 +

∫
Ω

|∇ψ,zz|2dx+
∫
Ω

1

r2
|ψ,zz|2dx =

∫
Ω

ω,zzψ,zzdx.

Using that n̄ is the unit outward vector normal to S2, the first term on the l.h.s. of (3.39)
equals

I1 = −
R∫

0

ψ,zzzψ,zz|z=a
z=−ardr
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Since

(3.40) ψ,zz = ω = 0 on S2,

I1 vanishes.

Similarly, the term on the r.h.s. of (3.39) equals

I2 =

∫
Ω

(ω,zψ,zz),zdx−
∫
Ω

ω,zψ,zzzdx,

where the first integral in I2 vanishes. Hence

|I2| ≤ ε∥ψ,zz∥2H1(Ω) + c/ε∥ω∥2H1(Ω).

The second integral in I2 is bounded by A. Summarizing and assuming that ε is sufficiently
small we obtain from (3.39) the inequality

(3.41)

∫
Ω

|∇ψ,zz|2dx+
∫
Ω

1

r2
|ψ,zz|2dx ≤ c∥ω∥2H1(Ω).

Finally, we have to obtain an estimate for ∥∇ψ(2)
,rr∥L2(Ω). For this purpose we multiply

(3.12) by φ(2). Then we get

(3.42)
−∆ψ(2) +

ψ(2)

r2
= −(2ψ,rφ̇

(2) + ψφ̈(2)) + ω(2),

ψ(2)|S = 0.

It is more convenient to write (3.42) in the form

(3.43) −ψ(2)
,rr − ψ(2)

,zz −
1

r
ψ(2)
,r +

ψ(2)

r2
= −(2ψ,rφ̇

(2) + ψφ̈(2)) + ω(2).

Differentiating (3.43) with respect to r and taking L2 norm we get

(3.44) ∥ψ(2)
,rrr∥2L2(Ω) ≤ ∥ψ(2)

,rzz∥2L2(Ω) + c∥ψ(2)∥2H2(Ω) + c∥ψ∥2H2(Ω) + c∥ω(2)∥2H1(Ω).

Since the first norm on the r.h.s. of (3.44) is estimated in view of (3.41) we obtain from
(3.38), (3.41), (3.44) and the estimate

∥ψ∥H2(Ω) ≤ ∥rψ1∥H2(Ω) ≤ c∥ω1∥L2(Ω)

which holds in view of (3.16), the estimate

∥ψ∥H3(Ω) +

∥∥∥∥1rψ,zz

∥∥∥∥
L2(Ω)

+

∥∥∥∥1rψ,rr

∥∥∥∥
L2(Ω)

+

∥∥∥∥1rψ1,r

∥∥∥∥
L2(Ω)

+

( a∫
−a

1

r2
ψ2
,r|r=0dz

)1/2

≤ c(∥ω∥H1(Ω) + ∥ω1∥L2(Ω)).

This concludes the proof of Lemma 3.3.
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From Lemmas 3.1–3.3 and [3] we have

Lemma 3.4. Assume that
1
ω1(0) ∈ L2(Ω),

1

Fφ1 ∈ L2(kT, (k + 1)T ;L6/5(Ω)), k ∈ N0.
Then there exists a solution to problem (1.13)–(1.17) such that

(3.45)

1
ω1,

1
ω ∈ L∞(R+;L2(Ω)) ∩ L2(kT, (k + 1)T ;H1(Ω)),

1

ψ ∈ L∞(R+;H
2(Ω)) ∩ L2(kT, (k + 1)T ;H3(Ω)).

Proof. The estimates follow from Lemmas 3.1–3.3. Existence of solutions to (1.13)–(1.17)

such that
1
ω ∈ L∞(R+;L2(Ω)) and

1

ψ ∈ L∞(R+;H
2(Ω)) is proved by Ladyzhenskaya in [3].

Further regularity follows from the classical technique of increasing regularity. Moreover,
since the estimates in Lemmas 3.1–3.3 are shown by the energy method the existence
of solutions (3.45) can be proved by the Faedo-Galerkin method. This concludes the
proof.

4 Stability

From Lemmas 3.1–3.3 we have that

(4.1)

∥
1

ψ1∥2L∞(kT,t;H2(Ω)) +

t∫
kT

(
∥

1

ψ(t′)∥2H3(Ω) +

∥∥∥∥1rψ,rr

∥∥∥∥2

L2(Ω)

+

∥∥∥∥1rψ,zz

∥∥∥∥2

L2(Ω)

+

∥∥∥∥1rψ1,r

∥∥∥∥2

L2(Ω)

)
dt′ ≤ c(A2

1 + A2
2),

where t ∈ (kT, (k + 1)T ], k ∈ N0 and A1, A2 are introduced in (3.1). Then (1.15) implies

(4.2)
1
vr,

1
vz ∈ L∞(kT, t;H1(Ω)) ∩ L2(kT, t;H

2(Ω)),

where t ∈ (kT, (k + 1)T ], k ∈ N0. To show stability we need
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Lemma 4.1. Assume that

(4.3)

1.
1
ω ∈ L2(kT, (k + 1)T ;H1(Ω)), k ∈ N0,

Fφ1 ∈ C(R+;L6/5(Ω)), fφ1 ∈ C(R+;L4/3(Ω))

2. let γ ∈ (0, γ∗], where γ∗ is so small that

ν1 −
c0
ν1
γ∗ ≥

c∗
2
, where c∗ ∈ (0, ν1] and ν1 =

νc1
2
, c1 = min{1, cp},

cp is the Poincaré constant,

and c0 is introduced in (4.11).

3. ∥ω1(0)∥2L2(Ω) + ∥u1(0)∥4L4(Ω) ≤ γ

4. let c0(∥Fφ1(t)∥2L6/5(Ω) + ∥fφ1(t)∥4L4/3(Ω)) ≤
c∗
4
γ for t ∈ R+,

c0

(k+1)T∫
kT

(∥Fφ1(t)∥2L6/5(Ω) + ∥fφ1(t)∥4L4/3(Ω))dt ≤ αγ, k ∈ N0.

5. let Ā2
1(k) =

c0
ν21

(k+1)T∫
kT

∥
1

Fφ1(t)∥2L6/5(Ω)dt+
1

ν1
(∥ 1
ω1(kT )∥2L2(Ω)

− ∥ 1
ω1((k + 1)T )∥2L2(Ω)).

6. Ā2
1 ≡ sup

k∈N0

Ā2
1(k) ≤

c∗
4
T, α exp(Ā2

1) + exp
(
− c∗

4
T
)
≤ 1.

Then

(4.4) ∥ω1(t)∥2L2(Ω) + ∥u1(t)∥4L4(Ω) ≤ γ for t ∈ R+.

Proof. Multiplying (1.30)2 by ω1, integrating over Ω and using boundary conditions
(1.30)6 yield

(4.5)

1

2

d

dt
∥ω1∥2L2(Ω) +

∫
Ω

v · ∇ 1
ω1ω1dx+ ν

∫
Ω

|∇ω1|2dx+ ν

a∫
−a

ω2
1|r=0dx

=

∫
Ω

∂zu
2
1ω1dx+

∫
Ω

Fφ1ω1dx.

The second term on the l.h.s. of (4.5) is bounded by

ε∥ω1∥2L6(Ω) + c/ε∥v∥2L3(Ω)∥∇
1
ω1∥2L2(Ω).

The first term on the r.h.s. of (4.5) is treated as folllows∣∣∣∣− ∫
Ω

u21ω1,zdx

∣∣∣∣ ≤ ε∥ω1,z∥2L2(Ω) + c/ε∥u1∥4L4(Ω).

Finally, the last term on the r.h.s. of (4.5) is estimated by

ε∥ω1∥2L6(Ω) + c/ε∥Fφ1∥2L6/5(Ω).
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Employing the above estimates in (4.5) and assuming that ε is sufficiently small we get

(4.6)

d

dt
∥ω1∥2L2(Ω) + ν∥∇ω1∥2L2(Ω) ≤ c∥u1∥4L4(Ω) + c∥∇ 1

ω∥2L2(Ω)∥v∥2L3(Ω)

+ c∥Fφ1∥2L6/5(Ω).

Multiplying (1.30)1 by u1|u1|2 and integrating over Ω gives

(4.7)

1

4

d

dt
∥u1∥4L4(Ω) + ν

∫
Ω

|∇u21|2dx+
ν

2

a∫
−a

u41|r=0dz = 2

∫
Ω

u41ψ1,zdx

+

∫
Ω

u41
1

ψ1,zdx+

∫
Ω

fφ1u1|u1|2dx.

The first term on the r.h.s. of (4.7) equals

−4

∫
Ω

u21∂zu
2
1ψ1dx

so it is bounded by

ε

∫
Ω

|∂zu21|2dx+ c/ε sup
Ω

|ψ1|2
∫
Ω

u41dx.

The last term on the r.h.s. of (4.7) is bounded by

∥fφ1∥L4/3(Ω)∥u1∥3L12(Ω) ≤ ε∥u1∥4L12(Ω) + c/ε∥fφ1∥4L4/3(Ω).

The Poincaré inequality implies

(4.8) ∥u21∥2H1(Ω) ≤ c∥∇u21∥2L2(Ω).

Then the Sobolev imbeddings yield

(4.9) ∥u1∥4L12(Ω) ≤ c∥u21∥2H1(Ω).

In view of the above estimates, (4.8), (4.9) and ε sufficiently small we derive the inequality

(4.10)

d

dt
∥u1∥4L4(Ω) + ν∥∇u21∥2L2(Ω) ≤ c∥ω1∥2L2(Ω)∥u1∥4L4(Ω)

+ c∥ 1
ω1∥2L2(Ω)∥u1∥4L4(Ω) + c∥fφ1∥4L4/3(Ω).

Adding appropriately (4.6) and (4.10) gives

(4.11)

d

dt
(∥ω1∥2L2(Ω) + ∥u1∥4L4(Ω)) + ν(∥∇ω1∥2L2(Ω) + ∥∇u21∥2L2(Ω))

≤ c0∥
1
ω∥2H1(Ω)∥ω1∥2L2(Ω) + c0∥ω1∥2L2(Ω)∥u1∥4L4(Ω) + c0∥

1
ω1∥2L2(Ω)∥u1∥4L4(Ω)

+ c0(∥fφ1∥4L4/3(Ω) + ∥Fφ1∥2L6/5(Ω)),
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where we used that

(4.12) ∥v∥L3(Ω) ≤ c∥ω1∥L2(Ω).

Let us introduce the notation

(4.13)

X2(t) = ∥ω1(t)∥2L2(Ω) + ∥u1(t)∥4L4(Ω),

A2(t) = c0∥
1
ω(t)∥2H1(Ω),

G2(t) = c0(∥Fφ1(t)∥2L6/5(Ω) + ∥fφ1(t)∥4L4/3(Ω)).

Then (4.11) takes the form

(4.14)
d

dt
X2 ≤ −X2

(
ν − c0

ν
X2

)
+ A2X2 +G2.

Let γ ∈ (0, γ∗], where γ∗ is so small that

(4.15) ν − c0
ν
γ∗ ≥

c∗
2
, 0 < c∗ ≤ ν.

Assume that

(4.16) X2(kT ) ≤ γ, G2(t) ≤ c∗
γ

4
, t ∈ [kT, (k + 1)T ].

Let us introduce the quantity

Z2(t) = exp

(
−

t∫
kT

A2(t′)dt′
)
X2(t), t ∈ [kT, (k + 1)T ].

Then (4.14) takes the form

(4.17)
d

dt
Z2 ≤ −

(
ν − c0

ν
X2

)
Z2 + Ḡ2.

where Ḡ(t) = G2(t) exp
(
−

∫ t

kT
A2(t′)dt′

)
. Suppose, that

t∗ = inf{t ∈ (kT, (k + 1)T ] : X2(t) > γ}

= inf

{
t ∈ (kT, (k + 1)T ] : Z2(t) > γ exp

(
−

t∫
kT

A2(t′)dt′
)}

> kT.

By (4.15) for t ∈ (kT, t∗] inequality (4.17) takes the form

(4.18)
d

dt
Z2 ≤ −c∗

2
Z2 + Ḡ2(t).

Clearly, we have

(4.19)

Z2(t∗) = γ exp

(
−

t∗∫
kT

A2(t)dt

)
and

Z2(t) > γ exp

(
−

t∫
kT

A2(t′)dt′
)

for t > t∗.
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But (4.16) and (4.18) yield

d

dt
Z2|t=t∗ ≤ c∗

(
− γ

2
+
γ

4

)
exp

(
−

t∫
kT

A2(t′)dt′
)
< 0

contrary to (4.19). Hence Z2(t) ≤ γ exp
(
−

∫ t∗
kT
A2(t)dt

)
for t > t∗. Definition of Z2(t)

implies

X2(t) ≤ γ exp

( t∫
t∗

A2dt′
)

for t > t∗.

In view of (3.11) we have

(k+1)T∫
kT

A2dt ≤ cs
ν21

(k+1)T∫
kT

∥
1

Fφ1(t)∥2L6/5(Ω)dt+
1

ν1
(∥ 1
ω1(kT )∥2L2(Ω)

− ∥ 1
ω1((k + 1)T )∥2L2(Ω)) ≡ Ā2

1(k).

For sufficiently small γ inequality (4.14) takes the form

(4.20)
d

dt
X2 +

c∗
2
X2 ≤ A2X2 +G2.

Integrating (4.20) with respect to time from t = kT to t = (k + 1)T gives

(4.21)

X2((k + 1)T ) ≤ exp

( (k+1)T∫
kT

A2(t)dt

) (k+1)T∫
kT

G2(t)dt

+ exp

(
− c∗

2
T +

(k+1)T∫
kT

A2(t)dt

)
X2(kT ).

In view of the assumptions

(4.22)
c∗
4
T ≥

(k+1)T∫
kT

A2(t)dt,

(k+1)T∫
kT

G2(t)dt ≤ αγ,

where α is so small and T so large that

(4.23) α exp

( (k+1)T∫
kT

A2dt

)
+ exp

(
− c∗

4
T

)
≤ 1,

X2((k + 1)T ) ≤ γ. Then induction proves the lemma.

Next, we have
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Lemma 4.2. Let the assumptions of Lemma 4.1 be satisfied. Let k ∈ N0. Assume that
fφ1 ∈ L4(kT, (k + 1)T ;L4/3(Ω)), Fφ1 ∈ L2(kT, (k + 1)T ;L6/5(Ω)). Then there exists a
solution to problem (1.30) such that

(4.24)

∥ω1(t)∥2L2(Ω) + ∥u1(t)∥4L4(Ω) + ν

t∫
kT

(∥ω1(t
′)∥2H1(Ω) + ∥u21∥2H1(Ω))dt

′

≤ c(γ,A1, A2) +

t∫
kT

(∥fφ1(t′)∥4L4/3(Ω) + ∥Fφ1(t
′)∥2L6/5(Ω))dt

′

where t ∈ (kT, (k + 1)T ].

Proof. Estimate (4.24) follows from integration (4.11) with respect to time from t = kT
to t ∈ (kT, (k + 1)T ] and application of estimates (3.2) and (4.4). The existence follows
from the Faedo-Galerkin method used in each time step [kT, (k+1)T ], k ∈ N0, separately.
This concludes the proof.
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