JEDNOSTKA NAUKOWA KATEGORII A+

Dimension-free estimates for low degree functions on the Hamming cube

Komla Domelevo, Polona Durcik, Valentia Fragkiadaki, Ohad Klein, Diogo Oliveira e Silva, Lenka Slavíková, Błażej Wróbel Studia Mathematica MSC: Primary 42C10; Secondary 41A17, 41A63, 47A60 DOI: 10.4064/sm240417-27-11 Opublikowany online: 31 January 2025

Streszczenie

The main result of this paper are dimension-free $L^p$ inequalities, $1 \lt p \lt \infty $, for low degree scalar-valued functions on the Hamming cube. More precisely, for any $p \gt 2,$ $\varepsilon \gt 0,$ and $\theta =\theta (\varepsilon ,p)\in (0,1)$ satisfying \[ \frac{1}{p}=\frac{\theta}{p+\varepsilon}+\frac{1-\theta}{2}\] we obtain, for any function $f\colon \{-1,1\}^n\to \mathbb C$ whose spectrum is bounded from above by $d$, the Bernstein–Markov type inequalities $$ \|\Delta^k f\|_{p} \le C(p,\varepsilon )^k \,d^k\, \|f\|_{2}^{1-\theta }\|f\|_{p+\varepsilon }^{\theta },\quad k\in \mathbb N. $$ Analogous inequalities are also proved for $p\in (1,2)$ with $p-\varepsilon $ replacing $p+\varepsilon .$ As a corollary, if $f$ is Boolean-valued or $f\colon \{-1,1\}^n\to \{-1,0,1\}$, we obtain the bounds $$\|\Delta^k f\|_{p} \le C(p)^k \,d^k\, \|f\|_p,\quad k\in \mathbb N.$$ At the endpoint $p=\infty $ we provide counterexamples for which a linear growth in $d$ does not suffice when $k=1$.

We also obtain a counterpart of this result on tail spaces. Namely, for $p \gt 2$ we prove that any function $f\colon \{-1,1\}^n\to \mathbb C$ whose spectrum is bounded from below by $d$ satisfies the following upper bound on the decay of the heat semigroup: $$\|e^{-t\Delta }f\|_{p} \le \exp (-c(p,\varepsilon ) td) \|f\|_{2}^{1-\theta }\|f\|_{p+\varepsilon }^{\theta },\quad t \gt 0,$$ and an analogous estimate for $p\in (1,2).$

The constants $c(p,\varepsilon )$ and $C(p,\varepsilon )$ depend only on $p$ and $\varepsilon $; crucially, they are independent of the dimension $n$.

Autorzy

  • Komla DomelevoFaculty of Mathematics and Computer Science
    Institute of Mathematics
    97074 Würzburg, Germany
    e-mail
  • Polona DurcikSchmid College of Science and Technology
    Chapman University
    Orange, CA 92866, USA
    e-mail
  • Valentia FragkiadakiDepartment of Mathematics
    Texas A&M University
    College Station, TX 77843, USA
    e-mail
  • Ohad KleinSchool of Computer Science and Engineering
    Hebrew University of Jerusalem
    Jerusalem, Israel
    e-mail
  • Diogo Oliveira e SilvaCenter for Mathematical Analysis, Geometry and Dynamical Systems
    & Departamento de Matemática
    Instituto Superior Técnico
    1049-001 Lisboa, Portugal
    e-mail
  • Lenka SlavíkováDepartment of Mathematical Analysis
    Faculty of Mathematics and Physics
    Charles University
    186 75 Praha 8, Czech Republic
    e-mail
  • Błażej WróbelInstitute of Mathematics
    Polish Academy of Sciences
    00-656 Warszawa, Poland
    and
    Institute of Mathematics
    University of Wrocław
    50-384 Wrocław, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek